wxWindows 2.4.1: A portable C++ and Python GUI toolkit

Julian Smart, Robert Roebling, Vadim Zeitlin, Robin Dunn, et al

June 2003

Contents

Copyright NOLICE ... Xiv
L (oo [T £ o 1
What iS WXWINAOWS? ...ttt e s s e ene e nnne e 1
Why another cross-platform development t0017.........ooiiiiiiiii e 1
WXWINAOWS FEQUIFEMENTS .coieiiiii ittt ettt ettt e e e s st e e e s ame e e e e s anre e e e snrneeesaneneeeaans 3
Availability and location of WXWINAOWSoiiiiiiiii e 3
FAte] (Tl T=To [o =10 =T o £ PR RR 3
Multi-platform development with wxWindowscccooommiiiiiniiccccmnnnnccnnes 5
INCIUAE FIIES.c. ettt e s bt e e s ne e e e e s ant e e e e sanre e e e sanneeeenans 5
] o] = L4 =T PSPPSR 5
(@70] 1110 U L= 1o] [USRS 6
Y= LT 111 PRSP 6
WiINAOWS-SPECITIC fIlES ...eveeei e e 7
Allocating and deleting WxWindows ODJECES........ociiii i 7
ArChiteCtUre dEPENAENCYcci i e e s e e snre e e e saneeeeeeans 8
Conditional COMPIIATION ...coeiiiiiie e 8
(O [T =T TSRO P R URROPRPRIN 9
(=3 o =T Lo | 1T PSPPSR OPPPPPO 10
Utilities and libraries supplied with WXWindOWwscccccmimmmmmmmmmnmnsssnssnnnnnnn 11
Programming Strategies.......ccccurrmmmmmmmmmmmmmmmmmmmmmssmssnnn 13
Strategies for reducing programming ©ITOFSeeicveeerieerrie e 13
Strategies for POrtability..........coo e 13
Strategies for AEDUQGGING ...eeoiuree ittt e e ene e ebe e saeeas 14
Alphabetical class reference ... 16
WXACCEIETATOTENTIY ..ot e e e e s e e s anneee s 16
WXACCEIEIAIOITADIE ...t e e 17
WXACHVATEEVENT ... e e e e s anneee s 20
L0 A o] o PRSP 21
WXATTAY ettt ettt ettt ettt e e sttt e e sttt e e sttt e e st et e £ ae et e a2 n b e et e e a R e et e e aaRE et et e R e et e e annn e e e e e nnree e e nneeen 33
LR G =TS) 4 o TP 45
WXATTPTOVIOET ...ttt e s n e e nen e e nan e e e ene e e naneeennes 50
TR T 1 (o] s 4 F=\ 1[0 010 o] [=o] AP USRS 54
LT g =110 1= o L TP P PP UPPPPPP 58
WXBItMAPBULION ... e e e s e e s nnee s 72

CONTENTS

WXBItMapDataODbJECT......coo i 77
WXBItMAPHANAIET ... et e et e e e e s anneee s 78
LTS0S T4) SRR 82
LTT2d =T (0 =] o SRR 83
WXBIUSNLIST ...t e ettt e e e s bt e e e sab e e e e s annreeeeanneeens 89
WXBUFfEredINDUESTIEAIMot be e 91
WXBUFferedOUIPUISTIIEAM ..o e 91
LTS TU YO0 < To T SRS 92
WXBUSYINTO e e et e et e s e e e e e s annee e s 93
L4 =011 (o o PR SFR 94
WXCalCUlateLayOUIEVENT ..o e 98
L@ = 11T T b= T 3 [SR 99
RO 1T ale P T BT (= A« { PP 105
WXCAIENAAIEVENT ... e e e e e e eaneas 108
L2 LY SRR 109
L] aT=Ted 4= T) PRSP 112
WXCNECKLISTBOX ..ttt ettt e e et e e s et e e e e e e e e nnnee e e e sanes 115
12 oo SRR 117
WXCIASSINTO 1.t e e e e e e e e e nanes 124
12 1= o PR 126
WXCHENIDC ...t e e e e et e e e et e e e e nbee e e e ssee e e e sseeeeaanseeaeeanneeeeennnees 127
WXCHENIDATA ... et e e st e e e et e e e e e e e nn e e e nanes 128
WXClIENIDAtaCONTAINET.......oiiiiiiee e e e e e e 129
1703 [10] o oY= 1o FU ST RTOURRTRI 130
WXCIOSEEVENT ... e e st e e et e e e e abee e e e ennee e e e nnneas 134
(@] o | I oY - T 1= PR 136
112] [T RS RR 145
(2@ o] 01U - - PR 149
WXCOIOUIDAIADASEceiiiiiiiie e 151
10 (O o] (o1 0T B IF-1 oo H PSP R URTUURRURI 152
(@70 T 10T oTe] = o) PR 154
1720702102 = Lo 1 PR 162
WXCOMMANAEVENTeiiiiiiiiie ettt e e e et ee e e s ee e s e s e e e e s nsaeeeennneeeeeennees 164
WXCOMMANAPTOCESSONeiiiiiiiiee ettt e ettt ettt e st e e e sttt e e e s ab e e e ssbe e e s e nbeee e e nbeeeeeanneeeeennnes 169
L7270 o 1o o PR 173
(0o gl Te] = =TT TSRS 177
LT @ 7o 1] =T o 1o o PP 191
WXCONEXTHEID et e et e s et e e e ee e e e snnee e e e snneas 196
WXCONTEXTHEIPBULION ...ttt et e e e raee e saneaan 197
12O 1 o | PR 198

il

CONTENTS

WXCOUNTINGOULPULISIIEAM ...ttt sttt e e rnee e sane e 199
WXCHHICAISECHON ... nane e 200
WXCHtICAISECHIONLOCKETeiiiiiiiee ettt e e e e e e e e rae e e e ennre e e e ennes 202
10 (03510010 1 TP PRR PSRRI 203
100705 To TSP TRROURITRIN 204
WXCUSTOMDATAODJECT. ...ttt ettt e et e e sabe e e bee e saneaan 208
WXDAIADASE ... 211
WXDAtAFOIMAL ... e e 217
WXDAtaINPUESTIEAIM ...ttt et sae e s abe e e anee e saneaans 219
WXDAtAODJECT ... e e nnes 222
WXDataObjeCtCOMPOSIIEeiiiiiiii et 225
D=V e= 10 o] [=To1 6571141 o] (= PSP RSP 226
WXDataOUIPULSTIIEAM ... e 228
WXDIALE. .. e e e e 231
L= Y o1 o - o [PPSR 239
WXDAIETIME. . e e 239
wxDate TimeHOlIdayAUTNOKILYooo e e 267
WXDate TIMEWOIKDAYSeiiiiiiie e e 267
124 o T PP 267
WXDDCOIDALAPT ... e e 297
LT 010 o] = RSSO 297
WXDDCOIFOF ... e 298
WXDBCOIINT ... e 299
LTT2d] 010 o] o a =] oSSR 300
WXDBIAXDET ... e e e et e e e e e e e e nanes 305
1724] o]) PR 306
LT o 1=] PRSP 306
WXDDTADIEINT ... e 342
1124 L PP 343
10O 0] 1o o1 ST U R RUURRTRI 363
WXDEDUGCONIEXE ...t e s e e e e ee e e e ee e e e naneas 363
WXDEbUGSIrEamMBUT ... e 369
LT d BT o T PSP P U PPPPRP 369
WXDIAIUPEVENT ...t e e s et e e et ee e e e snnee e e e eaneas 378
LB =110 o)1, =T F= Vo = PR 379
1T L SRR 383
(T2 T = o T PP 387
DT I = (V7= =T TP OU R TRROPRITRIN 389
1T | = To 1= USRS 391
WXDOCCNIIAFTAME ... e nne e s e 393

il

CONTENTS

WXDOCIMEBNAGET ...ttt e e e e e e e s s e e s e e e e e nbe e e e e annr e e e e ennes 395
WXDOCMDICRIIAFIAME ..o e ne e e 405
WXDOCMDIPArENtFIAME ...t e e e e e e e reeeeaeeeas 407
WXDOCPArENTFIAME...... i 408
LT d B Lo e =T 4 o] o] - L= TR 410
WXDIOCUMENT ..ttt ettt e e e e e e e st e et e e e e e e e e anneeeeeaeaeeaannsneeaaaaaeas 415
LT d =T][£ =T T PRSP 424
WXDIOPFIIESEVENT ... e 428
WXDOPSOUICE ...ttt ettt et e bttt e e et e e e aate e sabe e e ebeeesabeeeanaeesnneaaa 430
LT2d L o] o1 =T e =Y PRSP 433
WXDYNAMICLIDIANY ... e e e e ee e e e eanes 436
WXENCOINGCONVEITE ...ttt sttt et s b e e sae e e s abe e e nnee e saneaaas 437
WXEFASEEVENT ... e 440
WXEVENT ...ttt e e e nne e 441
LT i F= g o 1= SRR 445
L2 o PRSP 452
WXEXPIDAIADASE ... 459
WXL ettt e e e e e e e ettt e e e e e e e e s s eee e e e e e e e eaannnneeeaaaaeas 463
WXFFIIEINPUESIIEAM ..o 467
WXFFIlEOUIPULSTIEAM ... e e e e 468
LT 1151 (Y=o o RS RR 470
WXFIIE et e e e e s a e e e s e e e e b e e e e bee e e e nnee e e e nanes 470
WXFIEDAtAODJECTeeiiiiie e 477
T Rl1 (=T DT 1o o I PSP P PP SPPRPT 478
WXFIEDIOPTAIGEL ... et e st e e e e ee e e e e 482
LR L=Y o 113 (o] o PP 484
WXFIIEINPUESTIIEAM. ...ttt et e e rae e e saneaan 487
WXFIIENGIME ... e e s e e e e snre e s ane e e nnne e 488
WXFIIEOUIPULSTIIEAM ... e 503
WXFIIESIIEAM ... ee e e et e e e e ar e e e e sbee e e e e nseeeeennnreeeennnees 504
WXFTIESYSIEM ..o s e e e s nnne e 505
WXFIlESYSIEMHANGAIET ..o e 507
WX T T YR e e et e e e s e e e e e e e e ab e e e e e annr e e e e eanes 510
WXFIEEIINPUESTIIEAM ..o 514
WXFIRErOUIPULSTIEAM ... e 515
WXFINADIAIOGEVENT ..o e 516
WXFINAREPIACEDALA ..o e 517
Rl ae | RT=T o] F=Tet=1 B IF= 1o o TR PP 519
LT L2 G T T ST Y SRR 520
WXFOCUSEVENT ... e 522

v

CONTENTS

11750 | USRS 522
WXFONTDALA ... e e e e s e e s et e e e e b e e e b e e e e nanes 531
WXFONTDIAIOQ ... eeeeieeeee e e e e e e e s e e e e e e e e e e e e eanes 534
(a1 = T 0 =T= | (o] PSR 536
WX ONTLIST Lo e et e e e st e e e et e e e e b e e e e nnnee e e e nnnes 538
LRIV =T o] 1T PP PP PPRP 539
(L = 4= Y PR 543
L2 1= PRSP 556
1Tl USRS 558
L2 C =T Lo 1= PP 565
LG 1 (] o] =T o PR 569
(TG T=T =T o] I 11 1 o RSP RR 570
G T=T =T oAV A= o F- Lo) PR RR 574
LG I 0= 17 V7= T TR 576
11721 o RS RR 578
LTG0 [O7= 1 1 | PRSP 616
(T C 1110 [O7=111 2o To] | <o 1 (o] PRSP 620
(TG [O7=11 [0 o o7=T =l [(o] RS RR 620
LTG0 [O7=11 | = 1 o PP 621
LG To [O7=11 | To T= 14 =T 1) o PRSP 624
LG To [OF=11 N (U a0l 01T =T 11 (o RS PRR 624
(G0 [OF=1 =3 a4 =L 11 o] PP 625
WXGHAEAIIOrCreat@dEVENT.........ooieee e 626
LRGeS SRR 627
WXGHARANGESEIECIEVENT ... 630
WXGHASIZEEVENT ... et e st e e e ee e e s snnee e e e nneas 632
G T To [O7=111 2T o] | o T=Y gTo [T £ SRR 634
WXGACEIIFIOAtRENAEIEN ... e e e 634
R C T To [OF=1] N (W aa] o1 R =Ta T [T Y R 636
LT [OF=T1 | o T=Ta Lo [T Y SRR 636
WXGHACEIISIINGRENAEIET ... 637
WXGHATADIEBASEeeeeeeeee e e s e 638
LTG0 1572 RSSO 643
(T2 = TS 1Y = o PRSP 644
WXHASNTADIE ...t e e s et e e e ee e e e ennee e e e naneas 648
WXHEIPCONTIOIET ...ttt sttt e e st e e s be e e sae e e sabe e s naeesaneaans 651
WXHeIPCoNtrollerHEIPPIOVIAETccoeiiie e e e 656
WXHEIPDEVENT. ...t e et e e e ee e e e ennee e e e nneas 658
WXHEIDPTOVIAEY ...t e s e e s e e e e e e e e e eanes 659
WXHEMICEI .. e e e e st e e e et e e s e ee e e e enneee e e nnnees 661

CONTENTS

WXHEMICOIOUICEIL......eeeeeeeiee ettt e e e e s e ee e e e enbee e e e enneeaeeennees 666
WXHIMICONTAINEICEIL.....oeiieeeeee e e 667
WXHEMIDCRENUEIET ..ottt ettt e et e e e see e e e b ee e e e e nsaeaeennneeeeennnees 673
WXHEMIEGSYPIINTING ..eeiiieiee e e e 675
WXHEMIFTET .. e snre e s nne e nnne e 678
WXHIMIHEIPCONTIOIET ...ttt ae e sate e e rnee e saneaan 680
WXHEMIHEIPDALA. ... e e e e e sbee e e e e 684
WXHEMIHEIDFTAME ... e e e e e eaneas 686
WXHEMILINKINTO et e e e et e e e e e e e eeeeaaeeeas 690
WXHEMIPAISET ...t e s e e snre e s nnn e e nnnee 691
WXHEMIPTINTOUL ... e 696
WXHEMITAG. ¢ttt e e e e e e e s e e e e e e s e abe e e e e anne e e e e ennes 698
WXHEMITAGHANAIET ... e e enee e e e eanes 702
WXHEMITAGSMOAUIE ... e e sbee e e e eanes 704
WXHIMIWIAGEICEIL ...ttt ae et e rbee e saneaaa 704
WXHEMIWINGOW ... s e e e s e e s nne e e nnne e 705
WXHIMIWINPAISEI ... e nane e 714
WXHIMIWINTAGHANAIET ... 720
WX H T TP et e e e bt e e e s ab e e e s s b e e e e e nb e e e e e nbeeeeeanneeeeennnes 721
170 4[] o TRV OPRRTRIN 722
WXICONBUNGIE ...ttt e et e e e e e e e e e e e e e e e e e e nnnreeeaaaeeas 730
WXICONMIZEEVENT ...t e snre e s ane e e nnne e 731
WXIAIEEVENT ... e e e e 732
L LA F=Te = T PSP PP PPRP 734
(T2 g = Ve =1 F= U o =T PRSP 754
(T2 L= Ve = 0 S PRSI 758
WXINdividualLayoUtCONSIIAINTc..eiiiiiiiii e et 762
WXINIEDIAIOGEVENT ... e e e e e eanes 765
LT d L] o]0 €5 == Ta o PRSP 766
LT AV = o (o | L= SRR 768
WXUOYSHICK et e et e e e st e e e e bt e e e e nb e e e e b ee e e e nanes 770
WXJOYSHCKEVENT ... e e e e e e ennes 777
WXKEYEVENT ... e e e e s e e e e e e e e e e e e e eanes 780
WXLAYOULAIGOITM ... e e e e e eaneas 785
WXLAYOULCONSIFAINTS ..ot e s e e e e e e e e ennes 788
1T = USRS 790
WXLISTBOX ettt 797
WXLISTOR L.t e s e e ne e s e e s nee e nnne e 806
WXLISTEVENT ..ttt e e e e e e e st e e e e e e e e e anseeeeeaaeeeaannnreeeeaaaeas 823
WXLISTEM . ¢ 826

Vi

CONTENTS

WXLISTVIBW . ettt ettt e oo et e e e e e e e e et e e e e e e e e e e e anneeeeeaaeeeaannnneeeaaaaeas 831
WXLOCAIE. ...t 834
12 e Yo PSP PP PPRP 845
172 e Yo [o - 1o PR 852
172 e Yo [T PP 854
WXLOGNUIL ...k e e e e s e e e e e e s e abe e e e e enne e e e e eanes 854
WXLOGPASSTRIOUGN.....coiiiiiie et e e e e e e eanes 856
L0 oo 1] (o =T o TSP USROPRRTRI 856
WXLOGSIIEAM ..ttt e a e bt e bt e e sabe e s anae e saneaaa 857
L e To =Y a1 PP 858
WXLOGWINAOW ..ttt e e e et e e e st e e et e e e e nbee e e eanneeeeennneas 858
LT] gTe | He] o T I PSP PP PPRP 860
WXIMBSK et e s e e e e e 864
WXMAAXIMIZEEVENT.......oi i e e nene e 866
WXMBIOONV .ttt e e e e et e e e st e e e eas b e e e e e steee e e sseee e e sseeeeannsaeaeeanseeaeennnees 866
WXMBCONVFIIE .. sar e s nne e s e 869
WXMBCONVUTET ...t e et e st e e st e s e b e e e e ennee e e e snneas 870
WXMBCONVUTES ...ttt e st e e e et e e e e s e e e e sseeeeennseeeeeanseeeeeennees 871
WXMDICRIHIAFTAME ...t e s nnee e nne e 872
WXMDICHENIWINGAOW ...ttt e ennnee e sene e 875
WXMDIPArENTFIAIME ...t e e e e e e e e e e e e e e e e e nnnreeeeaaeeas 877
WXMEMOIYDIC ... e e e e st e e e e b e e e e nbee e e ennneeeeennneas 884
WXMEMOIrYFSHANAIET ... e e e e 885
WXMEMOIYINPUESTIEAM ..ttt ettt st ae e sabe e e raee e saneaan 887
WXMEMOrYOUIPULSIIEAMcoiiiiiiei et e e e sbee e e e eanes 887
WXIMIBIIU ..t e et e e r et e st e e e e e an e e e s e e e nn e e nnr e e e anneennneeaa 888
WXIVIENUBAT ...ttt e e oo ettt e e e e e e e e et e eeeeeeeeaaaannaeeeeaaeeeaaannsneneaaaaean 901
WXMENUEVENT ...t e s e n e s e s nne e nnne e 911
WXIMENUITEIM ...t s e e en e s e e e ne e e snre e s nnneennneena 912
WXMESSAGEDIAIOT -...eeeeeeiieie et 918
WXMETATIIE. .. s 919
WXMELAFIEDIC ... e 921
WXMIMETYPESMANAGETeeieiieieie et e s s e e e e e e e e 922
WXMINIFIAME ..o e e s e s 926
WXIMOGUIE .t et st e e n e s e e e nne e e snr e e s anneesnneena 928
WXMouseCaptureChangeaEVENToooii ittt saee e 930
WXMOUSEEVENT ... e 932
WXMOVEEVENT ...t e ssre e s nne e e nane e 940
WXMUIIPIECOICEDIAIOG ...ttt sae e sne e 941
WXIVIUEEX ettt ettt ettt e e et e e et e e e s ab e e e e an bt e e e e nbee e e e nbeeeeeanneeeeennnes 942

Vil

CONTENTS

WXIVIUEEXLOCKET ...ttt e e e e e e e ettt e e e e e e e nnaeeeeeaeeeeaannnaeeeaaaaean 945
17241 [0 o = PR 946
1T 0] =1 oo T | USRI 947
WXNOTEDOOKEVENT ... e e e e eaneas 954
WXNOTEDOOKSIZET ... e 956
WXNOTTYEVENT ... e 957
12 @ o] 1= o] PP 958
WXODJECIREDALA ... e e 962
WXOULPULSTIOAM ...ttt ettt e ettt e et e e e raee e s be e e bt e e sateeeneeesaneaans 963
WXPAGESEIUPDIAIOQ ..ttt 964
WXPageSetupDialogDatac.coiiiieiiieei e 965
WXPAINIDC ...ttt e e e et e e e st e e e es b e e e e e abee e e e nnee e e e nbeeeeaanreeeeeannreaeennnees 971
WXPAINTEVENT ... e et e s et e e e ee e e e enbee e e e snnes 972
WXPAIEHE ...t e e e et e e e e e e e e e e nee e e e nanes 974
1T = U = SRR 977
WXPATNLIST ..o e 980
L2 =T o T PRSP 982
1T =T o 1= USRS 989
WXPIOTCUIVE ...ttt e bt e e e s ab e e e st e e e st e e e e nbeeeeennneeeeennnes 991
WXPIOTWINGOW ..ottt e e e e e st e e e et e e e et ee e e e snnee e e e snneas 993
WXPOINT <.ttt e e e e e e e st e e e e e e e e s an e e e e e e e e e e e nnnreneeaaaean 997
WXPOSISCHPIDC ... s 998
WXPTEVIEWCANVEASeiiiiiiiiie ettt et e et e e e st e e e st e e s e nbe e e e e nbeeeeeanneeeeennneas 999
WXPTEVIEWCONTIOIBATiiii ettt e e e erae e e e e nree e e ennees 1000
WXPTEVIEWEFTAME ...t e e s st e e s bee e e e sbeee e e nnes 1002
WXPIINEDATA .. e 1003
WXPIINEDIAIOQG. .-ttt 1009
WXPFINIDIAIOGDALAcei i e 1010
12 2] (= PP 1015
12 10111 5 PSP 1018
WXPTINTOUL. .. e st e e e s ee e e e s bee e e e sbee e e e e neee e e ennes 1019
WXPTINEPIEVIEW ..ttt et e e e s e e e s e e e e ennes 1023
WXPHIVAIEDIOPTAIGEL. .. e 1027
WXPTOCESS ..ttt ettt ettt e bt e e e e bt e e e s b e e e e e bee e e e ebe e e e e s bee e e e ebae e e e aneeeeennnees 1028
WXPTOCESSEVENT ... e e e e s nre e e e nnes 1033
WXPTOGIeSSDIAIOQ . .eeeiiiiiieie et 1034
12) (o T o PP 1036
WXQUANTIZE ...ttt e e e st e e e e e bt e e e e s b ee e e e s bee e e e ebee e e e e nreaeennnees 1038
(T2 (@ D=1 O o U PPUUR 1039
WXQUETYFIEI. ... e enne e s 1042

viii

CONTENTS

WXQUErYLayoULINFOEVENTcc.viiiieiecee et 1044
LR R =T [T0] = o) PRSPPI 1047
(VT2 ¥=Te o] =10 1 (o] o HF PR 1053
WXREAIPOINT. ... e 1056
WXRECOIASEL ... 1056
11T =T o] RS 1069
L2 (=T o = SRR 1074
124 (= To Lo o PP 1078
WXREGIONIEIATON ... e e e e e e e 1083
WXSASNEVENT ... 1085
WXSASNLAYOUIWINGOWeeiiiiiiie e et 1087
WXSASNWINAOW ..ottt ettt e e e e et e e e e ebte e e e s nee e e e esaeeeeennaeeeeennees 1090
WXSCIEENDIC ...t e et e s e e r e s e s ne e nnne s 1095
LS Tee] oT=To 1N = YRR 1096
LR S Too] o =T | | PRSI 1098
LR ST (o] 1] = =T PP TRPPPRP 1100
WXSCIOHEAWINGOW ...t e e e e e nnne s 1107
LS Lol] Y=o SRR 1116
WXSCIOIWINEVENT.......oiii e e 1119
L T= g T= T o] T = SRR 1120
LS L= Y= PSP 1123
WXSIMPIEHEIPPTOVIAET ... e e 1124
WXSINGIEChOICEDIAIOG. .. uteee et e 1124
WXSINGIEINSTANCECNECKET ... et 1127
1S T4 Y SRR 1129
WXSIZEEVENT ... e 1130
L2 T4) GO PSP 1131
(T2 65] o [T PP PRSP 1137
WXSOCKATAIESS ...ttt e et e e e s e e an e e e s e e ene e e anneenneeennnees 1147
WXSOCKEIBASE ... eeiiie ettt e e et e e et e e e e et e e e e e ree e e e enae e e e anreeeeannees 1148
LR T Ted (= (0] =T o | PP PRSP 1165
WXSOCKEIEVENT ... e e e e s 1168
WXSOCKELINPUESTIEAM ...t rar e a e eaee s 1169
WXSOCKETOUIPULSTIEAM ... e 1169
WXSOCKEESEIVET ...ttt e s e e n e s e sn e e e e nne e e nnne s 1170
(T2 ES] o111 =101 1o 1o HO PP R 1172
12 CS] o1 1 1 4 PP 1176
WXSPINEVENT. ... e e e st e e e s bee e e e sbree e e nnes 1179
RS] o] = 1] 1S 1o =TT o T PRSP 1180
WXSPHIEIEVENT...cc e e e 1182

X

CONTENTS

WXSPIHEEIWINGOW ...ttt st e e st e et e e sar e e e nee e saneas 1185
WXSTALICBITMAD .. cee e e s e 1195
LS = 1101 = oGP 1197
WXSTAHCBOXSIZE ... 1199
WXSTALCLINE ..ot e e r e s e e s 1199
WX STAEICTEXE e e e e et e e e et e e e e e nee e e e e nae e e e e nreeeeennees 1201
WXSTAIUSBAY ... e s 1203
LS (0] o1 A= | (o] o 1 U 1208
== Taa] = - U] PSP 1210
WXSTTEAMBUTTEI ... e e 1212
WXStreamToTeXtREAINECION.oi s 1218
L2 S 1410V PR R 1219
WXSTINGBUTTEE <. e s e e e e e e b e e e nnes 1242
WXSTINGOHENTDATAcoi i e e e 1243
L2 (1T | I U S 1244
WXSTINGTOKENIZET ...ttt st s s e e e bee e e e e bee e e e nnes 1246
WXSYSCOloUrChangedEVENL.........oouiiii e e e 1248
WXSYSTEMOPLONS ...ttt e bt e e rbe e e sabe e e be e e sareesbeeesnneas 1249
WXSYSTEMSELINGS ... 1251
L2 QL= o1 1 PRSP 1254
WXTADEVENT. ..ottt e e e e e e e s e e e e e e e e e e nnneeeeaaaeeas 1260
WXTASKBAIICON ...t enne e es 1261
WX TEIMPFIIE .t e e s e e e e s e e e s bee e e e e beee e e ennes 1263
LT Q=D A A £ RSP RRT 1266
WXTEXECE Lt e s e e n e s e e e e nnr e e nne e e nnnees 1268
WX TEXIDATAODIECTeeiii e e 1285
WX TEXIDIOPTAIGELeeeeiieeee e e ab e e e e e e 1287
WX TEXEENTIYDIAIOQ .eveieiieieie e e e e e 1288
WXTEXEFIIE et e e r e s e s e e nne e nnne s 1290
WXTEXHINPUESIIEAM ..ottt e bt e st e e e be e e sab e e sbee e snneas 1296
WX TEXTOULPULSIIEAM ... 1298
WXTEXEVAIAGION ... e 1300
11T I 2 £== Lo U 1303
WXTIITIE 1.ttt e e m e s e e e e et e e me e e s n et e ss e e e s ar e e e ne e e naneeeane e e anreenneeennneen 1311
L2 QL1 =T PP PP 1316
WXTIMEIEVENT ...ttt e e e e e e e s e e e e e e e e e e nnnneeeaaaeeas 1318
WX TIMESPAN ...ttt s et e s e e e n e e s e e ere e e ann e e nne e e nnnees 1319
LI o] d €014 e =Y PP 1326
WX TIDWINAOW ..ttt e s e b e e e ebe e e e anre e e e annes 1328
WXTOGGIEBUIION ... e e e e 1329

CONTENTS

WXTOOIBAL ...ttt e e e e ettt et e e e e e e aee e e e e e e e e e e annteeeeaaeeeaaannnnneeaaaaean 1332
12 e Lo I o PP 1348
LIS i RSP 1349
WXTTEEEVENT. ... e e st e e e 1368
WX TTEEIEMDALA ... i e e e 1371
WXTTEELAYOUL ..o e s e e e e e e snre e e e eanes 1372
WX TTEELAYOUISIOrEd ... e e 1378
WXUPAAIEUIEVENT......oii ettt e e e sb e e e bre e e e ennes 1380
XU R L Lttt e et e ettt et e e e e e e e et e e e e e e e e e e e nneeeeeeaeeaaaannnnneeaaaaean 1383
124211 To F=1 o PP 1386
124 V= U= L | SRR 1388
WXV ANANTDATA ..ottt e e e e e e e e eeeaaae s 1397
WXVIEW .ttt ettt e ettt e e e bt e e e e bt e e e e b bt e e e e b te e e e eabe e e e e eabee e e e eabeeeeeebeeeeeanreeeennnees 1398
WXWAVE ...ttt ettt et e e e e bt e e e e bt e e e e s be e e e e e bee e e e ebee e e e anreeeennnees 1403
WXWWINAOW ..ttt ettt e e e ettt et e e e e e e ae e e e e e e e e e e e aanneeeeeaaeeeaaannnnneeaaaaeas 1404
WXWINAOWDC ...t et e e e et e e e s bee e e e s bee e e e ebae e e e enneeeeeennes 1450
WXWINAOWDISADIE ..o e e e 1451
1T 2= T o SRR 1452
WXWIZAIAEVENT......eeii e e et 1456
WXWIZAIAPAGE .ot st e e e a e e b e e e nnes 1457
WXWiZardPageSimPleeooiieiiiie ettt ettt saee s 1459
WXXIMIRESOUICE ...ttt ettt ettt e et e e s bt e e e e s bt e e e e s bee e e e ebee e e e enneeeeeennes 1461
WXXMIRESOUICEHANAIET ... e 1466
AT o] L] o101 5] 1 =TTy o R PR S 1471
(A o] L] o101 633 [== Ty o H PP 1472
WXZIIDOUIPULSTIIEAM ... 1473
13T €0 T 1474
Alphabetical functions and Macros liSt........cooiieiiiiiiii e 1474
RV L= =10 a1 0 =T {0 1P 1478
Application initialization and termination ..o 1479
Process control fUNCHIONS ...t e e e e 1482
THread fUNCHIONSeiie et e s s e e e s bee e e e e beee e e ennes 1486
FIle TUNCHIONS ...ttt e ettt e e s bt e e e s aee e e e sneeeeesanteeeeean 1487
Network, user and OS fuNCLIONScoooeiiiee 1493
SEHNG FUNCHIONS ..t e e e es 1497
DiIalog FUNCHIONS ..o ettt e e st e e s at e e e s rnee e e e snneeeeeean 1500
LT I (1] o] 1o o <SSR 1509
€101 (=T Y= 1 1] T < PRSPPI 1512
Clipboard fUNCHONS ... e e e e e e e e 1515

X1

CONTENTS

MisCellaneous FUNCLIONScooii it e e e e e e e e 1517
Y (oo Tge [T o ¢ F= o] (o 1= PRSPPI 1525
L I I 10T o7 1o L3PPSR 1526
RESOUICE fUNCHONS......ciiiiieee e 1532
(oo R {0 0o 11 L= PRSPPI 1536
TIME FUNCHIONS ...ttt e e e e e e et e e e e e e e e nnnneeeaaaeeas 1543
Debugging macros and fUNCHONSoii it e e 1545
Environment access fUNCHIONS........c.oo i 1549
{070 0 £=3 - 1 11 (- 1551
Preprocesser symbols defined by WXWINAOWScueiiiiiiiiiiiiiie e 1551
Standard event IdeNtifiers.........ooi i 1553
(Yo7 o L= PRSPPI 1554
Classes by Category ... e 1557
LI 2L A =T = 1569
Notes 0N USING the referenCeoooi i 1569
Writing a wxWindows application: a rough quide..........cceeiiiiiiiiiiee e 1569
WXWindows Hello World SamPIEcooo it 1570
WXWINAOWS SAMPIES ...ttt e e e nre e e e 1573
LA o] o T 1= V= U 1582
Run time class information OVEIVIEW...........coooiiiiiie e 1584
WXSTING OVEIVIEW ...ttt ettt ettt s bt st e e st e e e be e e s abe e enbe e e raseesbeeesnneas 1586
Date and time ClasSeS OVEIVIEW........cocuviiiiiiiieieieee e 1591
Unicode support in WXWINGAOWSocueeiiiiiiiiee ettt e e s nneeeeeean 1595
WXMBCONV ClASSES OVEIVIEWceiiiiiiieeiiieee e ettt e e eitee e ettt e e e ette e e e stae e e e snae e e e snaeeeeenreeeeennees 1598
INterN@tioN@liZAtIONoveeeee s 1601
Writing non-English appliCationsooueieiiiiiiee e 1602
COoNtAINET ClASSES OVEIVIEW.eiiiiiiiieeiiiieeesieee e sttt e e etee e e s saee e e asssaeeeasssaeeessnsaeaeennneeeeeannees 1604
File classes and fuNCHIONS OVEIVIEWcuiiiiiiiiieeiee e e 1605
WXSTIEAIMS OVEIVIEW ...ttt e e n e s e e e e e nnn e nne e e nnne s 1606
WXLOQ ClaSSES OVEIVIEWcoiiiiiiiiiiiiiee ettt e e e e e e e e e 1608
DEDUGQING OVEIVIEWceiiiiiie ettt et e e et e e e s rnt e e e sate e e e saneeeeesaneeeeeaan 1611
WXCONFIQ ClaSSES OVEIVIEWeiiiiiiiiie et e 1613
WXEXDE OVEIVIEW ...ttt ettt e e e e e b e e e e b e e e e ebe e e e e anr e e e e annes 1614
WXFTIESYSIEM .. e e 1617
Event handling OVEIVIEWcoouiiiiiiiiie ettt st e s s e e e sneeeeeean 1619
WINAOW SEYIES .t e e e e e e e e e e e e e e anbre e e e annes 1626
WiNdOW deletion OVEIVIEWcoiiiiiiieiiie et 1626
WXDIAlOG OVEIVIEW.....eiiiieieie ettt ettt e ettt e e e s bee e e e s bee e e e s bee e e e eabeeeeeennes 1629

Xii

CONTENTS

WXV AlIAAIOT OVEIVIEW.....eiiiiiiiieiee ettt e et e e e e e e e e st e e e e e e e e e nnnneeeaaaeeas 1629
CONSIFAINIS OVEIVIEWeiiiiieiiie et e e ene e sne e e nnnees 1632
1 P2= T Y= = USRS 1635
The WXWiINAOWS re€SOUICE SYSTEMiiiiiiiiii it e e e e 1642
XML-based resource SYStEM OVEIVIEWcccueiiiiiiiiieiiiiieeeeieee et e e e e e e 1650
SCIOIING OVEIVIEW ..ttt ettt e st e e e bt e e s be e e be e e sabeeenaeesnneaans 1657
Bitmaps and iCONS OVEIVIEWcoiiiiiiiie ittt e ettt e e s e e e ssneeeeeeans 1659
DeViCe CONTEXT OVEIVIEW.......eiiiiiie et 1662
WXFONT OVEIVIEW ...ttt e et et e e e e e e st e e e e e e e e e e e nnnneeeaaaeeas 1663
FONt €NCOAING OVEIVIEW ...ttt et e st e e s ate e e e s nte e e e saneeeeeeans 1664
WXSPHEErWINAOW OVEIVIEWeiiiiiiiie e e e e 1666
WX TTEECIIT OVEIVIEW ...ciieieie ettt ettt e ettt e e et e e e et e e e e e bte e e e sneeeeeesaeeeeenneeeeeannees 1667
WXLISTCIIT OVEIVIEW ...t 1668
WXIMAQGELIST OVEIVIEW ...ttt et e e e e e e e e bee e e e ennes 1669
ComMMON AIAIOGS OVEIVIEWeeiiiiiiiii ettt ettt et e et e e e be e st e e smbe e e rase e sbeeenneeas 1669
DOCUMENT/VIEW OVEIVIEW......eiiiiiie ettt e e anne e e 1673
TOOIDAN OVEIVIBW ...ttt n e s e e e e anr e e sne e e nnne s 1679
WXGIIA CIASSES OVEIVIEW ...ceiiieiiieeiiiiee e ettt e e e ettee e e ettt e e e et te e e e ette e e e sbae e e s s neeeeeesaeeeeenseeeeeannees 1684
WX TIPPIOVIAEI OVEIVIEWeiiiiiiiii ettt ettt e e e sbee e e e s nee e e e nnes 1685
PrNTING OVEIVIEW ..ottt et e e e s st e e e s nte e e e srneeeeesanreeeenan 1686
MUIITNIEadiNg OVEIVIEW........eiiiiiiiie et e e snne e e sanreeeeaans 1687
Drag and ArOp OVEIVIEWciiiiuiiieeiiieie e eitieee ettt ee ettt e st e e e s et e e e s ssteeeesasteeeesanseeeesanreeeesans 1688
WXDataODJECE OVEIVIEWcoiiiiiiii e e e e e 1690
Database ClaSSES OVEIVIEWuuiiiiiiie ettt e e e e e e e e e e e neeee s 1691
Interprocess COMMUNICATION OVEIVIEWcccoiuiiiiiiiiiee ettt e 1715
WXHTIML OVEIVIEW ...t e e nne e nnne s 1718
WXPYENON OVEIVIEW ...ttt e s e e e ane e e e s 1728
o T O 4 o = 1738
12 C I o o S PP 1738
WXMSW PO ...t b e e s s e e e e bee e e e ebree e e ennes 1738
1201, Ted oo o PPV UPPOTPPPR 1738
(T2 (O IS 72N oo] o PP TRP PP R 1739
1241, L | o T PR 1739
120 G I o To T F TP UPPOTPPPR 1739
3T (= G 1742

Xiii

Chapter 1 Copyright notice

Copyright (c) 1992-2002 Julian Smart, Robert Roebling, Vadim Zeitlin and other
members of the wxWindows team
Portions (c) 1996 Artificial Intelligence Applications Institute

Please also see the wxWindows license files (preamble.txt, Igpl.txt, gpl.txt, license.txt,
licendoc.txt) for conditions of software and documentation use.

wxWindows Library License, Version 3
Copyright (c) 1992-2002 Julian Smart, Robert Roebling, Vadim Zeitlin et al.

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

WXWINDOWS LIBRARY LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for
more details.

You should have received a copy of the GNU Library General Public License along with
this software, usually in a file named COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

EXCEPTION NOTICE

1. As a special exception, the copyright holders of this library give permission for
additional uses of the text contained in this release of the library as licensed under the
wxWindows Library License, applying either version 3 of the License, or (at your option)
any later version of the License as published by the copyright holders of version 3 of the
License document.

2. The exception is that you may create binary object code versions of any works using
this library or based on this library, and use, copy, modify, link and distribute such binary
object code files unrestricted under terms of your choice.

3. If you copy code from files distributed under the terms of the GNU General Public

License or the GNU Library General Public License into a copy of this library, as this
license permits, the exception does not apply to the code that you add in this way. To

X1V

COPYRIGHT

avoid misleading anyone as to the status of such modified files, you must delete this
exception notice from such code and/or adjust the licensing conditions notice
accordingly.

4. If you write modifications of your own for this library, it is your choice whether to
permit this exception to apply to your modifications. If you do not wish that, you must
delete the exception notice from such code and/or adjust the licensing conditions notice
accordingly.

GNU Library General Public License, Version 2

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software -- to make sure the software is free for all its
users.

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the
library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify the
library.

XV

COPYRIGHT

Also, for each distributor's protection, we want to make certain that everyone
understands that there is no warranty for this free library. If the library is modified by
someone else and passed on, we want its recipients to know that what they have is not
the original version, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that companies distributing free software will individually obtain patent
licenses, thus in effect transforming the program into proprietary software. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License, which was designed for utility programs. This license, the GNU Library
General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense simply
using the library, and is analogous to running a utility program or application program.
However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for libraries
did not effectively promote software sharing, because most developers did not use the
libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use
free libraries, while preserving your freedom as a user of such programs to change the
free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the
actual functions of the Library.) The hope is that this will lead to faster development of
free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License
rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

XVvi

COPYRIGHT

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the
terms of this Library General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation in the term
"modification".)

"Source code" for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an

XVvil

COPYRIGHT

argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to
those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public License,
version 2, instead of to this License. (If a newer version than version 2 of the ordinary
GNU General Public License has appeared, then you can specify that version instead if
you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies
the requirement to distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

XViil

COPYRIGHT

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a "work that uses the

Library". Such a work, in isolation, is not a derivative work of the Library, and therefore

falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a "work that uses the library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The threshold for this to be true
is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses
the Library" with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the
modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no

X1X

COPYRIGHT

more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed under
the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,

XX

COPYRIGHT

link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation, write to

XX1

COPYRIGHT

the Free Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

XXil

COPYRIGHT

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library "Frob' (a library for tweaking knobs) written by James Random
Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

XX1il

Chapter 2 Introduction

What is wxWindows?

wxWindows is a C++ framework providing GUI (Graphical User Interface) and other
facilities on more than one platform. Version 2 currently supports all desktop versions of
MS Windows, Unix with GTK+, Unix with Motif, and MacOS. An OS/2 port is in progress.

wxWindows was originally developed at the Atrtificial Intelligence Applications Institute,
University of Edinburgh, for internal use, and was first made publicly available in 1992.
Version 2 is a vastly improved version written and maintained by Julian Smart, Robert
Roebling, Vadim Zeitlin, Vaclav Slavik and many others.

This manual contains a class reference and topic overviews. For a selection of
wxWindows tutorials, please see the documentation page on the wxWindows web site
(http://www.wxwindows.org).

Please note that in the following, "MS Windows" often refers to all platforms related to
Microsoft Windows, including 16-bit and 32-bit variants, unless otherwise stated. All
trademarks are acknowledged.

Why another cross-platform development tool?

wxWindows was developed to provide a cheap and flexible way to maximize investment
in GUI application development. While a number of commercial class libraries already
existed for cross-platform development, none met all of the following criteria:

low price;

source availability;

simplicity of programming;

support for a wide range of compilers.

el

Since wxWindows was started, several other free or almost-free GUI frameworks have
emerged. However, none has the range of features, flexibility, documentation and the
well-established development team that wxWindows has.

As open source software, wxWindows has benefited from comments, ideas, bug fixes,
enhancements and the sheer enthusiasm of users. This gives wxWindows a certain
advantage over its commercial competitors (and over free libraries without an
independent development team), plus a robustness against the transience of one
individual or company. This openness and availability of source code is especially
important when the future of thousands of lines of application code may depend upon

CHAPTER 2

the longevity of the underlying class library.

Version 2 goes much further than previous versions in terms of generality and features,
allowing applications to be produced that are often indistinguishable from those
produced using single-platform toolkits such as Motif, GTK+ and MFC.

The importance of using a platform-independent class library cannot be overstated,
since GUI application development is very time-consuming, and sustained popularity of
particular GUIs cannot be guaranteed. Code can very quickly become obsolete if it
addresses the wrong platform or audience. wxWindows helps to insulate the
programmer from these winds of change. Although wxWindows may not be suitable for
every application (such as an OLE-intensive program), it provides access to most of the
functionality a GUI program normally requires, plus many extras such as network
programming, PostScript output, and HTML rendering; and it can of course be extended
as needs dictate. As a bonus, it provides a far cleaner and easier programming interface
than the native APls. Programmers may find it worthwhile to use wxWindows even if
they are developing on only one platform.

It is impossible to sum up the functionality of wxWindows in a few paragraphs, but here
are some of the benefits:

e Low cost (free, in fact!)

e You get the source.

e Available on a variety of popular platforms.

e Works with almost all popular C++ compilers and Python.

e Over 50 example programs.

e Over 1000 pages of printable and on-line documentation.

e Includes Tex2RTF, to allow you to produce your own documentation in Windows
Help, HTML and Word RTF formats.

e Simple-to-use, object-oriented API.

e Flexible event system.

e Graphics calls include lines, rounded rectangles, splines, polylines, etc.

e Constraint-based and sizer-based layouts.

e Print/preview and document/view architectures.

e Toolbar, notebook, tree control, advanced list control classes.

e PostScript generation under Unix, normal MS Windows printing on the PC.

e MDI (Multiple Document Interface) support.

e Can be used to create DLLs under Windows, dynamic libraries on Unix.

e Common dialogs for file browsing, printing, colour selection, etc.

e Under MS Windows, support for creating metafiles and copying them to the
clipboard.

e An API for invoking help from applications.

e Ready-to-use HTML window (supporting a subset of HTML).

e Dialog Editor for building dialogs.

e Network support via a family of socket and protocol classes.

e Support for platform independent image processing.

Built-in support for many file formats (BMP, PNG, JPEG, GIF, XPM, PNM, PCX).

CHAPTER 2

wxWindows requirements

To make use of wxWindows, you currently need one of the following setups.
(a) MS-Windows:

1. A 486 or higher PC running MS Windows.

2. A Windows compiler: most are supported, but please see install.txt for
details. Supported compilers include Microsoft Visual C++ 4.0 or higher, Borland
C++, Cygwin, Metrowerks CodeWarrior.

3. Atleast 60 MB of disk space.

(b) Unix:

1. Almost any C++ compiler, including GNU C++ (EGCS 1.1.1 or above).

2. Almost any Unix workstation, and one of: GTK+ 1.2, GTK+ 2.0, Motif 1.2 or
higher, Lesstif.

3. Atleast 60 MB of disk space.

(c) Mac OS/Mac OS X:

A PowerPC Mac running Mac OS 8.6/9.x (eg. Classic) or Mac OS X 10.x.
CodeWarrior 5.3, 6 or 7 for Classic Mac OS.

The Apple Developer Tools (eg. GNU C++) or CodeWarrior 7 for Mac OS X.
At least 60 MB of disk space.

el

Availability and location of wxWindows

wxWindows is available by anonymous FTP and World Wide Web from
ftp://biolpc22.york.ac.uk/pub (ftp://biolpc22.york.ac.uk/pub) and/or
http://www.wxwindows.org (http://www.wxwindows.org).

You can also buy a CD-ROM using the form on the Web site.

Acknowledgements

Thanks are due to AlAI for being willing to release the original version of wxWindows
into the public domain, and to our patient partners.

We would particularly like to thank the following for their contributions to wxWindows,
and the many others who have been involved in the project over the years. Apologies for
any unintentional omissions from this list. Yiorgos Adamopoulos, Jamshid Afshar,

CHAPTER 2

Alejandro Aguilar-Sierra, AlAl, Patrick Albert, Karsten Ballueder, Michael Bedward, Kai
Bendorf, Yura Bidus, Keith Gary Boyce, Chris Breeze, Pete Britton, lan Brown, C.
Buckley, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Andrew Davison, Neil Dudman,
Robin Dunn, Hermann Dunkel, Jos van Eijndhoven, Tom Felici, Thomas Fettig,
Matthew Flatt, Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher,
Guillermo Rodriguez Garcia, Wolfram Gloger, Norbert Grotz, Stefan Gunter, Bill Hale,
Patrick Halke, Stefan Hammes, Guillaume Helle, Harco de Hilster, Cord Hockemeyer,
Markus Holzem, Olaf Klein, Leif Jensen, Bart Jourquin, Guilhem Lavaux, Jan Lessner,
Nicholas Liebmann, Torsten Liermann, Per Lindqvist, Thomas Runge, Tatu Mannisto,
Scott Maxwell, Thomas Myers, Oliver Niedung, Stefan Neis, Hernan Otero, lan Perrigo,
Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti, Garrett Potts,
Marcel Rasche, Robert Roebling, Dino Scaringella, Jobst Schmalenbach, Arthur Seaton,
Paul Shirley, Vaclav Slavik, Stein Somers, Petr Smilauer, Neil Smith, Kari Systa, Arthur
Tetzlaff-Deas, Jonathan Tonberg, Jyrki Tuomi, David Webster, Janos Vegh, Andrea
Venturoli, Vadim Zeitlin, Xiaokun Zhu, Edward Zimmermann.

'Graphplace', the basis for the wxGraphLayout library, is copyright Dr. Jos T.J. van
Eijndhoven of Eindhoven University of Technology. The code has been used in
wxGraphLayout with his permission.

We also acknowledge the author of XFIG, the excellent Unix drawing tool, from the
source of which we have borrowed some spline drawing code. His copyright is included
below.

XFig2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify,
distribute, and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and
that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. M.I.T. makes no representations
about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Chapter 3 Multi-platform development with
wxWindows

This chapter describes the practical details of using wxWindows. Please see the file
install.txt for up-to-date installation instructions, and changes.txt for differences between
versions.

Include files

The main include file is "wx/wx . h"; this includes the most commonly used modules of
wxWindows.

To save on compilation time, include only those header files relevant to the source file. If
you are using precompiled headers, you should include the following section before any
other includes:

// For compilers that support precompilation, includes "wx.h".
#include <wx/wxprec.h>

#ifdef _ BORLANDC_ _
#pragma hdrstop
#endif

#ifndef WX_PRECOMP

// Include your minimal set of headers here, or wx.h
#include <wx/wx.h>

#endif

. now your other include files ...

The file "wx/wxprec.h" includes "wx/wx.h". Although this incantation may seem
quirky, it is in fact the end result of a lot of experimentation, and several Windows
compilers to use precompilation (those tested are Microsoft Visual C++, Borland C++
and Watcom C++).

Borland precompilation is largely automatic. Visual C++ requires specification of
"wx/wxprec.h" as the file to use for precompilation. Watcom C++ is automatic apart
from the specification of the .pch file. Watcom C++ is strange in requiring the
precompiled header to be used only for object files compiled in the same directory as
that in which the precompiled header was created. Therefore, the wxWindows Watcom
C++ makefiles go through hoops deleting and recreating a single precompiled header
file for each module, thus preventing an accumulation of many multi-megabyte .pch files.

Libraries

CHAPTER 3

The GTK and Motif ports of wxWindow can create either a static library or a shared
library on most Unix or Unix-like systems. The static library is called libwx_gtk.a and
libwx_motif.a whereas the name of the shared library is dependent on the system it is
created on and the version you are using. The library name for the GTK version of
wxWindows 2.2 on Linux and Solaris will be libwx_gtk-2.2.s0.0.0.0, on HP-UX, it will be
libwx_gtk-2.2.sl, on AlX just libwx_gtk.a etc.

Under Windows, use the library wx.lib (release) or wxd.lib (debug) for stand-alone
Windows applications, or wxdll.lib (wxdlld.lib) for creating DLLs.

Configuration

Options are configurable in the file "wx/xxX/setup.h" where XXX is the required
platform (such as msw, motif, gtk, mac). Some settings are a matter of taste, some help
with platform-specific problems, and others can be set to minimize the size of the library.
Please see the setup.h file and install.txt files for details on configuration.

Under Unix (GTK and Motif) the corresponding setup.h files are generated automatically
when configuring the wxWindows using the "configure" script. When using the RPM
packages for installing wxWindows on Linux, a correct setup.h is shipped in the package
and this must not be changed.

Makefiles

At the moment there is no attempt to make Unix makefiles and PC makefiles compatible,
i.e. one makefile is required for each environment. The Unix ports use a sophisticated
system based on the GNU autoconf tool and this system will create the makefiles as
required on the respective platform. Although the makefiles are not identical in Windows,
Mac and Unix, care has been taken to make them relatively similar so that moving from
one platform to another will be painless.

Sample makefiles for Unix (suffix .unx), MS C++ (suffix .DOS and .NT), Borland C++
(.BCC and .B32) and Symantec C++ (.SC) are included for the library, demos and
utilities.

The controlling makefile for wxWindows is in the MS-Windows directory src/msw for the
different Windows compiler and in the build directory when using the Unix ports. The
build directory can be chosen by the user. It is the directory in which the "configure”
script is run. This can be the normal base directory (by running . /configure there) or
any other directory (e.g. . . /configure after creating a build-directory in the directory
level above the base directory).

Please see the platform-specific install.txt file for further details.

CHAPTER 3

Windows-specific files

wxWindows application compilation under MS Windows requires at least two extra files,
resource and module definition files.

Resource file

The least that must be defined in the Windows resource file (extension RC) is the
following statement:

rcinclude "wx/msw/wx.rc"

which includes essential internal wxWindows definitions. The resource script may also
contain references to icons, cursors, etc., for example:

wxicon icon wx.ico

The icon can then be referenced by name when creating a frame icon. See the MS
Windows SDK documentation.

Note: include wx.rc after any ICON statements so programs that search your executable
for icons (such as the Program Manager) find your application icon first.

Module definition file

A module definition file (extension DEF) is required for 16-bit applications, and looks like

the following:

NAME Hello

DESCRIPTION 'Hello'

EXETYPE WINDOWS

STUB "WINSTUB.EXE'

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024

STACKSIZE 8192

The only lines which will usually have to be changed per application are NAME and
DESCRIPTION.

Allocating and deleting wxWindows objects

CHAPTER 3

In general, classes derived from wxWindow must dynamically allocated with new and
deleted with delete. If you delete a window, all of its children and descendants will be
automatically deleted, so you don't need to delete these descendants explicitly.

When deleting a frame or dialog, use Destroy rather than delete so that the wxWindows
delayed deletion can take effect. This waits until idle time (when all messages have been
processed) to actually delete the window, to avoid problems associated with the GUI
sending events to deleted windows.

Don't create a window on the stack, because this will interfere with delayed deletion.

If you decide to allocate a C++ array of objects (such as wxBitmap) that may be cleaned
up by wxWindows, make sure you delete the array explicitly before wxWindows has a
chance to do so on exit, since calling delete on array members will cause memory
problems.

wxColour can be created statically: it is not automatically cleaned up and is unlikely to be
shared between other objects; it is lightweight enough for copies to be made.

Beware of deleting objects such as a wxPen or wxBitmap if they are still in use.
Windows is particularly sensitive to this: so make sure you make calls like
wxDC::SetPen(wxNullPen) or wxDC::SelectObject(wxNullBitmap) before deleting a
drawing object that may be in use. Code that doesn't do this will probably work fine on
some platforms, and then fail under Windows.

Architecture dependency

A problem which sometimes arises from writing multi-platform programs is that the basic
C types are not defined the same on all platforms. This holds true for both the length in
bits of the standard types (such as int and long) as well as their byte order, which might
be little endian (typically on Intel computers) or big endian (typically on some Unix
workstations). wxWindows defines types and macros that make it easy to write
architecture independent code. The types are:

wxInt32, wxInt16, wxInt8, wxUint32, wxUint16 = wxWord, wxUint8 = wxByte

where wxInt32 stands for a 32-bit signed integer type etc. You can also check which
architecture the program is compiled on using the wxBYTE_ORDER define which is
either wxBIG_ENDIAN or wxLITTLE_ENDIAN (in the future maybe wxPDP_ENDIAN as
well).

The macros handling bit-swapping with respect to the applications endianness are
described in the Byte order macros (p. 1525) section.

Conditional compilation

CHAPTER 3

One of the purposes of wxWindows is to reduce the need for conditional compilation in
source code, which can be messy and confusing to follow. However, sometimes it is
necessary to incorporate platform-specific features (such as metafile use under MS
Windows). The symbols listed in the file symbols.txt may be used for this purpose,
along with any user-supplied ones.

C++ issues

The following documents some miscellaneous C++ issues.

Templates

wxWindows does not use templates since it is a notoriously unportable feature.

RTTI

wxWindows does not use run-time type information since wxWindows provides its own
run-time type information system, implemented using macros.

Type of NULL

Some compilers (e.g. the native IRIX cc) define NULL to be OL so that no conversion to
pointers is allowed. Because of that, all these occurrences of NULL in the GTK port use
an explicit conversion such as

wxWindow *my_window = (wxWindow*) NULL;

It is recommended to adhere to this in all code using wxWindows as this make the code
(a bit) more portable.

Precompiled headers

Some compilers, such as Borland C++ and Microsoft C++, support precompiled
headers. This can save a great deal of compiling time. The recommended approach is to
precompile "wx.h", using this precompiled header for compiling both wxWindows itself
and any wxWindows applications. For Windows compilers, two dummy source files are
provided (one for normal applications and one for creating DLLs) to allow initial creation
of the precompiled header.

CHAPTER 3

However, there are several downsides to using precompiled headers. One is that to take
advantage of the facility, you often need to include more header files than would
normally be the case. This means that changing a header file will cause more
recompilations (in the case of wxWindows, everything needs to be recompiled since
everything includes "wx.h"!)

A related problem is that for compilers that don't have precompiled headers, including a
lot of header files slows down compilation considerably. For this reason, you will find (in
the common X and Windows parts of the library) conditional compilation that under Unix,
includes a minimal set of headers; and when using Visual C++, includes wx . h. This
should help provide the optimal compilation for each compiler, although it is biased
towards the precompiled headers facility available in Microsoft C++.

File handling

When building an application which may be used under different environments, one
difficulty is coping with documents which may be moved to different directories on other
machines. Saving a file which has pointers to full pathnames is going to be inherently
unportable. One approach is to store filenames on their own, with no directory
information. The application searches through a number of locally defined directories to
find the file. To support this, the class wxPathList makes adding directories and
searching for files easy, and the global function wxFileNameFromPath allows the
application to strip off the filename from the path if the filename must be stored. This has
undesirable ramifications for people who have documents of the same name in different
directories.

As regards the limitations of DOS 8+3 single-case filenames versus unrestricted Unix
filenames, the best solution is to use DOS filenames for your application, and also for
document filenames ifthe user is likely to be switching platforms regularly. Obviously
this latter choice is up to the application user to decide. Some programs (such as YACC
and LEX) generate filenames incompatible with DOS; the best solution here is to have
your Unix makefile rename the generated files to something more compatible before
transferring the source to DOS. Transferring DOS files to Unix is no problem, of course,
apart from EOL conversion for which there should be a utility available (such as
dos2unix).

See also the File Functions section of the reference manual for descriptions of
miscellaneous file handling functions.

10

Chapter 4 Utilities and libraries supplied with
wxWindows

In addition to the core wxWindows library, a number of further libraries and utilities are
supplied with each distribution.

Some are under the 'contrib’ hierarchy which mirrors the structure of the main
wxWindows hierarchy. See also the 'utils' hierarchy. The first place to look for
documentation about these tools and libraries is under the wxWindows 'docs' hierarchy,
for example docs/htmlhelp/f1l.chm.

For other user-contributed packages, please see the Contributions page on the
wxWindows Web site (http://www.wxwindows.org).

Helpview Helpview is a program for displaying wxWindows HTML Help files. In
many cases, you may wish to use the wxWindows HTML Help classes from
within your application, but this provides a handy stand-alone viewer. See
wxHTML Notes (p. 1718) for more details. You can find it in
samples/html/helpview.

Tex2RTF Supplied with wxWindows is a utility called Tex2RTF for converting LaTeX
manuals HTML, MS HTML Help, wxHTML Help, RTF, and Windows Help RTF
formats. Tex2RTF is used for the wxWindows manuals and can be used
independently by authors wishing to create on-line and printed manuals from the
same LaTeX source. Please see the separate documentation for Tex2RTF. You
can find it under utils/tex2rtf.

Helpgen Helpgen takes C++ header files and generates a Tex2RTF-compatible
documentation file for each class it finds, using comments as appropriate. This
is a good way to start a reference for a set of classes.

Dialog Editor Dialog Editor allows interactive construction of dialogs using absolute
positioning, producing WXR output files. This tool is generally deprecated in
favour of sizer-based tools. You can find Dialog Editor in utils/dialoged.

XRC resource system This is the sizer-aware replacement for the WXR resource
system, and uses XML-based resource specifications that can be generated by
tools such as wxDesigner (http://www.roebling.de) and XRC's own
wxrcedit. You can find this in contrib/src/xrc,
contrib/include/wx/xrc, contrib/samples/xrc, and
contrib/utils/wxrcedit. For more information, see the XML-based
resource system overview (p. 1650).

11

CHAPTER 4

Object Graphics Library OGL defines an API for applications that need to display
objects connected by lines. The objects can be moved around and interacted
with. You can find this in contrib/src/ogl, contrib/include/wx/ogl,
and contrib/samples/ogl.

Frame Layout library FL provides sophisticated pane dragging and docking
facilities. You can find this in contrib/src/fl, contrib/include/wx/f1l
and contrib/samples/fl.

Gizmos library Gizmos is a collection of useful widgets and other classes. Classes
include wxLEDNumberCtrl, wxEditableListBox, wxMultiCellCanvas. You can find
this in contrib/src/fl, contrib/include/wx/f1l, and
contrib/samples/fl.

Net library Net is a collection of very simple mail and web related classes. Currently
there is only wxEmail, which makes it easy to send email messages via MAPI on
Windows or sendmail on Unix. You can find this in contrib/src/net and
contrib/include/wx/net.

Animate library Animate allows you to load animated GlIFs and play them on a
window. The library can be extended to use other animation formats. You can
find this in contrib/src/animate, contrib/include/wx/animate, and
contrib/samples/animate.

Canvas library Canvas supports high-level, double-buffered drawing operations
with transformations. You can find this in contrib/src/canvas,
contrib/include/wx/canvas, and contrib/samples/canvas.

MMedia library Mmedia supports a variety of multimedia functionality. The status of
this library is currently unclear. You can find this in contrib/src/mmedia,
contrib/include/wx/mmedia, and contrib/samples/mmedia

Styled Text Control library STC is a wrapper around Scintilla, a syntax-highlighting
text editor. You can find this in contrib/src/stc,
contrib/include/wx/stc, and contrib/samples/stc

Plot Plot is a simple curve plotting library. You can find this in contrib/src/plot,
contrib/include/wx/plot, and contrib/samples/plot.

12

Chapter 5 Programming strategies

This chapter is intended to list strategies that may be useful when writing and debugging
wxWindows programs. If you have any good tips, please submit them for inclusion here.

Strategies for reducing programming errors

Use ASSERT

Although | haven't done this myself within wxWindows, it is good practice to use
ASSERT statements liberally, that check for conditions that should or should not hold,
and print out appropriate error messages. These can be compiled out of a non-
debugging version of wxWindows and your application. Using ASSERT is an example of
'defensive programming': it can alert you to problems later on.

Use wxString in preference to character arrays

Using wxString can be much safer and more convenient than using char *. Again, |
haven't practiced what I'm preaching, but I'm now trying to use wxString wherever
possible. You can reduce the possibility of memory leaks substantially, and it is much
more convenient to use the overloaded operators than functions such as strcmp.
wxString won't add a significant overhead to your program; the overhead is
compensated for by easier manipulation (which means less code).

The same goes for other data types: use classes wherever possible.

Strategies for portability

Use relative positioning or constraints

Don't use absolute panel item positioning if you can avoid it. Different GUIs have very
differently sized panel items. Consider using the constraint system, although this can be
complex to program.

Alternatively, you could use alternative .wrc (wxWindows resource files) on different
platforms, with slightly different dimensions in each. Or space your panel items out to
avoid problems.

13

CHAPTER 5

Use wxWindows resource files

Use .wrc (wxWindows resource files) where possible, because they can be easily
changed independently of source code. Bitmap resources can be set up to load different
kinds of bitmap depending on platform (see the section on resource files).

Strategies for debugging

Positive thinking

It is common to blow up the problem in one's imagination, so that it seems to threaten
weeks, months or even years of work. The problem you face may seem insurmountable:
but almost never is. Once you have been programming for some time, you will be able to
remember similar incidents that threw you into the depths of despair. But remember, you
always solved the problem, somehow!

Perseverance is often the key, even though a seemingly trivial problem can take an
apparently inordinate amount of time to solve. In the end, you will probably wonder why
you worried so much. That's not to say it isn't painful at the time. Try not to worry -- there
are many more important things in life.

Simplify the problem

Reduce the code exhibiting the problem to the smallest program possible that exhibits
the problem. If it is not possible to reduce a large and complex program to a very small
program, then try to ensure your code doesn't hide the problem (you may have
attempted to minimize the problem in some way: but now you want to expose it).

With luck, you can add a small amount of code that causes the program to go from
functioning to non-functioning state. This should give a clue to the problem. In some
cases though, such as memory leaks or wrong deallocation, this can still give totally
spurious results!

Use a debugger

This sounds like facetious advice, but it is surprising how often people don't use a
debugger. Often it is an overhead to install or learn how to use a debugger, but it really
is essential for anything but the most trivial programs.

Use logging functions

14

CHAPTER 5

There is a variety of logging functions that you can use in your program: see Logging
functions (p. 1536).

Using tracing statements may be more convenient than using the debugger in some

circumstances (such as when your debugger doesn't support a lot of debugging code, or
you wish to print a bunch of variables).

Use the wxWindows debugging facilities

You can use wxDebugContext to check for memory leaks and corrupt memory: in fact in
debugging mode, wxWindows will automatically check for memory leaks at the end of
the program if wxWindows is suitably configured. Depending on the operating system
and compiler, more or less specific information about the problem will be logged.

You should also use debug macros (p. 1545) as part of a 'defensive programming’
strategy, scattering wxASSERTSs liberally to test for problems in your code as early as
possible. Forward thinking will save a surprising amount of time in the long run.

See the debugging overview (p. 1611) for further information.

Check Windows debug messages

Under Windows, it is worth running your program with DbgView
(http://www.sysinternals.com) running or some other program that shows
Windows-generated debug messages. It is possible it will show invalid handles being
used. You may have fun seeing what commercial programs cause these normally
hidden errors! Microsoft recommend using the debugging version of Windows, which
shows up even more problems. However, | doubt it is worth the hassle for most
applications. wxWindows is designed to minimize the possibility of such errors, but they
can still happen occasionally, slipping through unnoticed because they are not severe
enough to cause a crash.

Genetic mutation

If we had sophisticated genetic algorithm tools that could be applied to programming, we
could use them. Until then, a common -- if rather irrational -- technique is to just make
arbitrary changes to the code until something different happens. You may have an
intuition why a change will make a difference; otherwise, just try altering the order of
code, comment lines out, anything to get over an impasse. Obviously, this is usually a
last resort.

15

Chapter 6 Alphabetical class reference

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (p. 17).

Derived from
None
Include files
<wx/accel.h>
See also

wxAcceleratorTable (p. 17), wxWindow::SetAcceleratorTable (p. 1434)

wxAcceleratorEntry::wxAcceleratorEntry

wxAcceleratorEntry()

Default constructor.

wxAcceleratorEntry(int flags, int keyCode, int cmd)

Constructor.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
wxACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1554) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorEntry::GetCommand

CHAPTER 6

int GetCommand() const

Returns the command identifier for the accelerator table entry.

wxAcceleratorEntry::GetFlags

int GetFlags() const

Returns the flags for the accelerator table entry.

wxAcceleratorEntry::GetKeyCode

int GetKeyCode() const

Returns the keycode for the accelerator table entry.

wxAcceleratorEntry::Set

void Set(int flags, int keyCode, int cma)

Sets the accelerator entry parameters.

Parameters

flags
One of wxACCEL_ALT, wxACCEL_SHIFT, wxACCEL_CTRL and
wxACCEL_NORMAL. Indicates which modifier key is held down.

keyCode
The keycode to be detected. See Keycodes (p. 1554) for a full list of keycodes.

cmd
The menu or control command identifier.

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menus or other commands. On Windows, menu or button commands are supported; on
GTK, only menu commands are supported.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.

17

CHAPTER 6

Derived from
wxObject (p. 958)
Include files
<wx/accel.h>

Example

wxAcceleratorEntry entries([4];

entries[0].Set (wxACCEL_CTRL, (int) 'N', ID_NEW_WINDOW) ;
entries[1l].Set (wxACCEL_CTRL, (int) 'X', wxID_EXIT) ;
entries[2].Set (wxACCEL_SHIFT, (int) 'A', ID_ABOUT) ;
entries[3].Set (wxACCEL_NORMAL, WXK_DELETE, wxID_CUT) ;

wxAcceleratorTable accel (4, entries);
frame—->SetAcceleratorTable (accel);

Remarks

An accelerator takes precedence over normal processing and can be a convenient way
to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK' (but
not in GTK at present).

See also

wxAcceleratorEntry (p. 16), wxWindow::SetAcceleratorTable (p. 1434)

wxAcceleratorTable::wxAcceleratorTable

wxAcceleratorTable()

Default constructor.

wxAcceleratorTable(const wxAcceleratorTable& bitmap)
Copy constructor.

wxAcceleratorTable(int n, wxAcceleratorEntry entries[))
Creates from an array of wxAcceleratorEntry (p. 16) objects.
wxAcceleratorTable(const wxString& resource)

Loads the accelerator table from a Windows resource (Windows only).

18

CHAPTER 6

Parameters

n
Number of accelerator entries.

entries
The array of entries.

resource
Name of a Windows accelerator.

wxPython note: The wxPython constructor accepts a list of wxAcceleratorEntry objects,
or 3-tuples consisting of flags, keyCode, and cmd values like you would construct
wxAcceleratorEntry objects with.

wxPerl note: The wxPerl constructor accepts a list of either Wx::AcceleratorEntry

objects or references to 3-element arrays (flags, keyCode, cmd), like the parameters of
Wx::AcceleratorEntry::new.

wxAcceleratorTable::~wxAcceleratorTable

~wxAcceleratorTable()

Destroys the wxAcceleratorTable object.

wxAcceleratorTable::Ok

bool Ok() const

Returns TRUE if the accelerator table is valid.

wxAcceleratorTable::operator =

wxAcceleratorTable& operator =(const wxAcceleratorTable& accel)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in accel and increments a reference counter. It is a fast operation.

Parameters

accel
Accelerator table to assign.

Return value

Returns reference to this object.

19

CHAPTER 6

wxAcceleratorTable::operator ==

bool operator ==(const wxAcceleratorTable& accel)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

accel
Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were effectively equal, FALSE otherwise.

wxAcceleratorTable::operator !=

bool operator !=(const wxAcceleratorTable& accel)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

accel
Accelerator table to compare with

Return value

Returns TRUE if the accelerator tables were unequal, FALSE otherwise.

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.
Derived from

wxEvent (p. 441)
wxObject (p. 958)

Include files

<wx/event.h>

20

CHAPTER 6

Event table macros

To process an activate event, use these event handler macros to direct input to a
member function that takes a wxActivateEvent argument.

EVT_ACTIVATE(func) Process a wxEVT_ACTIVATE event.
EVT_ACTIVATE_APP(func) Process a wxEVT_ACTIVATE_APP event.
Remarks

A top-level window (a dialog or frame) receives an activate event when is being
activated or deactivated. This is indicated visually by the title bar changing colour, and a
subwindow gaining the keyboard focus.

An application is activated or deactivated when one of its frames becomes activated, or
a frame becomes inactivate resulting in all application frames being inactive. (Windows
only)

See also

Event handling overview (p. 1619)

wxActivateEvent::wxActivateEvent

wxActivateEvent(WXTYPE eventType = 0, bool active = TRUE, int id = 0)

Constructor.

wxActivateEvent::m_active

bool m_active

TRUE if the window or application was activated.

wxActivateEvent::GetActive

bool GetActive() const

Returns TRUE if the application or window is being activated, FALSE otherwise.

wxApp

21

CHAPTER 6

The wxApp class represents the application itself. It is used to:

set and get application-wide properties;

implement the windowing system message or event loop;

initiate application processing via wxApp::Oninit (p. 28);

allow default processing of events not handled by other objects in the
application.

You should use the macro IMPLEMENT_APP(appClass) in your application
implementation file to tell wxWindows how to create an instance of your application
class.

Use DECLARE_APP(appClass) in a header file if you want the wxGetApp function
(which returns a reference to your application object) to be visible to other files.

Derived from

wxEvtHandler (p. 445)
wxObject (p. 958)

Include files
<wx/app.h>
See also

wxApp overview (p. 1582)

WXApp::wxApp

void wxApp()

Constructor. Called implicitly with a definition of a wxApp object.

wXxApp::~WxApp

void ~wxApp()

Destructor. Will be called implicitly on program exit if the wxApp object is created on the
stack.

wxApp::argc

int argc

22

CHAPTER 6

Number of command line arguments (after environment-specific processing).

wxApp::argv

char ** argv

Command line arguments (after environment-specific processing).

wxApp::CreateLogTarget

virtual wxLog* CreateLogTarget()

Creates a wxLog class for the application to use for logging errors. The default
implementation returns a new wxLogGui class.

See also

wxLog (p. 845)

wxApp::Dispatch

void Dispatch()
Dispatches the next event in the windowing system event queue.

This can be used for programming event loops, e.g.

while (app.Pending())
Dispatch{();

See also

wxApp::Pending (p. 29)

wxApp::FilterEvent

int FilterEvent(wxEvent& event)

This function is called before processing any event and allows the application to preempt
the processing of some events. If this method returns -1 the event is processed

normally, otherwise either TRUE or FALSE should be returned and the event processing
stops immediately considering that the event had been already processed (for the former
return value) or that it is not going to be processed at all (for the latter one).

23

CHAPTER 6

wxApp::GetAppName

wxString GetAppName() const

Returns the application name.

Remarks

wxWindows sets this to a reasonable default before calling wxApp::Oninit (p. 28), but the

application can reset it at will.

wxApp::GetAuto3D

bool GetAuto3D() const
Returns TRUE if 3D control mode is on, FALSE otherwise.
See also

wxApp::SetAuto3D (p. 30)

wxApp::GetClassName

wxString GetClassName() const

Gets the class name of the application. The class name may be used in a platform
specific manner to refer to the application.

See also

wxApp::SetClassName (p. 31)

wxApp::GetExitOnFrameDelete

bool GetExitOnFrameDelete() const

Returns TRUE if the application will exit when the top-level window is deleted, FALSE
otherwise.

See also
wxApp::SetExitOnFrameDelete (p. 31),
wxApp shutdown overview (p. 1583)

wxApp::GetTopWindow

24

CHAPTER 6

virtual wxWindow * GetTopWindow() const
Returns a pointer to the top window.
Remarks

If the top window hasn't been set using wxApp::SetTopWindow (p. 31), this function will
find the first top-level window (frame or dialog) and return that.

See also

SetTopWindow (p. 31)

wxApp::GetUseBestVisual

bool GetUseBestVisual() const

Returns TRUE if the application will use the best visual on systems that support different
visuals, FALSE otherwise.

See also

SetUseBestVisual (p. 32)

wxApp::GetVendorName

wxString GetVendorName() const

Returns the application's vendor name.

wxApp::ExitMainLoop

void ExitMainLoop()

Call this to explicitly exit the main message (event) loop. You should normally exit the
main loop (and the application) by deleting the top window.

wxApp::Initialized

bool Initialized()

Returns TRUE if the application has been initialized (i.e. if wxApp::Onlinit (p. 28) has
returned successfully). This can be useful for error message routines to determine
which method of output is best for the current state of the program (some windowing
systems may not like dialogs to pop up before the main loop has been entered).

25

CHAPTER 6

wxApp::MainLoop

int MainLoop()

Called by wxWindows on creation of the application. Override this if you wish to provide
your own (environment-dependent) main loop.

Return value

Returns 0 under X, and the wParam of the WM_QUIT message under Windows.

wxApp::OnAssert

void OnAssert(const wxChar *file, int line, const wxChar *cond, const wxChar *msg)

This function is called when an assert failure occurs, i.e. the condition specified in
wWxXASSERT (p. 1546) macro evaluated to FALSE. It is only called in debug mode (when
__WXDEBUG___is defined) as asserts are not left in the release code at all.

The base class version show the default assert failure dialog box proposing to the user
to stop the program, continue or ignore all subsequent asserts.

Parameters

file
the name of the source file where the assert occured

line
the line number in this file where the assert occured

cond
the condition of the failed assert in string form

msg
the message specified as argument to wxASSERT_MSG (p. 1546) or

wxFAIL_MSG (p. 1547), will be NULL if just wxASSERT (p. 1546) or wxFAIL (p.
1547) was used

wxApp::OnExit

int OnEXxit()

Provide this member function for any processing which needs to be done as the
application is about to exit. OnExit is called after destroying all application windows and
controls, but before wxWindows cleanup.

26

CHAPTER 6

wxApp::OnCmdLineError

bool OnCmdLineError(wxCmdLineParser& parser)

Called when command line parsing fails (i.e. an incorrect command line option was
specified by the user). The default behaviour is to show the program usage text and
abort the program.

Return TRUE to continue normal execution or FALSE to return FALSE from Onlinit (p. 28)
thus terminating the program.

See also

OnInitCmdLine (p. 28)

wxApp::OnCmdLineHelp

bool OnCmdLineHelp(wxCmdLineParser& parser)

Called when the help option (--help) was specified on the command line. The default
behaviour is to show the program usage text and abort the program.

Return TRUE to continue normal execution or FALSE to return FALSE from Onlinit (p. 28)
thus terminating the program.

See also

OnlInitCmdLine (p. 28)

wxApp::OnCmdLineParsed

bool OnCmdLineParsed(wxCmdLineParser& parser)

Called after the command line had been successfully parsed. You may override this
method to test for the values of the various parameters which could be set from the
command line.

Don't forget to call the base class version unless you want to suppress processing of the
standard command line options.

Return TRUE to continue normal execution or FALSE to return FALSE from Onlinit (p. 28)
thus terminating the program.

See also

OnlInitCmdLine (p. 28)

27

CHAPTER 6

wxApp::OnFatalException

void OnFatalException()

This function may be called if something fatal happens: an unhandled exception under
Win32 or a a fatal signal under Unix, for example. However, this will not happen by
default: you have to explicitly call wxHandleFatalExceptions (p. 1480) to enable this.
Generally speaking, this function should only show a message to the user and return.
You may attempt to save unsaved data but this is not guaranteed to work and, in fact,
probably won't.

See also

wxHandleFatalExcetions (p. 1480)

wxApp::Onlnit

bool Onlinit()

This must be provided by the application, and will usually create the application's main
window, optionally calling wxApp::SetTopWindow (p. 31).

Notice that if you want to to use the command line processing provided by wxWindows
you have to call the base class version in the derived class Onlnit().

Return TRUE to continue processing, FALSE to exit the application.

wxApp::OninitCmdLine

void OnlnitCmdLine(wxCmdLineParser& parser)
Called from Oninit (p. 28) and may be used to initialize the parser with the command line

options for this application. The base class versions adds support for a few standard
options only.

wxApp::OnQueryEndSession

void OnQueryEndSession(wxCloseEvent& eveni)

This is an event handler function called when the operating system or GUI session is
about to close down. Typically, an application will try to save unsaved documents at this
point.

If wxCloseEvent::CanVeto (p. 135) returns TRUE, the application is allowed to veto the
shutdown by calling wxCloseEvent::Veto (p. 136). The application might veto the
shutdown after prompting for documents to be saved, and the user has cancelled the

28

CHAPTER 6

save.

Use the EVT_QUERY_END_SESSION event table macro to handle query end session
events.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::GetForce (p. 135). If this is TRUE, destroy the window using
wxWindow::Destroy (p. 1412). If not, it is up to you whether you respond by destroying
the window.

The default handler calls wxWindow::Close (p. 1409) on the top-level window, and
vetoes the shutdown if Close returns FALSE. This will be sufficient for many
applications.

Remarks

Under X, OnQueryEndSession is called in response to the 'save session' event.

Under Windows, OnQueryEndSession is called in response to the
WM_QUERYENDSESSION message.

See also

wxWindow::Close (p. 1409), wxCloseEvent (p. 134)
wxApp::ProcessMessage

bool ProcessMessage(WXMSG *msg)

Windows-only function for processing a message. This function is called from the main
message loop, checking for windows that may wish to process it. The function returns
TRUE if the message was processed, FALSE otherwise. If you use wxWindows with
another class library with its own message loop, you should make sure that this function
is called to allow wxWindows to receive messages. For example, to allow co-existence
with the Microsoft Foundation Classes, override the PreTranslateMessage function:

// Provide wxWindows message loop compatibility
BOOL CTheApp: :PreTranslateMessage (MSG *msq)
{
if (wxTheApp && wxTheApp->ProcessMessage ((WXMSW *)msqg))
return TRUE;
else
return CWinApp::PreTranslateMessage (msg) ;

wxApp::Pending

bool Pending()
Returns TRUE if unprocessed events are in the window system event queue.

See also

29

CHAPTER 6

wxApp::Dispatch (p. 23)

wxApp::SendldleEvents

bool SendldleEvents()

Sends idle events to all top-level windows.
bool SendldleEvents(wxWindow* win)
Sends idle events to a window and its children.
Remarks

These functions poll the top-level windows, and their children, for idle event processing.
If TRUE is returned, more Onldle processing is requested by one or more window.

See also

wxldleEvent (p. 732)

wxApp::SetAppName

void SetAppName(const wxString& name)

Sets the name of the application. The name may be used in dialogs (for example by the
document/view framework). A default name is set by wxWindows.

See also

wxApp::GetAppName (p. 24)

wxApp::SetAuto3D

void SetAuto3D(const bool auto3D)
Switches automatic 3D controls on or off.
Parameters
auto3D
If TRUE, all controls will be created with 3D appearances unless overridden for a

control or dialog. The default is TRUE

Remarks

30

CHAPTER 6

This has an effect on Windows only.
See also

wxApp::GetAuto3D (p. 24)

wxApp::SetClassName

void SetClassName(const wxString& name)

Sets the class name of the application. This may be used in a platform specific manner
to refer to the application.

See also

wxApp::GetClassName (p. 24)

wxApp::SetExitOnFrameDelete

void SetExitOnFrameDelete(bool flag)

Allows the programmer to specify whether the application will exit when the top-level
frame is deleted.

Parameters

flag
If TRUE (the default), the application will exit when the top-level frame is deleted. If
FALSE, the application will continue to run.

See also

wxApp::GetExitOnFrameDelete (p. 24),
wxApp shutdown overview (p. 1583)

wxApp::SetTopWindow

void SetTopWindow(wxWindow* window)

Sets the 'top' window. You can call this from within wxApp::Onlinit (p. 28) to let
wxWindows know which is the main window. You don't have to set the top window; it is
only a convenience so that (for example) certain dialogs without parents can use a
specific window as the top window. If no top window is specified by the application,
wxWindows just uses the first frame or dialog in its top-level window list, when it needs
to use the top window.

Parameters

31

CHAPTER 6

window
The new top window.

See also

wxApp::GetTopWindow (p. 24), wxApp::Oninit (p. 28)

wxApp::SetVendorName

void SetVendorName(const wxString& name)

Sets the name of application's vendor. The name will be used in registry access. A
default name is set by wxWindows.

See also

wxApp::GetVendorName (p. 25)

wxApp::SetUseBestVisual

void SetUseBestVisual(bool flag)

Allows the programmer to specify whether the application will use the best visual on
systems that support several visual on the same display. This is typically the case under
Solaris and IRIX, where the default visual is only 8-bit whereas certain applications are
supposed to run in TrueColour mode.

Note that this function has to be called in the constructor of the wxApp instance and
won't have any effect when called later on.

This function currently only has effect under GTK.
Parameters
flag

If TRUE, the app will use the best visual.

wxApp::Yield

bool Yield(bool onlylfNeeded = FALSE)

Yields control to pending messages in the windowing system. This can be useful, for
example, when a time-consuming process writes to a text window. Without an
occasional yield, the text window will not be updated properly, and on systems with
cooperative multitasking, such as Windows 3.1 other processes will not respond.

32

CHAPTER 6

Caution should be exercised, however, since yielding may allow the user to perform
actions which are not compatible with the current task. Disabling menu items or whole
menus during processing can avoid unwanted reentrance of code: see ::wxSafeYield (p.
1481) for a better function.

Note that Yield() will not flush the message logs. This is intentional as calling Yield() is
usually done to quickly update the screen and popping up a message box dialog may be
undesirable. If you do wish to flush the log messages immediately (otherwise it will be
done during the next idle loop iteration), call wxLog::FlushActive (p. 850).

Calling Yield() recursively is normally an error and an assert failure is raised in debug
build if such situation is detected. However if the the onlylfNeeded parameter is TRUE,
the method will just silently return FALSE instead.

wxArray

This section describes the so called dynamic arrays. This is a C array-like data structure
i.e. the member access time is constant (and not linear according to the number of
container elements as for linked lists). However, these arrays are dynamic in the sense
that they will automatically allocate more memory if there is not enough of it for adding a
new element. They also perform range checking on the index values but in debug mode
only, so please be sure to compile your application in debug mode to use it (see
debugging overview (p. 1611) for details). So, unlike the arrays in some other
languages, attempt to access an element beyond the arrays bound doesn't automatically
expand the array but provokes an assertion failure instead in debug build and does
nothing (except possibly crashing your program) in the release build.

The array classes were designed to be reasonably efficient, both in terms of run-time
speed and memory consumption and the executable size. The speed of array item
access is, of course, constant (independent of the number of elements) making them
much more efficient than linked lists (wxList (p. 790)). Adding items to the arrays is also
implemented in more or less constant time - but the price is preallocating the memory in
advance. In the memory management (p. 36) section you may find some useful hints
about optimizing wxArray memory usage. As for executable size, all wxArray functions
are inline, so they do not take any space at all.

wxWindows has three different kinds of array. All of them derive from wxBaseArray class
which works with untyped data and can not be used directly. The standard macros
WX_DEFINE_ARRAY(), WX_DEFINE_SORTED_ARRAY() and
WX_DEFINE_OBJARRAY() are used to define a new class deriving from it. The classes
declared will be called in this documentation wxArray, wxSortedArray and wxObjArray
but you should keep in mind that no classes with such names actually exist, each time
you use one of WX_DEFINE_XXXARRAY macro you define a class with a new name. In
fact, these names are "template" names and each usage of one of the macros
mentioned above creates a template specialization for the given element type.

wxArray is suitable for storing integer types and pointers which it does not treat as

33

CHAPTER 6

objects in any way, i.e. the element pointed to by the pointer is not deleted when the
element is removed from the array. It should be noted that all of wxArray's functions are
inline, so it costs strictly nothing to define as many array types as you want (either in
terms of the executable size or the speed) as long as at least one of them is defined and
this is always the case because wxArrays are used by wxWindows internally. This class
has one serious limitation: it can only be used for storing integral types (bool, char, short,
int, long and their unsigned variants) or pointers (of any kind). An attempt to use with
objects of sizeof() greater than sizeof(long) will provoke a runtime assertion failure,
however declaring a wxArray of floats will not (on the machines where sizeof(float) <=
sizeof(long)), yet it will not work, please use wxObjArray for storing floats and doubles
(NB: a more efficient wxArrayDouble class is scheduled for the next release of
wxWindows).

wxSortedArray is a wxArray variant which should be used when searching in the array is
a frequently used operation. It requires you to define an additional function for comparing
two elements of the array element type and always stores its items in the sorted order
(according to this function). Thus, it is Index() (p. 42) function execution time is
O(log(N)) instead of O(N) for the usual arrays but the Add() (p. 41) method is slower: it is
O(log(N)) instead of constant time (neglecting time spent in memory allocation routine).
However, in a usual situation elements are added to an array much less often than
searched inside it, so wxSortedArray may lead to huge performance improvements
compared to wxArray. Finally, it should be noticed that, as wxArray, wxSortedArray can
be only used for storing integral types or pointers.

wxObjArray class treats its elements like "objects". It may delete them when they are
removed from the array (invoking the correct destructor) and copies them using the
objects copy constructor. In order to implement this behaviour the definition of the
wxObjArray arrays is split in two parts: first, you should declare the new wxObjArray
class using WX_DECLARE_OBJARRAY () macro and then you must include the file
defining the implementation of template type: <wx/arrimpl.cpp> and define the array
class with WX_DEFINE_OBJARRAY() macro from a point where the full (as opposed to
'forward') declaration of the array elements class is in scope. As it probably sounds very
complicated here is an example:

#include <wx/dynarray.h>

// we must forward declare the array because it is used inside the class
// declaration

class MyDirectory;

class MyFile;

// this defines two new types: ArrayOfDirectories and ArrayOfFiles which
can be

// now used as shown below

WX_DECLARE_OBJARRAY (MyDirectory, ArrayOfDirectories);
WX_DECLARE_OBJARRAY (MyFile, ArrayOfFiles);

class MyDirectory
{

ArrayOfDirectories m_subdirectories; // all subdirectories
ArrayOfFiles m_files; // all files in this directory
}i

34

CHAPTER 6

// now that we have MyDirectory declaration in scope we may finish the

// definition of ArrayOfDirectories —-- note that this expands into some
C++
// code and so should only be compiled once (i.e., don't put this in the

// header, but into a source file or you will get linking errors)
#include <wx/arrimpl.cpp> // this is a magic incantation which must be
done!

WX_DEFINE_OBJARRAY (ArrayOfDirectories);

// that's all!

It is not as elegant as writing

typedef std::vector<MyDirectory> ArrayOfDirectories;

but is not that complicated and allows the code to be compiled with any, however dumb,
C++ compiler in the world.

Things are much simpler for wxArray and wxSortedArray however: it is enough just to
write

WX_DEFINE_ARRAY (MyDirectory *, ArrayOfDirectories);
WX_DEFINE_SORTED_ARRAY (MyFile *, ArrayOfFiles);

See also:
Container classes overview (p. 1604), wxList (p. 790)
Include files

<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp> for
wxObjArray.

Macros for template array definition

To use an array you must first define the array class. This is done with the help of the
macros in this section. The class of array elements must be (at least) forward declared
for WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY and
WX_DECLARE_OBJARRAY macros and must be fully declared before you use
WX_DEFINE_OBJARRAY macro.

WX_DEFINE_ARRAY (p. 37)
WX_DEFINE_EXPORTED_ARRAY (p. 37)
WX_DEFINE_USER_EXPORTED_ARRAY (p. 37)
WX_DEFINE_SORTED_ARRAY (p. 37)
WX_DEFINE_SORTED_EXPORTED_ARRAY (p. 37)
WX_DEFINE_SORTED _USER_EXPORTED_ARRAY (p. 37)
WX_DECLARE_EXPORTED OBJARRAY (p. 38)
WX_DECLARE_USER_EXPORTED_OBJARRAY (p. 38)

35

CHAPTER 6

WX_DEFINE_OBJARRAY (p. 39)
WX_DEFINE_EXPORTED_OBJARRAY (p. 39)
WX_DEFINE_USER_EXPORTED_OBJARRAY (p. 39)

Constructors and destructors

Array classes are 100% C++ objects and as such they have the appropriate copy
constructors and assignment operators. Copying wxArray just copies the elements but
copying wxObjArray copies the arrays items. However, for memory-efficiency sake,
neither of these classes has virtual destructor. It is not very important for wxArray which
has trivial destructor anyhow, but it does mean that you should avoid deleting
wxObjArray through a wxBaseArray pointer (as you would never use wxBaseArray
anyhow it shouldn't be a problem) and that you should not derive your own classes from
the array classes.

wxArray default constructor (p. 40)

wxArray copy constructors and assignment operators (p. 40)
~wxArray (p. 40)

Memory management

Automatic array memory management is quite trivial: the array starts by preallocating
some minimal amount of memory (defined by WX_ARRAY_DEFAULT_INITIAL_SIZE)
and when further new items exhaust already allocated memory it reallocates it adding
50% of the currently allocated amount, but no more than some maximal number which is
defined by ARRAY_MAXSIZE_INCREMENT constant. Of course, this may lead to some
memory being wasted (ARRAY_MAXSIZE_INCREMENT in the worst case, i.e. 4Kb in
the current implementation), so the Shrink() (p. 44) function is provided to deallocate the
extra memory. The Alloc() (p. 41) function can also be quite useful if you know in
advance how many items you are going to put in the array and will prevent the array
code from reallocating the memory more times than needed.

Alloc (p. 41)
Shrink (p. 44)

Number of elements and simple item access

Functions in this section return the total number of array elements and allow to retrieve
them - possibly using just the C array indexing [] operator which does exactly the same
as Item() (p. 43) method.

Count (p. 41)
GetCount (p. 42)
IsEmpty (p. 43)
Item (p. 43)

Last (p. 43)

36

CHAPTER 6

Adding items

Add (p. 41)
Insert (p. 42)
WX_APPEND_ARRAY (p. 39)

Removing items

WX _CLEAR_ARRAY (p. 39)
Empty (p. 42)

Clear (p. 41)

RemoveAt (p. 44)

Remove (p. 43)

Searching and sorting

Index (p. 42)
Sort (p. 44)

WX_DEFINE_ARRAY

WX_DEFINE_ARRAY(T, name)
WX_DEFINE_EXPORTED_ARRAY(T, name)
WX_DEFINE_USER_EXPORTED_ARRAY/(T, name, exportspec)

This macro defines a new array class named name and containing the elements of type
T. The second form is used when compiling wxWindows as a DLL under Windows and
array needs to be visible outside the DLL. The third is needed for exporting an array
from a user DLL.

Example:

WX_DEFINE_ARRAY (int, wxArrayInt);

class MyClass;
WX_DEFINE_ARRAY (MyClass *, wxArrayOfMyClass);

Note that wxWindows predefines the following standard array classes: wxArrayInt,
wxArrayLong and wxArrayPtrVoid.

WX_DEFINE_SORTED_ARRAY

37

CHAPTER 6

WX_DEFINE_SORTED_ARRAY(T, name)
WX_DEFINE_SORTED_EXPORTED_ARRAY(T, name)
WX_DEFINE_SORTED_USER_EXPORTED_ARRAY(T, name)

This macro defines a new sorted array class named name and containing the elements
of type T. The second form is used when compiling wxWindows as a DLL under
Windows and array needs to be visible outside the DLL. The third is needed for
exporting an array from a user DLL.

Example:

WX_DEFINE_SORTED_ARRAY (int, wxSortedArrayInt);

class MyClass;
WX_DEFINE_SORTED_ARRAY (MyClass *, wxArrayOfMyClass);

You will have to initialize the objects of this class by passing a comparison function to
the array object constructor like this:

int ComparelInts(int nl, int n2)

{

return nl - n2;

}

wxSortedArrayInt sorted(ComparelInts);

int CompareMyClassObjects (MyClass *iteml, MyClass *item2)
{ // sort the items by their address...

return Stricmp (iteml->GetAddress (), item2->GetAddress());
}

wxArrayOfMyClass another (CompareMyClassObjects) ;

WX_DECLARE_OBJARRAY

WX_DECLARE_OBJARRAY(T, name)

WX_DECLARE_EXPORTED_OBJARRAY(T, name)
WX_DECLARE_USER_EXPORTED_OBJARRAY(T, name)

This macro declares a new object array class named name and containing the elements
of type T. The second form is used when compiling wxWindows as a DLL under
Windows and array needs to be visible outside the DLL. The third is needed for

exporting an array from a user DLL.

Example:

class MyClass;
WX_DEFINE_OBJARRAY (MyClass, wxArrayOfMyClass); // note: not "MyClass *"!

38

CHAPTER 6

You must use WX_DEFINE_OBJARRAY() (p. 39) macro to define the array class -
otherwise you would get link errors.

WX_DEFINE_OBJARRAY

WX_DEFINE_OBJARRAY (name)
WX_DEFINE_EXPORTED_OBJARRAY (name)
WX_DEFINE_USER_EXPORTED_OBJARRAY (name)

This macro defines the methods of the array class name not defined by the
WX_DECLARE_OBJARRAY() (p. 38) macro. You must include the file <wx/arrimpl.cpp>
before using this macro and you must have the full declaration of the class of array
elements in scope! If you forget to do the first, the error will be caught by the compiler,
but, unfortunately, many compilers will not give any warnings if you forget to do the
second - but the objects of the class will not be copied correctly and their real destructor
will not be called. The latter two forms are merely aliases of the first to satisfy some
people's sense of symmetry when using the exported declarations.

Example of usage:

// first declare the class!
class MyClass

{
public:
MyClass (const MyClassé&) ;

virtual ~MyClass();
bi

#include <wx/arrimpl.cpp>
WX_DEFINE_OBJARRAY (wxArrayOfMyClass) ;

WX_APPEND_ARRAY

void WX_APPEND_ARRAY(wxArray& array, wxArray& other)

This macro may be used to append all elements of the other array to the array. The two
arrays must be of the same type.

WX_CLEAR_ARRAY

void WX_CLEAR_ARRAY(wxArray& array)

This macro may be used to delete all elements of the array before emptying it. It can not
be used with wxObjArrays - but they will delete their elements anyhow when you call

Empty().

39

CHAPTER 6

Default constructors

wxArray()

wxObjArray()

Default constructor initializes an empty array object.

wxSortedArray(int (*)(T first, T second)compareFunction)

There is no default constructor for wxSortedArray classes - you must initialize it with a
function to use for item comparison. It is a function which is passed two arguments of
type T where T is the array element type and which should return a negative, zero or

positive value according to whether the first element passed to it is less than, equal to or
greater than the second one.

wxArray copy constructor and assignment operator

wxArray(const wxArray& array)

wxSortedArray(const wxSortedArray& array)

wxObjArray(const wxObjArray& array)

wxArray& operator=(const wxArray& array)

wxSortedArray& operator=(const wxSortedArray& array)

wxObjArray& operator=(const wxObjArray& array)

The copy constructors and assignment operators perform a shallow array copy (i.e. they
don't copy the objects pointed to even if the source array contains the items of pointer

type) for wxArray and wxSortedArray and a deep copy (i.e. the array element are copied
too) for wxObjArray.

wxArray::~wxArray

~WxArray()

~wxSortedArray()

~wxObijArray()

The wxObjArray destructor deletes all the items owned by the array. This is not done by

wxArray and wxSortedArray versions - you may use WX_CLEAR_ARRAY (p. 39) macro
for this.

40

CHAPTER 6

wxArray::Add

void Add(T item, size_t copies = 1)
void Add(T *item)
void Add(T &item, size_t copies = 1)

Appends the given number of copies of the item to the array consisting of the elements
of type T.

The first version is used with wxArray and wxSortedArray. The second and the third are
used with wxObjArray. There is an important difference between them: if you give a
pointer to the array, it will take ownership of it, i.e. will delete it when the item is deleted
from the array. If you give a reference to the array, however, the array will make a copy
of the item and will not take ownership of the original item. Once again, it only makes
sense for wxObjArrays because the other array types never take ownership of their
elements. Also note that you cannot append more than one pointer as reusing it would
lead to deleting it twice (or more) and hence to a crash.

You may also use WX_APPEND_ARRAY (p. 39) macro to append all elements of one

array to another one but it is more efficient to use copies parameter and modify the
elements in place later if you plan to append a lot of items.

wxArray::Alloc

void Alloc(size_t count)

Preallocates memory for a given number of array elements. It is worth calling when the
number of items which are going to be added to the array is known in advance because
it will save unneeded memory reallocation. If the array already has enough memory for
the given number of items, nothing happens.

wxArray::Clear

void Clear()

This function does the same as Empty() (p. 42) and additionally frees the memory
allocated to the array.

wxArray::Count

size_t Count() const

Same as GetCount() (p. 42). This function is deprecated - it exists only for compatibility.

41

CHAPTER 6

wxObjArray::Detach

T * Detach(size_t index)

Removes the element from the array, but, unlike, Remove() (p. 43) doesn't delete it. The
function returns the pointer to the removed element.

wxArray::Empty

void Empty()
Empties the array. For wxObjArray classes, this destroys all of the array elements. For

wxArray and wxSortedArray this does nothing except marking the array of being empty -
this function does not free the allocated memory, use Clear() (p. 41) for this.

wxArray::GetCount

size_t GetCount() const

Return the number of items in the array.

wxArray::Index

int Index(T& item, bool searchFromEnd = FALSE)
int Index(T& item)

The first version of the function is for wxArray and wxObjArray, the second is for
wxSortedArray only.

Searches the element in the array, starting from either beginning or the end depending
on the value of searchFromEnd parameter. wxNOT_FOUND is returned if the element is
not found, otherwise the index of the element is returned.

Linear search is used for the wxArray and wxObjArray classes but binary search in the
sorted array is used for wxSortedArray (this is why searchFromEnd parameter doesn't
make sense for it).

NB: even for wxObjArray classes, the operator==() of the elements in the array is not
used by this function. It searches exactly the given element in the array and so will only
succeed if this element had been previously added to the array, but fail even if another,
identical, element is in the array.

wxArray::Insert

42

CHAPTER 6

void Insert(T item, size_t n, size_t copies = 1)

void Insert(T *item, size_t n)

void Insert(T &ifem, size_t n, size_t copies = 1)

Insert the given number of copies of the item into the array before the existing item n -
thus, Insert(something, Ou) will insert an item in such way that it will become the first
array element.

Please see Add() (p. 41) for explanation of the differences between the overloaded

versions of this function.

wxArray::IsEmpty

bool IsEmpty() const

Returns TRUE if the array is empty, FALSE otherwise.

wxArray::ltem

T& Item(size_t index) const

Returns the item at the given position in the array. If index is out of bounds, an assert
failure is raised in the debug builds but nothing special is done in the release build.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Last

T& Last() const

Returns the last element in the array, i.e. is the same as ltem(GetCount() - 1). An assert
failure is raised in the debug mode if the array is empty.

The returned value is of type "reference to the array element type" for all of the array
classes.

wxArray::Remove

Remove(T item)

Removes an element from the array by value: the first item of the array equal to item is
removed, an assert failure will result from an attempt to remove an item which doesn't

43

CHAPTER 6

exist in the array.

When an element is removed from wxObjArray it is deleted by the array - use Detach()

(p. 42) if you don't want this to happen. On the other hand, when an object is removed
from a wxArray nothing happens - you should delete it manually if required:

T *item = arrayl[n];

delete item;
array.Remove (n)

See also WX_CLEAR_ARRAY (p. 39) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::RemoveAt

RemoveAt(size_t index, size_t count = 1)

Removes count elements starting at index from the array. When an element is removed
from wxObjArray it is deleted by the array - useDetach() (p. 42) if you don't want this to
happen. On the other hand, when an object is removed from a wxArray nothing happens

- you should delete it manually if required:

T *item = arrayl[n];
delete item;
array.RemoveAt (n)

See also WX_CLEAR_ARRAY (p. 39) macro which deletes all elements of a wxArray
(supposed to contain pointers).

wxArray::Shrink

void Shrink()
Frees all memory unused by the array. If the program knows that no new items will be

added to the array it may call Shrink() to reduce its memory usage. However, if a new
item is added to the array, some extra memory will be allocated again.

wxArray::Sort

void Sort(CMPFUNC<T> compareFunction)

The notation CMPFUNC<T> should be read as if we had the following declaration:

template int CMPFUNC(T *first, T *second);

where T is the type of the array elements. l.e. it is a function returning int which is
passed two arguments of type T *.

Sorts the array using the specified compare function: this function should return a

44

CHAPTER 6

negative, zero or positive value according to whether the first element passed to it is less
than, equal to or greater than the second one.

wxSortedArray doesn't have this function because it is always sorted.

wxArrayString

wxArrayString is an efficient container for storing wxString (p. 1219) objects. It has the
same features as all wxArray (p. 33) classes, i.e. it dynamically expands when new
items are added to it (so it is as easy to use as a linked list), but the access time to the
elements is constant, instead of being linear in number of elements as in the case of
linked lists. It is also very size efficient and doesn't take more space than a C array
wxString[] type (wxArrayString uses its knowledge of internals of wxString class to
achieve this).

This class is used in the same way as other dynamic arrays (p. 33), except that no
WX_DEFINE_ARRAY declaration is needed for it. When a string is added or inserted in
the array, a copy of the string is created, so the original string may be safely deleted
(e.g. if it was a char * pointer the memory it was using can be freed immediately after
this). In general, there is no need to worry about string memory deallocation when using
this class - it will always free the memory it uses itself.

The references returned by ltem (p. 49), Last (p. 49) or operator|] (p. 47) are not
constant, so the array elements may be modified in place like this

array.Last () .MakeUpper () ;

There is also a variant of wxArrayString called wxSortedArrayString which has exactly
the same methods as wxArrayString, but which always keeps the string in it in
(alphabetical) order. wxSortedArrayString uses binary search in its Index (p. 48) function
(instead of linear search for wxArrayString::Index) which makes it much more efficient if
you add strings to the array rarely (because, of course, you have to pay for Index()
efficiency by having Add() be slower) but search for them often. Several methods should
not be used with sorted array (basically, all which break the order of items) which is
mentioned in their description.

Final word: none of the methods of wxArrayString is virtual including its destructor, so
this class should not be used as a base class.

Derived from

Although this is not true strictly speaking, this class may be considered as a
specialization of wxArray (p. 33) class for the wxString member data: it is not
implemented like this, but it does have all of the wxArray functions.

Include files

<wx/string.h>

45

CHAPTER 6

See also

wxArray (p. 33), wxString (p. 1219), wxString overview (p. 1586)

wxArrayString::wxArrayString

wxArrayString()

wxArrayString(const wxArrayString& array)

Default and copy constructors.

Note that when an array is assigned to a sorted array, its contents is automatically
sorted during construction.

wxArrayString::~wxArrayString

~wWxArrayString()

Destructor frees memory occupied by the array strings. For the performance reasons it
is not virtual, so this class should not be derived from.

wxArrayString::operator=

wxArrayString & operator =(const wxArrayString& array)

Assignment operator.

wxArrayString::operator==

bool operator ==(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns TRUE only if the arrays have the same
number of elements and the same strings in the same order.

wxArrayString::operator!=

bool operator !=(const wxArrayString& array) const

Compares 2 arrays respecting the case. Returns TRUE if the arrays have different
number of elements or if the elements don't match pairwise.

46

CHAPTER 6

wxArrayString::operator|]

wxString& operator[](size_t nindex)

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

This is the operator version of /tem (p. 49) method.

wxArrayString::Add

size_t Add(const wxString& str, size_t copies = 1)

Appends the given number of copies of the new item strto the array and returns the
index of the first new item in the array.

Warning: For sorted arrays, the index of the inserted item will not be, in general, equal
to GetCount() (p. 48) - 1 because the item is inserted at the correct position to keep the
array sorted and not appended.

See also: Insert (p. 48)

wxArrayString::Alloc

void Alloc(size_t nCount)

Preallocates enough memory to store nCount items. This function may be used to
improve array class performance before adding a known number of items consecutively.

See also: Dynamic array memory management (p. 36)

wxArrayString::Clear

void Clear()
Clears the array contents and frees memory.

See also: Empty (p. 48)

wxArrayString::Count

size_t Count() const

Returns the number of items in the array. This function is deprecated and is for

47

CHAPTER 6

backwards compatibility only, please use GetCount (p. 48) instead.

wxArrayString::Empty

void Empty()

Empties the array: after a call to this function GetCount (p. 48) will return 0. However,
this function does not free the memory used by the array and so should be used when
the array is going to be reused for storing other strings. Otherwise, you should use Clear
(p. 47) to empty the array and free memory.

wxArrayString::GetCount

size_t GetCount() const

Returns the number of items in the array.

wxArrayString::Index

int Index(const char * sz, bool bCase = TRUE, bool bFromEnd = FALSE)

Search the element in the array, starting from the beginning ifbFromEnd is FALSE or
from end otherwise. If bCase, comparison is case sensitive (default), otherwise the case
is ignored.

This function uses linear search for wxArrayString and binary search for
wxSortedArrayString, but it ignores the bCase and bFromEnd parameters in the latter
case.

Returns index of the first item matched or wxNOT_FOUND if there is no match.

wxArrayString::Insert

void Insert(const wxString& str, size_t nindex, size_t copies = 1)

Insert the given number of copies of the new element in the array before the position
nindex. Thus, for example, to insert the string in the beginning of the array you would
write

Insert ("foo", 0);
If nindex is equal to GetCount() this function behaves as Add (p. 47).

Warning: this function should not be used with sorted arrays because it could break the
order of items and, for example, subsequent calls to /Index() (p. 48) would then not work!

48

CHAPTER 6

wxArrayString::IsEmpty

IsEmpty()

Returns TRUE if the array is empty, FALSE otherwise. This function returns the same
result as GetCount() == 0 but is probably easier to read.

wxArrayString::ltem

wxString& Item(size_t nindex) const

Return the array element at position nindex. An assert failure will result from an attempt
to access an element beyond the end of array in debug mode, but no check is done in
release mode.

See also operator|] (p. 47) for the operator version.

wxArrayString::Last

Last()

Returns the last element of the array. Attempt to access the last element of an empty
array will result in assert failure in debug build, however no checks are done in release
mode.

wxArrayString::Remove

void Remove(const char * s2)

Removes the first item matching this value. An assert failure is provoked by an attempt
to remove an element which does not exist in debug build.

See also: Index (p. 48)
void Remove(size_t nindex, size_t count = 1)

Removes count items starting at position n/ndex from the array.

wxArrayString::Shrink

void Shrink()

Releases the extra memory allocated by the array. This function is useful to minimize the
array memory consumption.

49

CHAPTER 6

See also: Alloc (p. 47), Dynamic array memory management (p. 36)

wxArrayString::Sort

void Sort(bool reverseOrder = FALSE)

Sorts the array in alphabetical order or in reverse alphabetical order if reverseOrder is
TRUE. The sort is case-sensitive.

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to /Index() (p. 48) would then not work!

void Sort(CompareFunction compareFunction)

Sorts the array using the specified compareFunction for item
comparison.CompareFunction is defined as a function taking two const wxString&
parameters and returning an int value less than, equal to or greater than 0 if the first
string is less than, equal to or greater than the second one.

Example

The following example sorts strings by their length.

static int CompareStringLen (const wxStringé& first, const wxStringé&
second)

{
return first.length() - second.length();

}

wxArrayString array;

array.Add("one");
array.Add("two");
array.Add ("three");
array.Add ("four");

array.Sort (CompareStringLen) ;

Warning: this function should not be used with sorted array because it could break the
order of items and, for example, subsequent calls to /Index() (p. 48) would then not work!

wxArtProvider

wxArtProvider class is used to customize the look of wxWindows application. When
wxWindows need to display an icon or a bitmap (e.g. in the standard file dialog), it does
not use hard-coded resource but asks wxArtProvider for it instead. This way the users
can plug in own wxArtProvider class and easily replace standard art with his/her own

50

CHAPTER 6

version. It is easy thing to do: all that is needed is to derive a class from wxArtProvider,
override it'sCreateBitmap (p. 52) method and register the provider
withwxArtProvider::PushProvider (p. 54):

class MyProvider : public wxArtProvider
{
protected:
wxBitmap CreateBitmap (const wxArtID& id,
const wxArtClienté& client,
const wxSize size)
{ ...}
i

&%ArtProvider::PushProvider(new MyProvider) ;
There's another way of taking advantage of this class: you can use it in your code and
use platform native icons as provided bywxArtProvider::GetBitmap (p. 53) or

wxArtProvider::Getlcon (p. 53) (NB: this is not yet really possible as of wxWindows 2.3.3,
the set of wxArtProvider bitmaps is too small).

Identifying art resources

Every bitmap is known to wxArtProvider under an unique ID that is used by when
requesting a resource from it. The ID is represented by wxArtID type and can have one
of these predefined values (you can see bitmaps represented by these constants in the
artprov (p. 1574) sample):
e wWxART_ADD_BOOKMARK
wxART_DEL_BOOKMARK
wxART_HELP_SIDE_PANEL
wxART_HELP_SETTINGS
wxART_HELP_BOOK
wxART_HELP_FOLDER
wxART_HELP_PAGE
wxART_GO_BACK
wxART_GO_FORWARD
wxART_GO _UP
wxART_GO_DOWN
wWxART_GO_TO_PARENT
wxART_GO_HOME
wxART_FILE_OPEN
wxART_PRINT
wxART_HELP
wxART_TIP
wxART_REPORT_VIEW
WxART_LIST_VIEW
wxART_NEW_DIR
wxART_FOLDER
wxART_GO_DIR_UP
wxART_EXECUTABLE_FILE
wxART_NORMAL_FILE

51

CHAPTER 6

wWxART_TICK_MARK
wxART_CROSS_MARK
wxART_ERROR
wxART_QUESTION
wxART_WARNING
WxART_INFORMATION

Clients

Client is the entity that calls wxArtProvider's GetBitmap or Getlcon function. It is
represented by wxClientID type and can have one of these values:
e wxART_TOOLBAR

e wxART_MENU

e wxART_FRAME_ICON

e wxART_CMN_DIALOG

e wxART_HELP_BROWSER

e wxART_MESSAGE_BOX

e wWxART_OTHER (used for all requests that don't fit into any of the categories
above)Client ID servers as a hint to wxArtProvider that is supposed to help it to
choose the best looking bitmap. For example it is often desirable to use slightly
different icons in menus and toolbars even though they represent the same
action (e.g. wx_ART_FILE_OPEN). Remember that this is really only a hint for
wxArtProvider -- it is common thatwxArtProvider::GetBitmap (p. 53) returns
identical bitmap for different client values!

See also

See the artprov (p. 1574) sample for an example of wxArtProvider usage.
Derived from

wxObject (p. 958)

Include files

<wx/artprov.h>

wxArtProvider::CreateBitmap

wxBitmap CreateBitmap(const wxArtID& id, const wxArtClient& client, const
wxSize& size)

Derived art provider classes must override this method to create requested art resource.
Note that returned bitmaps are cached by wxArtProvider and it is therefore not
neccessary to optimize CreateBitmap for speed (e.g. you may create wxBitmap objects

52

CHAPTER 6

from XPMs here).
Parameters

id
wxArtID unique identifier of the bitmap.
client

wxArtClient identifier of the client (i.e. who is asking for the bitmap). This only
servers as a hint.

size
Prefered size of the bitmap. The function may return a bitmap of different
dimensions, it will be automatically rescaled to meet client's request.

Note

This is not part of wxArtProvider's public API, usewxArtProvider::GetBitmap (p. 53) or
wxArtProvider::Getlcon (p. 53)to query wxArtProvider for a resource.

wxArtProvider::GetBitmap

static wxBitmap GetBitmap(const wxArtID& id, const wxArtClient& client =
wxART_OTHER, const wxSize& size = wxDefaultSize)

Query registered providers for bitmap with given ID.
Parameters

id
wxArtID unique identifier of the bitmap.

client
wxArtClient identifier of the client (i.e. who is asking for the bitmap).

size
Size of the returned bitmap or wxDefaultsSize if size doesn't matter.

Return value

The bitmap if one of registered providers recognizes the 1D or wxNullBitmap otherwise.

wxArtProvider::Getlcon

static wxlcon Getlcon(const wxArtID& id, const wxArtClient& client =
wxART_OTHER, const wxSize& size = wxDefaultSize)

Same as wxArtProvider::GetBitmap (p. 53), but return a wxlcon object (or wxNulllcon on

53

CHAPTER 6

failure).

wxArtProvider::PopProvider

static bool PopProvider()

Remove latest added provider and delete it.

wxArtProvider::PushProvider

static void PushProvider(wxArtProvider* provider)

Register new art provider (add it to the top of providers stack).

wxArtProvider::RemoveProvider

static bool RemoveProvider(wxArtProvider* provider)

Remove a provider from the stack. The provider must have been added previously and
is not deleted.

wxAutomationObject

The wxAutomationObject class represents an OLE automation object containing a
single data member, an IDispatch pointer. It contains a number of functions that make it
easy to perform automation operations, and set and get properties. The class makes
heavy use of the wxVariant (p. 1388) class.

The usage of these classes is quite close to OLE automation usage in Visual Basic. The
APl is high-level, and the application can specify multiple properties in a single string.

The following example gets the current Excel instance, and if it exists, makes the active
cell bold.

wxAutomationObject excelObiject;
if (excelObject.GetInstance ("Excel.Application"))
excelObject.PutProperty ("ActiveCell.Font.Bold", TRUE);

Note that this class works under Windows only, and currently only for Visual C++.
Derived from

wxObject (p. 958)

54

CHAPTER 6

Include files
<wx/msw/ole/automtn.h>
See also

wxVariant (p. 1388)

wxAutomationObject::wxAutomationObject

wxAutomationObject(WXIDISPATCH* dispatchPtr = NULL)

Constructor, taking an optional IDispatch pointer which will be released when the object
is deleted.

wxAutomationObject::~wxAutomationObject

~wxAutomationObject()

Destructor. If the internal IDispatch pointer is non-null, it will be released.

wxAutomationObject::CallMethod

wxVariant CallMethod(const wxString& method, int noArgs, wxVariant args/]) const
wxVariant CallMethod(const wxString& method, ...) const

Calls an automation method for this object. The first form takes a method name, number
of arguments, and an array of variants. The second form takes a method name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res
wxVariant res

obj.CallMethod ("Sum", wxVariant (l.2), wxVariant (3.4));
obj.CallMethod("Sum", 1.2, 3.4);

Note that method can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects. For example:

object.CallMethod ("ActiveCell.Font.ShowDialog", "My caption");

55

CHAPTER 6

wxAutomationObject::Createlnstance

bool Createlnstance(const wxString& classl/d) const

Creates a new object based on the class id, returning TRUE if the object was
successfully created, or FALSE if not.

wxAutomationObject::GetDispatchPtr

IDispatch* GetDispatchPtr() const

Gets the IDispatch pointer.

wxAutomationObject::Getlnstance

bool Getlnstance(const wxString& class/d) const

Retrieves the current object associated with a class id, and attaches the IDispatch
pointer to this object. Returns TRUE if a pointer was successfully retrieved, FALSE
otherwise.

Note that this cannot cope with two instances of a given OLE object being active

simultaneously, such as two copies of Excel running. Which object is referenced cannot
currently be specified.

wxAutomationObject::GetObject

bool GetObject(wxAutomationObject&obj const wxString& property, int noArgs = 0,
wxVariant args[] = NULL) const

Retrieves a property from this object, assumed to be a dispatch pointer, and initialises
obj with it. To avoid having to deal with IDispatch pointers directly, use this function in
preference to wxAutomationObject::GetProperty (p. 56) when retrieving objects from
other objects.

Note that an IDispatch pointer is stored as a void* pointer in wxVariant objects.

See also

wxAutomationObject::GetProperty (p. 56)

wxAutomationObject::GetProperty

56

CHAPTER 6

wxVariant GetProperty(const wxString& property, int noArgs, wxVariant args/])
const

wxVariant GetProperty(const wxString& property, ...) const

Gets a property value from this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

wxVariant res
wxVariant res

obj.GetProperty ("Range", wxVariant ("Al"));
obj.GetProperty ("Range", "Al");

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::Invoke

bool Invoke(const wxString& member, int action, wxVariant& retValue, int noArgs,
wxVariant args[], const wxVariant* ptrArgs|] = 0) const

This function is a low-level implementation that allows access to the IDispatch Invoke
function. It is not meant to be called directly by the application, but is used by other
convenience functions.

Parameters

member
The member function or property name.

action
Bitlist: may contain DISPATCH_PROPERTYPUT,
DISPATCH_PROPERTYPUTREF, DISPATCH_METHOD.

retValue
Return value (ignored if there is no return value)
noArgs

Number of arguments in args or ptrArgs.

args
If non-null, contains an array of variants.

ptrArgs
If non-null, contains an array of constant pointers to variants.

57

CHAPTER 6

Return value

TRUE if the operation was successful, FALSE otherwise.

Remarks

Two types of argument array are provided, so that when possible pointers are used for

efficiency.

wxAutomationObject::PutProperty

bool PutProperty(const wxString& property, int noArgs, wxVariant args/]) const
bool PutProperty(const wxString& property, ...)

Puts a property value into this object. The first form takes a property name, number of
arguments, and an array of variants. The second form takes a property name and zero
to six constant references to variants. Since the variant class has constructors for the
basic data types, and C++ provides temporary objects automatically, both of the
following lines are syntactically valid:

obj.PutProperty ("Value", wxVariant (23));
obj.PutProperty ("Value", 23);

Note that property can contain dot-separated property names, to save the application
needing to call GetProperty several times using several temporary objects.

wxAutomationObject::SetDispatchPtr

void SetDispatchPtr(WXIDISPATCH* dispatchPtr)

Sets the IDispatch pointer. This function does not check if there is already an IDispatch
pointer.

You may need to cast from IDispatch* to WXIDISPATCH* when calling this function.

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either
monochrome or colour.

Derived from

58

CHAPTER 6

wxGDIObject (p. 569)
wxObject (p. 958)

Include file
<wx/bitmap.h>
Predefined objects
Objects:
wxNullBitmap

See also

wxBitmap overview (p. 1659),supported bitmap file formats (p. 1660),wxDC::Blit (p.
344),wxlcon (p. 722), wxCursor (p. 204), wxBitmap (p. 58),wxMemoryDC (p. 884)

wxBitmap::wxBitmap

wxBitmap()

Default constructor.

wxBitmap(const wxBitmap& bitmap)

Copy constructor.

wxBitmap(void* data, int type, int width, int height, int depth = -1)

Creates a bitmap from the given data which is interpreted in platform-dependent
manner.

wxBitmap(const char bits/], int width, int height
int depth = 1)

Creates a bitmap from an array of bits.

You should only use this function for monochrome bitmaps (depth 1) in portable
programs: in this case the bits parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is
passed without any changes to the underlying CreateBitmap () API. Under other
platforms, only monochrome bitmaps may be created using this constructor and
wximage (p. 734) should be used for creating colour bitmaps from static data.

wxBitmap(int width, int height, int depth = -1)

59

CHAPTER 6

Creates a new bitmap. A depth of -1 indicates the depth of the current screen or visual.
Some platforms only support 1 for monochrome and -1 for the current colour setting.

wxBitmap(const char** bits)

Creates a bitmap from XPM data.

wxBitmap(const wxString& name, long type)

Loads a bitmap from a file or resource.

wxBitmap(const wxlmage& img, int depth = -1)

Creates bitmap object from the image. This has to be done to actually display an image
as you cannot draw an image directly on a window. The resulting bitmap will use the
provided colour depth (or that of the current system if depth is -1) which entails that a
colour reduction has to take place.

When in 8-bit mode (PseudoColour mode), the GTK port will use a color cube created
on program start-up to look up colors. This ensures a very fast conversion, but the image
quality won't be perfect (and could be better for photo images using more sophisticated
dithering algorithms).

On Windows, if there is a palette present (set with SetPalette), it will be used when

creating the wxBitmap (most useful in 8-bit display mode). On other platforms, the
palette is currently ignored.

Parameters
bits
Specifies an array of pixel values.
width
Specifies the width of the bitmap.
height
Specifies the height of the bitmap.
depth
Specifies the depth of the bitmap. If this is omitted, the display depth of the screen
is used.
name

This can refer to a resource name under MS Windows, or a filename under MS
Windows and X. Its meaning is determined by the type parameter.

type
May be one of the following:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

60

CHAPTER 6

wxBITMAP_TYPE_BMP_RESOURCELoad a Windows bitmap from the resource
database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.
wxBITMAP_TYPE_RESOURCE Load a Windows resource name.

The validity of these flags depends on the platform and wxWindows configuration.
If all possible wxWindows settings are used, the Windows platform supports BMP
file, BMP resource, XPM data, and XPM. Under wxGTK, the available formats are
BMP file, XPM data, XPM file, and PNG file. Under wxMotif, the available formats
are XBM data, XBM file, XPM data, XPM file.

In addition, wxBitmap can read all formats that wxImage (p. 734) can, which
currently include wxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_TIF,
wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF, wxBITMAP_TYPE_PCX, and
wxBITMAP_TYPE_PNM. Of course, you must have wxlmage handlers loaded.

img
Platform-independent wxImage object.

Remarks

The first form constructs a bitmap object with no data; an assignment or another
member function such as Create or LoadFile must be called subsequently.

The second and third forms provide copy constructors. Note that these do not copy the
bitmap data, but instead a pointer to the data, keeping a reference count. They are
therefore very efficient operations.

The fourth form constructs a bitmap from data whose type and value depends on the
value of the type argument.

The fifth form constructs a (usually monochrome) bitmap from an array of pixel values,
under both X and Windows.

The sixth form constructs a new bitmap.

The seventh form constructs a bitmap from pixmap (XPM) data, if wxWindows has been
configured to incorporate this feature.

To use this constructor, you must first include an XPM file. For example, assuming that
the file mybitmap . xpm contains an XPM array of character pointers called mybitmap:

#include "mybitmap.xpmn"

61

CHAPTER 6

wxBitmap *bitmap = new wxBitmap (mybitmap);

The eighth form constructs a bitmap from a file or resource. name can refer to a
resource name under MS Windows, or a filename under MS Windows and X.

Under Windows, type defaults to wxBITMAP_TYPE_BMP_RESOURCE. Under X, type
defaults to wxBITMAP_TYPE_XPM.

See also

wxBitmap::LoadFile (p. 67)

wxPython note: Constructors supported by wxPython are:

wxBitmap(name, flag) Loads a bitmap from a file

wxEmptyBitmap(width, height, depth = -1) Creates an empty bitmap
with the given specifications

wxBitmapFromXPMData(listOfStrings) Create a bitmap from a
Python list of strings whose contents are XPM
data.

wxBitmapFromBits(bits, width, height, depth=-1) Create a bitmap from
an array of bits contained in a string.

wxBitmapFromimage(image, depth=-1) Convert a wxImage to a
wxBitmap.

wxPerl note: Constructors supported by wxPerl are:

e::Bitmap->new(width, height, depth = -1)

::Bitmap->new(name, type)
::Bitmap->new(icon)
::Bitmap->newFromBits(bits, width, height, depth = 1)

::Bitmap->newFromXPM(data)

wxBitmap::~wxBitmap

~wxBitmap()

Destroys the wxBitmap object and possibly the underlying bitmap data. Because
reference counting is used, the bitmap may not actually be destroyed at this point - only

62

CHAPTER 6

when the reference count is zero will the data be deleted.

If the application omits to delete the bitmap explicitly, the bitmap will be destroyed
automatically by wxWindows when the application exits.

Do not delete a bitmap that is selected into a memory device context.

wxBitmap::AddHandler

static void AddHandler(wxBitmapHandler* handler)

Adds a handler to the end of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 78)

wxBitmap::CleanUpHandlers

static void CleanUpHandlers|()
Deletes all bitmap handlers.

This function is called by wxWindows on exit.

wxBitmap::ConvertTolmage

wximage ConvertTolmage()

Creates an image from a platform-dependent bitmap. This preserves mask information
so that bitmaps and images can be converted back and forth without loss in that respect.

wxBitmap::CopyFromicon

bool CopyFromlcon(const wxlcon& icon)

Creates the bitmap from an icon.

wxBitmap::Create

virtual bool Create(int width, int height, int depth = -1)

63

CHAPTER 6

Creates a fresh bitmap. If the final argument is omitted, the display depth of the screen is
used.

virtual bool Create(void* data, int type, int width, int height, int depth = -1)
Creates a bitmap from the given data, which can be of arbitrary type.
Parameters

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmap::wxBitmap (p. 59) for a list of possible
values.

Return value

TRUE if the call succeeded, FALSE otherwise.

Remarks

The first form works on all platforms. The portability of the second form depends on the
type of data.

See also

wxBitmap::wxBitmap (p. 59)

wxBitmap::FindHandler

static wxBitmapHandler* FindHandler(const wxString& name)

Finds the handler with the given name.

static wxBitmapHandler* FindHandler(const wxString& extension, long bitmapType)
Finds the handler associated with the given extension and type.

static wxBitmapHandler* FindHandler(long bitmapType)

64

CHAPTER 6

Finds the handler associated with the given bitmap type.

name
The handler name.

extension
The file extension, such as "omp".

bitmapType
The bitmap type, such as wxBITMAP_TYPE_BMP.

Return value
A pointer to the handler if found, NULL otherwise.
See also

wxBitmapHandler (p. 78)

wxBitmap::GetDepth

int GetDepth() const

Gets the colour depth of the bitmap. A value of 1 indicates a monochrome bitmap.

wxBitmap::GetHandlers

static wxList& GetHandlers()
Returns the static list of bitmap format handlers.
See also

wxBitmapHandler (p. 78)

wxBitmap::GetHeight

int GetHeight() const

Gets the height of the bitmap in pixels.

wxBitmap::GetPalette

wxPalette* GetPalette() const

65

CHAPTER 6

Gets the associated palette (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxPalette (p. 974)

wxBitmap::GetMask

wxMask* GetMask() const

Gets the associated mask (if any) which may have been loaded from a file or set for the
bitmap.

See also

wxBitmap::SetMask (p. 70), wxMask (p. 864)

wxBitmap::GetWidth

int GetWidth() const
Gets the width of the bitmap in pixels.
See also

wxBitmap::GetHeight (p. 65)

wxBitmap::GetSubBitmap

wxBitmap GetSubBitmap(const wxRect&rect) const

Returns a sub bitmap of the current one as long as the rect belongs entirely to the
bitmap. This function preserves bit depth and mask information.

wxBitmap::InitStandardHandlers

static void InitStandardHandlers()

Adds the standard bitmap format handlers, which, depending on wxWindows
configuration, can be handlers for Windows bitmap, Windows bitmap resource, and
XPM.

This function is called by wxWindows on startup.

See also

66

CHAPTER 6

wxBitmapHandler (p. 78)

wxBitmap::InsertHandler

static void InsertHandler(wxBitmapHandler* handler)

Adds a handler at the start of the static list of format handlers.

handler
A new bitmap format handler object. There is usually only one instance of a given
handler class in an application session.

See also

wxBitmapHandler (p. 78)

wxBitmap::LoadFile

bool LoadFile(const wxString& name, long type)
Loads a bitmap from a file or resource.
Parameters

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
One of the following values:

wxBITMAP_TYPE_BMP Load a Windows bitmap file.

wxBITMAP_TYPE_BMP_RESOURCE Load a Windows bitmap from the
resource database.

wxBITMAP_TYPE_GIF Load a GIF bitmap file.

wxBITMAP_TYPE_XBM Load an X bitmap file.

wxBITMAP_TYPE_XPM Load an XPM bitmap file.

The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can read all formats that wx/mage (p. 734) can

(WwxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG, wxBITMAP_TYPE_GIF,
wxBITMAP_TYPE_PCX, wxBITMAP_TYPE_PNM). (Of course you must have

67

CHAPTER 6

wxImage handlers loaded.)
Return value
TRUE if the operation succeeded, FALSE otherwise.
Remarks
A palette may be associated with the bitmap if one exists (especially for colour Windows
bitmaps), and if the code supports it. You can check if one has been created by using
the GetPalette (p. 65) member.

See also

wxBitmap::SaveFile (p. 68)

wxBitmap::Ok

bool Ok() const

Returns TRUE if bitmap data is present.

wxBitmap::RemoveHandler

static bool RemoveHandler(const wxString& name)
Finds the handler with the given name, and removes it. The handler is not deleted.

name
The handler name.

Return value
TRUE if the handler was found and removed, FALSE otherwise.
See also

wxBitmapHandler (p. 78)

wxBitmap::SaveFile

bool SaveFile(const wxString& name, int type, wxPalette* palette = NULL)
Saves a bitmap in the named file.

Parameters

68

CHAPTER 6

name
A filename. The meaning of name is determined by the type parameter.

type
One of the following values:
wxBITMAP_TYPE_BMP Save a Windows bitmap file.
wxBITMAP_TYPE_GIF Save a GIF bitmap file.
wxBITMAP_TYPE_XBM Save an X bitmap file.
wxBITMAP_TYPE_XPM Save an XPM bitmap file.
The validity of these flags depends on the platform and wxWindows configuration.
In addition, wxBitmap can save all formats that wx/image (p. 734) can
(WxBITMAP_TYPE_JPEG, wxBITMAP_TYPE_PNG). (Of course you must have
wxlmage handlers loaded.)

palette

An optional palette used for saving the bitmap.
Return value

TRUE if the operation succeeded, FALSE otherwise.

Remarks

Depending on how wxWindows has been configured, not all formats may be available.
See also

wxBitmap::LoadFile (p. 67)

wxBitmap::SetDepth

void SetDepth(int depth)
Sets the depth member (does not affect the bitmap data).
Parameters
depth
Bitmap depth.

wxBitmap::SetHeight

void SetHeight(int height)

69

CHAPTER 6

Sets the height member (does not affect the bitmap data).
Parameters
height

Bitmap height in pixels.

wxBitmap::SetMask

void SetMask(wxMask* mask)
Sets the mask for this bitmap.

Remarks

The bitmap object owns the mask once this has been called.

See also

wxBitmap::GetMask (p. 66), wxMask (p. 864)

wxBitmap::SetPalette

void SetPalette(const wxPalette& palette)
Sets the associated palette.
Parameters

palette
The palette to set.

See also

wxPalette (p. 974)

wxBitmap::SetWidth

void SetWidth(int width)
Sets the width member (does not affect the bitmap data).
Parameters

width
Bitmap width in pixels.

70

CHAPTER 6

wxBitmap::operator =

wxBitmap& operator =(const wxBitmap& bitmap)

Assignment operator. This operator does not copy any data, but instead passes a
pointer to the data in bitmap and increments a reference counter. It is a fast operation.

Parameters

bitmap
Bitmap to assign.

Return value

Returns 'this' object.

wxBitmap::operator ==

bool operator ==(const wxBitmap& bitmap)

Equality operator. This operator tests whether the internal data pointers are equal (a fast
test).

Parameters

bitmap
Bitmap to compare with 'this'

Return value

Returns TRUE if the bitmaps were effectively equal, FALSE otherwise.

wxBitmap::operator !=

bool operator !=(const wxBitmap& bitmap)

Inequality operator. This operator tests whether the internal data pointers are unequal (a
fast test).

Parameters

bitmap
Bitmap to compare with 'this'

Return value

71

CHAPTER 6

Returns TRUE if the bitmaps were unequal, FALSE otherwise.

wxBitmapButton

A bitmap button is a control that contains a bitmap. It may be placed on a dialog box (p.
369) or panel (p. 977), or indeed almost any other window.

Derived from

wxButton (p. 94)
wxControl (p. 198)
wxWindow (p. 1404)
wxEvtHandler (p. 445)
wxObject (p. 958)

Include files

<wx/bmpbuttn.h>

Remarks

A bitmap button can be supplied with a single bitmap, and wxWindows will draw all

button states using this bitmap. If the application needs more control, additional bitmaps

for the selected state, unpressed focused state, and greyed-out state may be supplied.

Window styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If

this style is not specified, the button will be drawn without
borders and using all provided bitmaps. WIN32 only.

wxBU_LEFT Left-justifies the bitmap label. WIN32 only.

wxBU_TOP Aligns the bitmap label to the top of the button. WIN32
only.

wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.

wxBU_BOTTOM Aligns the bitmap label to the bottom of the button. WIN32
only.

See also window styles overview (p. 1626).
Event handling
EVT_BUTTON(id, func) Process a

wxEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

72

CHAPTER 6

See also

wxButton (p. 94)

wxBitmapButton::wxBitmapButton

wxBitmapButton()

Default constructor.

wxBitmapButton(wxWindow* parent, wxWindowlID id, const wxBitmap& bitmap,
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long
style = wxBU_AUTODRAW, const wxValidator& validator = wxDefaultValidator, const
wxString& name = "button”)

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

bitmap
Bitmap to be displayed.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the bitmap.

style
Window style. See wxBitmapButton (p. 72).

validator
Window validator.

name
Window name.

Remarks

The bitmap parameter is normally the only bitmap you need to provide, and wxWindows

73

CHAPTER 6

will draw the button correctly in its different states. If you want more control, call any of
the functions wxBitmapButton::SetBitmapSelected (p. 76),
wxBitmapButton::SetBitmapFocus (p. 76), wxBitmapButton::SetBitmapDisabled (p. 75).
Note that the bitmap passed is smaller than the actual button created.

See also

wxBitmapButton::Create (p. 74), wxValidator (p. 1386)

wxBitmapButton::~wxBitmapButton

~wxBitmapButton()

Destructor, destroying the button.

wxBitmapButton::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxBitmap& bitmap, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see
wxBitmapButton::wxBitmapButton (p. 73).

wxBitmapButton::GetBitmapDisabled

wxBitmap& GetBitmapDisabled() const
Returns the bitmap for the disabled state.
Return value

A reference to the disabled state bitmap.
See also

wxBitmapButton::SetBitmapDisabled (p. 75)

wxBitmapButton::GetBitmapFocus

wxBitmap& GetBitmapFocus() const
Returns the bitmap for the focused state.

Return value

74

CHAPTER 6

A reference to the focused state bitmap.
See also

wxBitmapButton::SetBitmapFocus (p. 76)

wxBitmapButton::GetBitmapLabel

wxBitmap& GetBitmapLabel() const

Returns the label bitmap (the one passed to the constructor).
Return value

A reference to the button's label bitmap.

See also

wxBitmapButton::SetBitmapLabel (p. 76)

wxBitmapButton::GetBitmapSelected

wxBitmap& GetBitmapSelected() const
Returns the bitmap for the selected state.
Return value

A reference to the selected state bitmap.
See also

wxBitmapButton::SetBitmapSelected (p. 76)

wxBitmapButton::SetBitmapDisabled

void SetBitmapDisabled(const wxBitmap& bitmap)
Sets the bitmap for the disabled button appearance.
Parameters

bitmap
The bitmap to set.

See also

75

CHAPTER 6

wxBitmapButton::GetBitmapDisabled (p. 74), wxBitmapButton::SetBitmapLabel (p. 76),
wxBitmapButton::SetBitmapSelected (p. 76), wxBitmapButton::SetBitmapFocus (p. 76)

wxBitmapButton::SetBitmapFocus

void SetBitmapFocus(const wxBitmap& bitmap)
Sets the bitmap for the button appearance when it has the keyboard focus.
Parameters

bitmap
The bitmap to set.

See also
wxBitmapButton::GetBitmapFocus (p. 74), wxBitmapButton::SetBitmapLabel (p. 76),

wxBitmapButton::SetBitmapSelected (p. 76), wxBitmapButton::SetBitmapDisabled (p.
75)

wxBitmapButton::SetBitmapLabel

void SetBitmapLabel(const wxBitmap& bitmap)
Sets the bitmap label for the button.
Parameters

bitmap
The bitmap label to set.

Remarks

This is the bitmap used for the unselected state, and for all other states if no other
bitmaps are provided.

See also

wxBitmapButton::GetBitmapLabel (p. 75)

wxBitmapButton::SetBitmapSelected

void SetBitmapSelected(const wxBitmap& bitmap)

Sets the bitmap for the selected (depressed) button appearance.

76

CHAPTER 6

Parameters

bitmap
The bitmap to set.

See also

wxBitmapButton::GetBitmapSelected (p. 75), wxBitmapButton::SetBitmapLabel (p. 76),
wxBitmapButton::SetBitmapFocus (p. 76), wxBitmapButton::SetBitmapDisabled (p. 75)

wxBitmapDataObiject

wxBitmapDataObject is a specialization of wxDataObject for bitmap data. It can be used
without change to paste data into the wxClipboard (p. 130) or a wxDropSource (p. 430).
A user may wish to derive a new class from this class for providing a bitmap on-demand
in order to minimize memory consumption when offering data in several formats, such as
a bitmap and GIF.

wxPython note: If you wish to create a derived wxBitmapDataObiject class in wxPython
you should derive the class from wxPyBitmapDataObject in order to get Python-aware
capabilities for the various virtual methods.

Virtual functions to override

This class may be used as is, but GetBitmap (p. 78) may be overridden to increase
efficiency.

Derived from

wxDataObjectSimple (p. 226)
wxDataObject (p. 222)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1688), wxDataObject (p. 222),
wxDataObjectSimple (p. 226), wxFileDataObject (p. 477), wxTextDataObject (p. 1285),
wxDataObject (p. 222)

wxBitmapDataObject(const wxBitmap& bitmap = wxNullBitmap)

Constructor, optionally passing a bitmap (otherwise use SetBitmap (p. 78) later).

77

CHAPTER 6

wxBitmapDataObiject::GetBitmap

virtual wxBitmap GetBitmap() const
Returns the bitmap associated with the data object. You may wish to override this

method when offering data on-demand, but this is not required by wxWindows' internals.
Use this method to get data in bitmap form from the wxClipboard (p. 130).

wxBitmapDataObiject::SetBitmap

virtual void SetBitmap(const wxBitmap& bitmap)

Sets the bitmap associated with the data object. This method is called when the data
object receives data. Usually there will be no reason to override this function.

wxBitmapHandler

Overview (p. 1659)

This is the base class for implementing bitmap file loading/saving, and bitmap creation
from data. It is used within wxBitmap and is not normally seen by the application.

If you wish to extend the capabilities of wxBitmap, derive a class from wxBitmapHandler
and add the handler using wxBitmap::AddHandler (p. 63) in your application initialisation.

Derived from
wxObject (p. 958)
Include files
<wx/bitmap.h>
See also

wxBitmap (p. 58), wxlcon (p. 722), wxCursor (p. 204)

wxBitmapHandler::wxBitmapHandler

wxBitmapHandiler()

Default constructor. In your own default constructor, initialise the members m_name,
m_extension and m_type.

78

CHAPTER 6

wxBitmapHandler::~wxBitmapHandler

~wxBitmapHandiler()

Destroys the wxBitmapHandler object.

wxBitmapHandler::Create

virtual bool Create(wxBitmap* bitmap, void* data, int type, int width, int height, int
depth = -1)

Creates a bitmap from the given data, which can be of arbitrary type. The wxBitmap
object bitmap is manipulated by this function.

Parameters

bitmap
The wxBitmap object.

width
The width of the bitmap in pixels.

height
The height of the bitmap in pixels.

depth
The depth of the bitmap in pixels. If this is -1, the screen depth is used.

data
Data whose type depends on the value of type.

type
A bitmap type identifier - see wxBitmapHandler::wxBitmapHandler (p. 59) for a list
of possible values.

Return value

TRUE if the call succeeded, FALSE otherwise (the default).

wxBitmapHandler::GetName

wxString GetName() const

Gets the name of this handler.

79

CHAPTER 6

wxBitmapHandler::GetExtension

wxString GetExtension() const

Gets the file extension associated with this handler.

wxBitmapHandler::GetType

long GetType() const

Gets the bitmap type associated with this handler.

wxBitmapHandler::LoadFile

bool LoadFile(wxBitmap* bitmap, const wxString& name, long type)
Loads a bitmap from a file or resource, putting the resulting data into bitmap.
Parameters

bitmap
The bitmap object which is to be affected by this operation.

name

Either a filename or a Windows resource name. The meaning of name is
determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 59) for values this can take.

Return value

TRUE if the operation succeeded, FALSE otherwise.
See also

wxBitmap::LoadFile (p. 67)

wxBitmap::SaveFile (p. 68)
wxBitmapHandler::SaveFile (p. 80)

wxBitmapHandler::SaveFile

bool SaveFile(wxBitmap* bitmap, const wxString& name, int type, wxPalette* palette
= NULL)

Saves a bitmap in the named file.

80

CHAPTER 6

Parameters

bitmap
The bitmap object which is to be affected by this operation.

name
A filename. The meaning of name is determined by the type parameter.

type
See wxBitmap::wxBitmap (p. 59) for values this can take.

palette
An optional palette used for saving the bitmap.

Return value

TRUE if the operation succeeded, FALSE otherwise.
See also

wxBitmap::LoadFile (p. 67)

wxBitmap::SaveFile (p. 68)
wxBitmapHandler::LoadFile (p. 80)

wxBitmapHandler::SetName

void SetName(const wxString& name)
Sets the handler name.

Parameters

name

Handler name.

wxBitmapHandler::SetExtension

void SetExtension(const wxString& extension)
Sets the handler extension.

Parameters

extension

Handler extension.

wxBitmapHandler::SetType

81

CHAPTER 6

void SetType(long type)
Sets the handler type.
Parameters

name
Handler type.

wxBoxSizer

The basic idea behind a box sizer is that windows will most often be laid out in rather
simple basic geometry, typically in a row or a column or several hierarchies of either.

For more information, please see Programming with wxBoxSizer (p. 1639).
Derived from

wxSizer (p. 1131)
wxObject (p. 958)

See also

wxSizer (p. 1131), Sizer overview (p. 1635)

wxBoxSizer::wxBoxSizer

wxBoxSizer(int orient)

Constructor for a wxBoxSizer. orient may be either of wx\VERTICAL or wxHORIZONTAL
for creating either a column sizer or a row sizer.

wxBoxSizer::RecalcSizes

void RecalcSizes()
Implements the calculation of a box sizer's dimensions and then sets the size of its its

children (calling wxWindow::SetSize (p. 1443) if the child is a window). It is used
internally only and must not be called by the user. Documented for information.

wxBoxSizer::CalcMin

wxSize CalcMin()

82

CHAPTER 6

Implements the calculation of a box sizer's minimal. It is used internally only and must
not be called by the user. Documented for information.

wxBoxSizer::GetOrientation

int GetOrientation()

Returns the orientation of the box sizer, either wxVERTICAL or wxHORIZONTAL.

wxBrush

A brush is a drawing tool for filling in areas. It is used for painting the background of
rectangles, ellipses, etc. It has a colour and a style.

Derived from

wxGDIObject (p. 569)
wxObject (p. 958)

Include files
<wx/brush.h>
Predefined objects
Objects:
wxNullBrush
Pointers:

wxBLUE_BRUSH
wxGREEN_BRUSH
wxWHITE_BRUSH
wxBLACK_BRUSH
wxGREY_BRUSH
wxMEDIUM_GREY_BRUSH
wxLIGHT_GREY_BRUSH
wxTRANSPARENT_BRUSH
wxCYAN_BRUSH
wxRED_BRUSH

Remarks

On a monochrome display, wxWindows shows all brushes as white unless the colour is

83

CHAPTER 6

really black.

Do not initialize objects on the stack before the program commences, since other
required structures may not have been set up yet. Instead, define global pointers to
objects and create them in wxApp::Onlnit (p. 28) or when required.

An application may wish to create brushes with different characteristics dynamically, and
there is the consequent danger that a large number of duplicate brushes will be created.
Therefore an application may wish to get a pointer to a brush by using the global list of
brushes wxTheBrushList, and calling the member function FindOrCreateBrush.

wxBrush uses a reference counting system, so assignments between brushes are very
cheap. You can therefore use actual wxBrush objects instead of pointers without
efficiency problems. Once one wxBrush object changes its data it will create its own
brush data internally so that other brushes, which previously shared the data using the
reference counting, are not affected.

See also

wxBrushList (p. 89), wxDC (p. 343), wxDC::SetBrush (p. 360)

wxBrush::wxBrush

wxBrush()

Default constructor. The brush will be uninitialised, and wxBrush::Ok (p. 86) will return
FALSE.

wxBrush(const wxColour& colour, int style)

Constructs a brush from a colour object and style.

wxBrush(const wxString& colourName, int style)

Constructs a brush from a colour name and style.

wxBrush(const wxBitmap& stippleBitmap)

Constructs a stippled brush using a bitmap.

wxBrush(const wxBrush& brush)

Copy constructor. This uses reference counting so is a cheap operation.
Parameters

colour
Colour object.

84

CHAPTER 6

colourName
Colour name. The name will be looked up in the colour database.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.

brush

Pointer or reference to a brush to copy.

stippleBitmap
A bitmap to use for stippling.

Remarks
If a stipple brush is created, the brush style will be set to wxSTIPPLE.
See also

wxBrushList (p. 89), wxColour (p. 145), wxColourDatabase (p. 151)

wxBrush::~wxBrush

void ~wxBrush()
Destructor.
Remarks

The destructor may not delete the underlying brush object of the native windowing
system, since wxBrush uses a reference counting system for efficiency.

Although all remaining brushes are deleted when the application exits, the application
should try to clean up all brushes itself. This is because wxWindows cannot know if a
pointer to the brush object is stored in an application data structure, and there is a risk of
double deletion.

wxBrush::GetColour

85

CHAPTER 6

wxColour& GetColour() const
Returns a reference to the brush colour.
See also

wxBrush::SetColour (p. 87)

wxBrush::GetStipple

wxBitmap * GetStipple() const

Gets a pointer to the stipple bitmap. If the brush does not have a wxSTIPPLE style, this
bitmap may be non-NULL but uninitialised (wxBitmap::Ok (p. 68) returns FALSE).

See also

wxBrush::SetStipple (p. 87)

wxBrush::GetStyle

int GetStyle() const

Returns the brush style, one of:

WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.
wxSTIPPLE Stippled using a bitmap.
wxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.
See also

wxBrush::SetStyle (p. 88), wxBrush::SetColour (p. 87), wxBrush::SetStipple (p. 87)

wxBrush::0k

bool Ok() const

Returns TRUE if the brush is initialised. It will return FALSE if the default constructor has

86

CHAPTER 6

been used (for example, the brush is a member of a class, or NULL has been assigned
to it).

wxBrush::SetColour

void SetColour(wxColour& colour)

Sets the brush colour using a reference to a colour object.

void SetColour(const wxString& colourName)

Sets the brush colour using a colour name from the colour database.

void SetColour(const unsigned char red, const unsigned char green, const
unsigned char blue)

Sets the brush colour using red, green and blue values.
See also

wxBrush::GetColour (p. 85)

wxBrush::SetStipple

void SetStipple(const wxBitmap& bitmap)
Sets the stipple bitmap.
Parameters

bitmap
The bitmap to use for stippling.

Remarks

The style will be set to wxSTIPPLE, unless the bitmap has a mask associated to it, in
which case the style will be set to wxSTIPPLE_MASK_OPAQUE.

If the wxSTIPPLE variant is used, the bitmap will be used to fill out the area to be drawn.
If the wxSTIPPLE_MASK_OPAQUE is used, the current text foreground and text
background determine what colours are used for displaying and the bits in the mask
(which is a mono-bitmap actually) determine where to draw what.

Note that under Windows 95, only 8x8 pixel large stipple bitmaps are supported,
Windows 98 and NT as well as GTK support arbitrary bitmaps.

See also

87

CHAPTER 6

wxBitmap (p. 58)

wxBrush::SetStyle

void SetStyle(int style)

Sets the brush style.

style
One of:
WXTRANSPARENT Transparent (no fill).
wxSOLID Solid.
wxBDIAGONAL_HATCH Backward diagonal hatch.
wxCROSSDIAG_HATCH Cross-diagonal hatch.
wxFDIAGONAL_HATCH Forward diagonal hatch.
wxCROSS_HATCH Cross hatch.
wxHORIZONTAL_HATCH Horizontal hatch.
wxVERTICAL_HATCH Vertical hatch.
wxSTIPPLE Stippled using a bitmap.
wxSTIPPLE_MASK_OPAQUE Stippled using a bitmap's mask.

See also

wxBrush::GetStyle (p. 86)

wxBrush::operator =

wxBrush& operator =(const wxBrush& brush)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxBrush::operator ==

bool operator ==(const wxBrush& brush)
Equality operator. Two brushes are equal if they contain pointers to the same underlying

brush data. It does not compare each attribute, so two independently-created brushes
using the same parameters will fail the test.

wxBrush::operator !=

bool operator !=(const wxBrush& brush)

Inequality operator. Two brushes are not equal if they contain pointers to different

88

CHAPTER 6

underlying brush data. It does not compare each attribute.

wxBrushList

A brush list is a list containing all brushes which have been created.
Derived from

wxList (p. 790)
wxObject (p. 958)

Include files
<wx/gdicmn.h>
Remarks

There is only one instance of this class: wxTheBrushList. Use this object to search for
a previously created brush of the desired type and create it if not already found. In some
windowing systems, the brush may be a scarce resource, so it can pay to reuse old
resources if possible. When an application finishes, all brushes will be deleted and their
resources freed, eliminating the possibility of ‘'memory leaks'. However, it is best not to
rely on this automatic cleanup because it can lead to double deletion in some
circumstances.

There are two mechanisms in recent versions of wxWindows which make the brush list
less useful than it once was. Under Windows, scarce resources are cleaned up internally
if they are not being used. Also, a referencing counting mechanism applied to all GDI
objects means that some sharing of underlying resources is possible. You don't have to
keep track of pointers, working out when it is safe delete a brush, because the
referencing counting does it for you. For example, you can set a brush in a device
context, and then immediately delete the brush you passed, because the brush is
'copied'.

So you may find it easier to ignore the brush list, and instead create and copy brushes
as you see fit. If your Windows resource meter suggests your application is using too
many resources, you can resort to using GDI lists to share objects explicitly.

The only compelling use for the brush list is for wxWindows to keep track of brushes in
order to clean them up on exit. It is also kept for backward compatibility with earlier
versions of wxWindows.

See also

wxBrush (p. 83)

89

CHAPTER 6

wxBrushList::wxBrushList

void wxBrushList()

Constructor. The application should not construct its own brush list: use the object
pointer wxTheBrushlList.

wxBrushList::AddBrush

void AddBrush(wxBrush *brush)

Used internally by wxWindows to add a brush to the list.

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush(const wxColour& colour, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

wxBrush * FindOrCreateBrush(const wxString& colourName, int style)

Finds a brush with the specified attributes and returns it, else creates a new brush, adds
it to the brush list, and returns it.

Finds a brush of the given specification, or creates one and adds it to the list.
Parameters

colour
Colour object.

colourName
Colour name, which should be in the colour database.

style
Brush style. See wxBrush::SetStyle (p. 88) for a list of styles.

wxBrushList::RemoveBrush

void RemoveBrush(wxBrush *brush)

Used by wxWindows to remove a brush from the list.

90

CHAPTER 6

wxBufferedinputStream

This stream acts as a cache. It caches the bytes read from the specified input stream
(See wxFilterinputStream (p. 514)). It uses wxStreamBuffer and sets the default in-buffer
size to 1024 bytes. This class may not be used without some other stream to read the
data from (such as a file stream or a memory stream).

Derived from

wxFilterInputStream (p. 514)

Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1212), wxInputStream (p. 766),wxBufferedOutputStream (p. 91)

wxBufferedOutputStream

This stream acts as a cache. It caches the bytes to be written to the specified output
stream (See wxFilterOutputStream (p. 515)). The data is only written when the cache is
full, when the buffered stream is destroyed or when calling SeekO().

This class may not be used without some other stream to write the data to (such as a file
stream or a memory stream).

Derived from
wxFilterOutputStream (p. 515)
Include files

<wx/stream.h>

See also

wxStreamBuffer (p. 1212), wxOutputStream (p. 963)

wxBufferedOutputStream::wxBufferedOutputStream

91

CHAPTER 6

wxBufferedOutputStream(const wxOutputStream& parent)

Creates a buffered stream using a buffer of a default size of 1024 bytes for cashing the
stream parent.

wxBufferedOutputStream::~wxBufferedOutputStream

~wxBufferedOutputStream()

Destructor. Calls Sync() and destroys the internal buffer.

wxBufferedOutputStream::SeekO

off_t SeekO(off_t pos, wxSeekMode mode)

Calls Sync() and changes the stream position.

wxBufferedOutputStream::Sync

void Sync()

Flushes the buffer and calls Sync() on the parent stream.

wxBusyCursor

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusyCursor object on the stack, and within the current scope, the hourglass
will be shown.

For example:

wxBusyCursor wait;

for (int 1 = 0; 1 < 100000; i++)
DoACalculation () ;

It works by calling wxBeginBusyCursor (p. 1500) in the constructor, and
wxEndBusyCursor (p. 1502) in the destructor.

Derived from
None

Include files

92

CHAPTER 6

<wx/utils.h>

See also

wxBeginBusyCursor (p. 1500), wxEndBusyCursor (p. 1502), wxWindowDisabler (p.
1451)

wxBusyCursor::wxBusyCursor

wxBusyCursor(wxCursor* cursor = wxHOURGLASS_CURSOR)

Constructs a busy cursor object, calling wxBeginBusyCursor (p. 1500).

wxBusyCursor::~wxBusyCursor

~wxBusyCursor()

Destroys the busy cursor object, calling wxEndBusyCursor (p. 1502).

wxBusylnfo

This class makes it easy to tell your user that the program is temporarily busy. Just
create a wxBusylInfo object on the stack, and within the current scope, a message
window will be shown.

For example:

wxBusyInfo wait ("Please wait, working...");

for (int 1 = 0; 1 < 100000; i++)
{

}

DoACalculation () ;

It works by creating a window in the constructor, and deleting it in the destructor.

You may also want to call wxTheApp->Yield() to refresh the window periodically (in case
it had been obscured by other windows, for example) like this:

wxWindowDisabler disableAll;
wxBusyInfo wait ("Please wait, working...");
for (int i = 0; i < 100000; i++)

{
DoACalculation () ;

93

CHAPTER 6

if (!'(1i % 1000))
wxTheApp->Yield() ;
}

but take care to not cause undesirable reentrancies when doing it (see wxApp::Yield()
(p. 32) for more details). The simplest way to do it is to use wxWindowDisabler (p. 1451)
class as illustrated in the above example.

Derived from

None

Include files

<wx/busyinfo.h>

wxBusyinfo::wxBusylnfo

wxBusylnfo(const wxString& msg, wxParent “parent = NULL)
Constructs a busy info window as child of parent and displays msgin it.
NB: If parentis not NULL you must ensure that it is not closed while the busy info is

shown.

wxBusyinfo::~wxBusylnfo

~wxBusylnfo()

Hides and closes the window containing the information text.

wxButton

A button is a control that contains a text string, and is one of the commonest elements of
a GUI. It may be placed on a dialog box (p. 369) or panel (p. 977), or indeed almost any
other window.

Derived from

wxControl (p. 198)
wxWindow (p. 1404)
wxEvtHandler (p. 445)
wxObject (p. 958)

94

CHAPTER 6

Include files
<wx/button.h>

Window styles

wxBU_LEFT Left-justifies the label. WIN32 only.

wxBU_TOP Aligns the label to the top of the button. WIN32 only.
wxBU_RIGHT Right-justifies the bitmap label. WIN32 only.
wxBU_BOTTOM Aligns the label to the bottom of the button. WIN32 only.
wxBU_EXACTFIT Creates the button as small as possible instead of making

it of the standard size (which is the default behaviour).

See also window styles overview (p. 1626).

Event handling

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
event, when the button is clicked.

See also

wxBitmapButton (p. 72)

wxButton::wxButton

wxButton()

Default constructor.

wxButton(wxWindow* parent, wxWindowlID id, const wxString& /abel, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Constructor, creating and showing a button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. A value of -1 indicates a default value.

95

CHAPTER 6

label
Text to be displayed on the button.

pos
Button position.

size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the text.

style
Window style. See wxButton (p. 94).

validator
Window validator.

name
Window name.

See also

wxButton::Create (p. 96), wxValidator (p. 1386)

wxButton::~wxButton

~wxButton()

Destructor, destroying the button.

wxButton::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxString& /abel, const
wxPoint& pos, const wxSize& size = wxDefaultSize, long style = 0, const
wxValidator& validator, const wxString& name = "button")

Button creation function for two-step creation. For more details, see wxButton::wxButton
(p- 95).

wxButton::GetLabel

wxString GetLabel() const
Returns the string label for the button.
Return value

The button's label.

96

CHAPTER 6

See also

wxButton::SetLabel (p. 97)

wxButton::GetDefaultSize

wxSize GetDefaultSize()
Returns the default size for the buttons. It is advised to make all the dialog buttons of the

same size and this function allows to retrieve the (platform and current font dependent
size) which should be the best suited for this.

wxButton::SetDefault

void SetDefault()

This sets the button to be the default item for the panel or dialog box.

Remarks

Under Windows, only dialog box buttons respond to this function. As normal under
Windows and Motif, pressing return causes the default button to be depressed when the
return key is pressed. See also wxWindow::SetFocus (p. 1439) which sets the keyboard
focus for windows and text panel items, and wxPanel::SetDefaultitem (p. 980).

Note that under Motif, calling this function immediately after creation of a button and
before the creation of other buttons will cause misalignment of the row of buttons, since
default buttons are larger. To get around this, call SetDefault after you have created a
row of buttons: wxWindows will then set the size of all buttons currently on the panel to
the same size.

wxButton::SetLabel

void SetLabel(const wxString& /abel)
Sets the string label for the button.
Parameters

label
The label to set.

See also

wxButton::GetLabel (p. 96)

97

CHAPTER 6

wxCalculateLayoutEvent

This event is sent by wxLayoutAlgorithm (p. 785) to calculate the amount of the
remaining client area that the window should occupy.

Derived from

wxEvent (p. 441)
wxObject (p. 958)

Include files

<wx/laywin.h>

Event table macros

EVT_CALCULATE_LAYOUT(func) Process a wxEVT _CALCULATE_LAYOUT
event, which asks the window to take a 'bite’
out of a rectangle provided by the algorithm.

See also

wxQueryLayoutinfoEvent (p. 1044), wxSashLayoutWindow (p. 1087),
wxLayoutAlgorithm (p. 785).

wxCalculateLayoutEvent::wxCalculateLayoutEvent

wxCalculateLayoutEvent(wxWindowlID id = 0)

Constructor.

wxCalculateLayoutEvent::GetFlags

int GetFlags() const

Returns the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::GetRect

wxRect GetRect() const

Before the event handler is entered, returns the remaining parent client area that the

98

CHAPTER 6

window could occupy. When the event handler returns, this should contain the remaining
parent client rectangle, after the event handler has subtracted the area that its window
occupies.

wxCalculateLayoutEvent::SetFlags

void SetFlags(int flags)

Sets the flags associated with this event. Not currently used.

wxCalculateLayoutEvent::SetRect

void SetRect(const wxRect& rect)

Call this to specify the new remaining parent client area, after the space occupied by the
window has been subtracted.

wxCalendarCtrl

The calendar control allows the user to pick a date interactively. For this, it displays a
window containing several parts: the control to pick the month and the year at the top
(either or both of them may be disabled) and a month area below them which shows all
the days in the month. The user can move the current selection using the keyboard and
select the date (generating EVT_CALENDAR event) by pressing <Return> or double
clicking it.

It has advanced possibilities for the customization of its display. All global settings (such
as colours and fonts used) can, of course, be changed. But also, the display style for
each day in the month can be set independently using wxCalendarDateAttr (p. 105)
class.

An item without custom attributes is drawn with the default colours and font and without
border, but setting custom attributes with SetAttr (p. 104) allows to modify its
appearance. Just create a custom attribute object and set it for the day you want to be
displayed specially (note that the control will take ownership of the pointer, i.e. it will
delete it itself). A day may be marked as being a holiday, even if it is not recognized as
one by wxDateTime (p. 1595) using SetHoliday (p. 107) method.

As the attributes are specified for each day, they may change when the month is
changed, so you will often want to update them in EVT_CALENDAR_MONTH event
handler.

Derived from

wxControl (p. 198)

99

CHAPTER 6

wxWindow (p. 1404)

wxEvtHandler (p. 445)

wxObject (p. 958)

Include files

<wx/calctrl.h>

Window styles

wxCAL_SUNDAY_FIRST Show Sunday as the first day in the week
wxCAL_MONDAY_FIRST Show Monday as the first day in the week
wxCAL_SHOW_HOLIDAYS Highlight holidays in the calendar
wxCAL_NO_YEAR_CHANGE Disable the year changing

wxCAL_NO_MONTH_CHANGE Disable the month (and, implicitly, the year)
changing

wxCAL_SHOW_SURROUNDING_WEEKS Show the neighbouring weeks in the
previous and next months

wxCAL_SEQUENTIAL_MONTH_SELECTION Use alternative, more compact, style
for the month and year selection controls.

The default calendar style is wxCAI_SHOW_HOLIDAYS.

Event table macros

To process input from a calendar control, use these event handler macros to direct input
to member functions that take a wxCalendarEvent (p. 108) argument.

EVT_CALENDAR(id, func) A day was double clicked in the calendar.
EVT_CALENDAR_SEL_CHANGED(id, func) The selected date changed.
EVT_CALENDAR_DAY(id, func) The selected day changed.
EVT_CALENDAR_MONTH(id, func) The selected month changed.
EVT_CALENDAR_YEAR(id, func) The selected year changed.
EVT_CALENDAR_WEEKDAY_CLICKED(id, func) User clicked on the week day

header

Note that changing the selected date will result in either of EVT_CALENDAR_DAY, MONTH
or YEAR events and EVT_CALENDAR_SEL_CHANGED one.

100

CHAPTER 6

Constants

The following are the possible return values for HitTest (p. 105) method:

enum wxCalendarHitTestResult

{

wxCAL_HITTEST_ NOWHERE, // outside of anything
wxCAL_HITTEST_HEADER, // on the header (weekdays)
wxCAL_HITTEST_DAY // on a day in the calendar
}
See also

Calendar sample (p. 1574)
wxCalendarDateAttr (p. 105)
wxCalendarEvent (p. 108)

wxCalendarCitrl::wxCalendarCtrl

wxCalendarCitrl()

Default constructor, use Create (p. 101) after it.

wxCalendarCitrl::wxCalendarCtrl

wxCalendarCtrl(wxWindow* parent, wxWindowlID id, const wxDateTime& date =
wxDefaultDate Time, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Does the same as Create (p. 101) method.

wxCalendarCitrl::Create

bool Create(wxWindow* parent, wxWindowID id, const wxDateTime& date =
wxDefaultDate Time, const wxPoint& pos = wxDefaultPosition, const wxSize& size =
wxDefaultSize, long style = wxCAL_SHOW_HOLIDAYS, const wxString& name =
wxCalendarNameStr)

Creates the control. See wxWindow (p. 1405) for the meaning of the parameters and the
control overview for the possible styles.

101

CHAPTER 6

wxCalendarCtrl::~wxCalendarCtrl

~wxCalendarCtrl()

Destroys the control.

wxCalendarCtrl::SetDate

void SetDate(const wxDateTime& date)

Sets the current date.

wxCalendarCtrl::GetDate

const wxDateTime& GetDate() const

Gets the currently selected date.

wxCalendarCtrl::EnableYearChange

void EnableYearChange(bool enable = TRUE)

This function should be used instead of changing wxCAL_NO_YEAR_ CHANGEstyle bit
directly. It allows or disallows the user to change the year interactively.

wxCalendarCtrl::EnableMonthChange

void EnableMonthChange(bool enable = TRUE)
This function should be used instead of changing wxCAT_NO_MONTH_CHANGE style bit.

It allows or disallows the user to change the month interactively. Note that if the month
can not be changed, the year can not be changed neither.

wxCalendarCtrl::EnableHolidayDisplay

void EnableHolidayDisplay(bool display = TRUE)

This function should be used instead of changing wxCAL_SHOW_HOLIDAYSstyle bit
directly. It enables or disables the special highlighting of the holidays.

wxCalendarCirl::SetHeaderColours

void SetHeaderColours(const wxColour& colFg, const wxColour& colBg)

102

CHAPTER 6

Set the colours used for painting the weekdays at the top of the control.

wxCalendarCtrl::GetHeaderColourFg

const wxColour& GetHeaderColourFg() const
Gets the foreground colour of the header part of the calendar window.
See also

SetHeaderColours (p. 102)

wxCalendarCtrl::GetHeaderColourBg

const wxColour& GetHeaderColourBg() const
Gets the background colour of the header part of the calendar window.
See also

SetHeaderColours (p. 102)

wxCalendarCitrl::SetHighlightColours

void SetHighlightColours(const wxColour& colFg, const wxColour& colBg)

Set the colours to be used for highlighting the currently selected date.

wxCalendarCtrl::GetHighlightColourFg

const wxColour& GetHighlightColourFg() const
Gets the foreground highlight colour.
See also

SetHighlightColours (p. 103)

wxCalendarCtrl::GetHighlightColourBg

const wxColour& GetHighlightColourBg() const

Gets the background highlight colour.

103

CHAPTER 6

See also

SetHighlightColours (p. 103)

wxCalendarCtrl::SetHolidayColours

void SetHolidayColours(const wxColour& colfg, const wxColour& colBg)

Sets the colours to be used for the holidays highlighting (only used if the window style
includes wxCAL_SHOW_HOLIDAYS flag).

wxCalendarCtrl::GetHolidayColourFg

const wxColour& GetHolidayColourFg() const

Return the foreground colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 104)

wxCalendarCtrl::GetHolidayColourBg

const wxColour& GetHolidayColourBg() const

Return the background colour currently used for holiday highlighting.

See also

SetHolidayColours (p. 104)

wxCalendarCtrl::GetAttr

wxCalendarDateAttr * GetAttr(size_t day) const
Returns the attribute for the given date (should be in the range 1...31).

The returned pointer may be NULL.

wxCalendarCtrl::SetAttr

void SetAttr(size_t day, wxCalendarDateAttr* attr)

Associates the attribute with the specified date (in the range 1...31).

104

CHAPTER 6

If the pointer is NULL, the items attribute is cleared.

wxCalendarCtrl::SetHoliday

void SetHoliday(size_t day)

Marks the specified day as being a holiday in the current month.

wxCalendarCtrl::ResetAttr

void ResetAttr(size_t day)

Clears any attributes associated with the given day (in the range1...31).

wxCalendarCtrl::HitTest

wxCalendarHitTestResult HitTest(const wxPoint& pos, wxDateTime* date = NULL,
wxDateTime::WeekDay* wd = NULL)

Returns one of wxCAIL_HITTEST_XXX constants (p. 99) and fills either date or wd
pointer with the corresponding value depending on the hit test code.

wxCalendarDateAttr

wxCalendarDateAttr is a custom attributes for a calendar date. The objects of this class
are used with wxCalendarCtrl (p. 99).

Derived from
No base class
Constants

Here are the possible kinds of borders which may be used to decorate a date:

enum wxCalendarDateBorder

{

wxCAL_BORDER_NONE, // no border (default)
wxCAL_BORDER_SQUARE, // a rectangular border
wxCAL_BORDER_ROUND // a round border

}

See also

wxCalendarCtrl (p. 99)

105

CHAPTER 6

wxCalendarDateAttr::wxCalendarDateAttr

wxCalendarDateAttr()

wxCalendarDateAttr(const wxColour& colText, const wxColour& colBack =
wxNullColour, const wxColour& colBorder = wxNullColour, const wxFont& font =
wxNullFont, wxCalendarDateBorder border = wxCAL_BORDER NONE)

wxCalendarDateAttr(wxCalendarDateBorder border, const wxColour& colBorder =
wxNullColour)

The constructors.

wxCalendarDateAttr::SetTextColour

void SetTextColour(const wxColour& col/Text)

Sets the text (foreground) colour to use.

wxCalendarDateAttr::SetBackgroundColour

void SetBackgroundColour(const wxColour& colBack)

Sets the text background colour to use.

wxCalendarDateAttr::SetBorderColour

void SetBorderColour(const wxColour& col)

Sets the border colour to use.

wxCalendarDateAttr::SetFont

void SetFont(const wxFont& font)

Sets the font to use.

wxCalendarDateAttr::SetBorder

void SetBorder(wxCalendarDateBorder border)

106

CHAPTER 6

Sets the border kind (p. 105)

wxCalendarDateAttr::SetHoliday

void SetHoliday(bool holiday)

Display the date with this attribute as a holiday.

wxCalendarDateAttr::HasTextColour

bool HasTextColour() const

Returns TRUE if this item has a non default text foreground colour.

wxCalendarDateAttr::HasBackgroundColour

bool HasBackgroundColour() const

Returns TRUE if this attribute specifies a non default text background colour.

wxCalendarDateAttr::HasBorderColour

bool HasBorderColour() const

Returns TRUE if this attribute specifies a non default border colour.

wxCalendarDateAttr::HasFont

bool HasFont() const

Returns TRUE if this attribute specifies a non default font.

wxCalendarDateAttr::HasBorder

bool HasBorder() const

Returns TRUE if this attribute specifies a non default (i.e. any) border.

wxCalendarDateAttr::IsHoliday

bool IsHoliday() const

107

CHAPTER 6

Returns TRUE if this attribute specifies that this item should be displayed as a holiday.

wxCalendarDateAttr::GetTextColour

const wxColour& GetTextColour() const

Returns the text colour to use for the item with this attribute.

wxCalendarDateAttr::GetBackgroundColour

const wxColour& GetBackgroundColour() const

Returns the background colour to use for the item with this attribute.

wxCalendarDateAttr::GetBorderColour

const wxColour& GetBorderColour() const

Returns the border colour to use for the item with this attribute.

wxCalendarDateAttr::GetFont

const wxFont& GetFont() const

Returns the font to use for the item with this attribute.

wxCalendarDateAttr::GetBorder

wxCalendarDateBorder GetBorder() const

Returns the border (p. 105) to use for the item with this attribute.

wxCalendarEvent

The wxCalendarEvent class is used together with wxCalendarCtrl (p. 99).
See also

wxCalendarCitrl (p. 99)

108

CHAPTER 6

wxCalendarEvent::GetDate

wxcalendareventgetdate
const wxDateTime& GetDate() const
Returns the date. This function may be called for all event types except

EVT_CALENDAR_WEEKDAY CLICKED one for which it doesn't make sense.

wxCalendarEvent::GetWeekDay

wxcalendareventgetweekday
wxDateTime::WeekDay GetWeekDay() const

Returns the week day on which the user clicked in EVT_CALENDAR_WEEKDAY_CLICKED
handler. It doesn't make sense to call this function in other handlers.

wxCaret

A caret is a blinking cursor showing the position where the typed text will appear. The
text controls usually have a caret but wxCaret class also allows to use a caret in other
windows.

Currently, the caret appears as a rectangle of the given size. In the future, it will be
possible to specify a bitmap to be used for the caret shape.

A caret is always associated with a window and the current caret can be retrieved using
wxWindow::GetCaret (p. 1416). The same caret can't be reused in two different
windows.

Derived from

No base class

Include files

<wx/caret.h>

Data structures

109

CHAPTER 6

wxCaret::wxCaret

wxCaret()

Default constructor: you must use one of Create() functions later.
wxCaret(wxWindow* window, int width, int height)

wxCaret(wxWindowBase* window, const wxSize& size)

Create the caret of given (in pixels) width and height and associates it with the given

window.

wxCaret::Create

bool Create(wxWindowBase* window, int width, int height)
bool Create(wxWindowBase* window, const wxSize& size)
Create the caret of given (in pixels) width and height and associates it with the given

window (same as constructor).

wxCaret::GetBlinkTime

static int GetBlinkTime()
Returns the blink time which is measured in milliseconds and is the time elapsed

between 2 inversions of the caret (blink time of the caret is the same for all carets, so
this functions is static).

wxCaret::GetPosition

void GetPosition(int* x, int* y) const

wxPoint GetPosition() const

Get the caret position (in pixels).

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:
GetPosition() Returns a Wx::Point

GetPositionXY() Returns a 2-element list (x, vy)

110

CHAPTER 6

wxCaret::GetSize

void GetSize(int* width, int* height) const
wxSize GetSize() const
Get the caret size.

wxPerl note: In wxPerl there are two methods instead of a single overloaded method:

GetSize() Returns a Wx::Size
GetSizeWH() Returns a 2-element list (width,
height)

wxCaret::GetWindow

wxWindow* GetWindow() const

Get the window the caret is associated with.

wxCaret::Hide

void Hide()

Same as wxCaret::Show(FALSE) (p. 112).

wxCaret::IsOk

bool IsOk() const

Returns TRUE if the caret was created successfully.

wxCaret::IsVisible

bool IsVisible() const
Returns TRUE if the caret is visible and FALSE if it is permanently hidden (if it is is

blinking and not shown currently but will be after the next blink, this method still returns
TRUE).

wxCaret::Move

void Move(int x, int y)

111

CHAPTER 6

void Move(const wxPoint& pi)

Move the caret to given position (in logical coordinates).

wxCaret::SetBlinkTime

static void SetBlinkTime(int milliseconds)
Sets the blink time for all the carets.
Remarks

Under Windows, this function will change the blink time for all carets permanently (until
the next time it is called), even for the carets in other applications.

See also

GetBlinkTime (p. 110)

wxCaret::SetSize

void SetSize(int width, int height)
void SetSize(const wxSize& size)

Changes the size of the caret.

wxCaret::Show

void Show(bool show = TRUE)

Shows or hides the caret. Notice that if the caret was hidden N times, it must be shown
N times as well to reappear on the screen.

wxCheckBox

A checkbox is a labelled box which is either on (checkmark is visible) or off (no
checkmark).

Derived from

wxControl (p. 198)
wxWindow (p. 1404)

112

CHAPTER 6

wxEvtHandler (p. 445)
wxObject (p. 958)

Include files

<wx/checkbox.h>

Window styles

There are no special styles for wxCheckBox.

See also window styles overview (p. 1626).

Event handling

EVT_CHECKBOX(id, func) Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
event, when the checkbox is clicked.

See also

wxRadioButton (p. 1053), wxCommandEvent (p. 164)

wxCheckBox::wxCheckBox

wxCheckBox()

Default constructor.

wxCheckBox(wxWindow* parent, wxWindowlID id, const wxString& /abel, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Constructor, creating and showing a checkbox.

Parameters

parent
Parent window. Must not be NULL.

id
Checkbox identifier. A value of -1 indicates a default value.

label
Text to be displayed next to the checkbox.

pos

113

CHAPTER 6

Checkbox position. If the position (-1, -1) is specified then a default position is
chosen.

size
Checkbox size. If the default size (-1, -1) is specified then a default size is chosen.

style
Window style. See wxCheckBox (p. 112).

validator
Window validator.

name
Window name.

See also

wxCheckBox::Create (p. 114), wxValidator (p. 1386)

wxCheckBox::~wxCheckBox

~wxCheckBox()

Destructor, destroying the checkbox.

wxCheckBox::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxString& /abel, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
0, const wxValidator& val, const wxString& name = "checkBox")

Creates the checkbox for two-step construction. See wxCheckBox::wxCheckBox (p.
113) for details.

wxCheckBox::GetValue

bool GetValue() const
Gets the state of the checkbox.
Return value

Returns TRUE if it is checked, FALSE otherwise.

wxCheckBox::IsChecked

114

CHAPTER 6

bool IsChecked() const

This is just a maybe more readable synonym for GetValue (p. 114): just as the latter, it
returns TRUE if the checkbox is checked and FALSE otherwise.

wxCheckBox::SetValue

void SetValue(const bool state)

Sets the checkbox to the given state. This does not cause a
wxEVT_COMMAND_CHECKBOX_CLICKED event to get emitted.

Parameters

state
If TRUE, the check is on, otherwise it is off.

wxCheckListBox

A checklistbox is like a listbox, but allows items to be checked or unchecked.

This class is currently implemented under Windows and GTK. When using this class
under Windows wxWindows must be compiled with USE_OWNER_DRAWN set to 1.

Only the new functions for this class are documented; see also wxListBox (p. 797).
Derived from
wxListBox (p. 797)
wxControl (p. 198)
wxWindow (p. 1404)
wxEvtHandler (p. 445)
wxObject (p. 958)
Include files
<wx/checklst.h>
Window styles

See wxListBox (p. 797).
Event handling

EVT_CHECKLISTBOX(id, func) Process a
wxEVT_COMMAND_CHECKLISTBOX_TOGG

115

CHAPTER 6

LE event, when an item in the check list box is
checked or unchecked.

See also

wxListBox (p. 797), wxChoice (p. 117), wxComboBox (p. 154), wxListCtrl (p. 806),
wxCommandEvent (p. 164)

wxCheckListBox::wxCheckListBox

wxCheckListBox()

Default constructor.

wxCheckListBox(wxWindow* parent, wxWindowID id, const wxPoint& pos =
wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const wxString
choices[] = NULL, long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "listBox")

Constructor, creating and showing a list box.

Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices
An array of strings with which to initialise the control.
style
Window style. See wxCheckListBox (p. 115).
validator

Window validator.

116

CHAPTER 6

name
Window name.

wxPython note: The wxCheckListBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxCheckListBox::~wxCheckListBox

void ~wxCheckListBox()

Destructor, destroying the list box.

wxCheckListBox::Check

void Check(int item, bool check = TRUE)

Checks the given item. Note that calling this method doesn't result in
wxEVT_COMMAND_CHECKLISTBOX_TOGGLE being emitted.

Parameters

item
Index of item to check.

check
TRUE if the item is to be checked, FALSE otherwise.

wxCheckListBox::IsChecked

bool IsChecked(int item) const
Returns TRUE if the given item is checked, FALSE otherwise.
Parameters

item
Index of item whose check status is to be returned.

wxChoice

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection

117

CHAPTER 6

is visible until the user pulls down the menu of choices.

Derived from

wxControl (p. 198)

wxWindow (p. 1404)

wxEvtHandler (p. 445)

wxObject (p. 958)

Include files

<wx/choice.h>

Window styles

There are no special styles for wxChoice.

See also window styles overview (p. 1626).

Event handling

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
event, when an item on the list is selected.

See also

wxListBox (p. 797), wxComboBox (p. 154), wxCommandEvent (p. 164)

wxChoice::wxChoice

wxChoice()

Default constructor.

wxChoice(wxWindow *parent, wxWindowlID id, const wxPoint& pos, const wxSize&
size, int n, const wxString choices/], long style = 0, const wxValidator& validator =
wxDefaultValidator, const wxString& name = "choice")

Constructor, creating and showing a choice.

Parameters

parent
Parent window. Must not be NULL.

id

118

CHAPTER 6

Window identifier. A value of -1 indicates a default value.

pos
Window position.

size
Window size. If the default size (-1, -1) is specified then the choice is sized
appropriately.
Number of strings with which to initialise the choice control.

choices
An array of strings with which to initialise the choice control.

style
Window style. See wxChoice (p. 117).

validator
Window validator.

name
Window name.

See also
wxChoice::Create (p. 120), wxValidator (p. 1386)

wxPython note: The wxChoice constructor in wxPython reduces the nand choices
arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxChoice::~wxChoice

~wxChoice()

Destructor, destroying the choice item.

wxChoice::Append

void Append(const wxString& item)
Adds the item to the end of the choice control.
void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.

119

CHAPTER 6

Parameters

item
String to add.

clientData
Client data to associate with the item.

wxChoice::Clear

void Clear()

Clears the strings from the choice item.

wxChoice::Create

bool Create(wxWindow *parent, wxWindowlID id, const wxPoint& pos, const
wxSize& size, int n, const wxString choices[], long style = 0, const wxString& name
= "choice")

Creates the choice for two-step construction. See wxChoice::wxChoice (p. 118).

wxChoice::Delete

void Delete(int n)

Deletes the item with the given index from the control.
Parameters

n

The item to delete.

wxChoice::FindString

int FindString(const wxString& string) const
Finds a choice matching the given string.
Parameters

string
String to find.

Return value

120

CHAPTER 6

Returns the position if found, or -1 if not found.

wxChoice::GetColumns

int GetColumns() const
Gets the number of columns in this choice item.
Remarks

This is implemented for Motif only.

wxChoice::GetClientData

void* GetClientData(int n) const

Returns a pointer to the client data associated with the given item (if any).

Parameters

n
An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxChoice::GetCount

int GetCount() const

Returns the number of items in the choice.

wxChoice::GetSelection

int GetSelection() const

Gets the id (position) of the selected string, or -1 if there is no selection.

wxChoice::GetString

wxString GetString(int n) const

Returns the string at the given position.

121

CHAPTER 6

Parameters

n
The zero-based position.

Return value

The string at the given position, or the empty string if nis invalid.

wxChoice::GetStringSelection

wxString GetStringSelection() const

Gets the selected string, or the empty string if no string is selected.

wxChoice::Number

int Number() const
Obsolescence note: This method is obsolete and was replaced with GetCount (p. 121),
please use the new method in the new code. This method is only available if wxWindows

was compiled with WXWIN_COMPATIBILITY_2_2 defined and will disappear completely
in future versions.

Returns the number of strings in the choice control.

wxChoice::SetClientData

void SetClientData(int n, void* data)
Associates the given client data pointer with the given item.
Parameters

n
The zero-based item.

data
The client data.

wxChoice::SetColumns

void SetColumns(int n = 1)

Sets the number of columns in this choice item.

122

CHAPTER 6

Parameters

n
Number of columns.

Remarks

This is implemented for Motif only.

wxChoice::SetSelection

void SetSelection(int n)

Sets the choice by passing the desired string position. This does not cause a
wxEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

n
The string position to select, starting from zero.

See also

wxChoice::SetString

void SetString(int n, const wxString& texi)
Replaces the specified string in the control with another one.
Parameters

n
The zero-based index of the string to replace

text
The new value for this item

NB: This method is currently not implemented in wxGTK.

wxChoice::SetStringSelection (p. 123)

wxChoice::SetStringSelection

void SetStringSelection(const wxString& string)

Sets the choice by passing the desired string. This does not cause a

123

CHAPTER 6

wxEVT_COMMAND_CHOICE_SELECTED event to get emitted.

Parameters

string
The string to select.

See also

wxChoice::SetSelection (p. 123)

wxClassinfo

This class stores meta-information about classes. Instances of this class are not
generally defined directly by an application, but indirectly through use of macros such as
DECLARE_DYNAMIC CLASS and IMPLEMENT _DYNAMIC_ CLASS.

Derived from

No parent class.

Include files

<wx/object.h>

See also

Overview (p. 1585), wxObject (p. 958)

wxClassiInfo::wxClassiInfo

wxClassinfo(char* className, char* baseClass1, char* baseClass2, int size,
wxObjectConstructorFn fn)

Constructs a wxClassInfo object. The supplied macros implicitly construct objects of this
class, so there is no need to create such objects explicitly in an application.

wxClassinfo::CreateObject

wxObject* CreateObiject|()

Creates an object of the appropriate kind. Returns NULL if the class has not been
declared dynamically creatable (typically, it is an abstract class).

124

CHAPTER 6

wxClassiInfo::FindClass

static wxClassinfo * FindClass(char* name)

Finds the wxClassInfo object for a class of the given string name.

wxClassinfo::GetBaseClassName1i

char* GetBaseClassName1() const

Returns the name of the first base class (NULL if none).

wxClassinfo::GetBaseClassName2

char* GetBaseClassName2() const

Returns the name of the second base class (NULL if none).

wxClassinfo::GetClassName

char * GetClassName() const

Returns the string form of the class name.

wxClassinfo::GetSize

int GetSize() const

Returns the size of the class.

wxClassiInfo::InitializeClasses

static void InitializeClasses|()

Initializes pointers in the wxClassInfo objects for fast execution of IsKindOf. Called in

base wxWindows library initialization.

wxClassinfo::IsKindOf

bool IsKindOf(wxClassInfo* info)

125

CHAPTER 6

Returns TRUE if this class is a kind of (inherits from) the given class.

wxClient

A wxClient object represents the client part of a client-server DDE-like (Dynamic Data
Exchange) conversation. The actual DDE-based implementation using wxDDEClient is
available on Windows only, but a platform-independent, socket-based version of this API
is available using wxTCPClient, which has the same API.

To create a client which can communicate with a suitable server, you need to derive a
class from wxConnection and another from wxClient. The custom wxConnection class
will intercept communications in a 'conversation' with a server, and the custom wxClient
is required so that a user-overriddenwxClient::OnMakeConnection (p. 127) member can
return a wxConnection of the required class, when a connection is made. Look at the
IPC sample and the Interprocess communications overview (p. 1715) for an example of
how to do this.

Derived from

wxClientBase
wxObject (p. 958)

Include files
<wx/ipc.h>
See also

wxServer (p. 1123), wxConnection (p. 191), Interprocess communications overview (p.
1715)

wxClient::wxClient

wxClient()

Constructs a client object.

wxClient::MakeConnection

wxConnectionBase * MakeConnection(const wxString& host, const wxString&
service, const wxString& fopic)

Tries to make a connection with a server by host (machine name under UNIX - use

126

CHAPTER 6

'localhost' for same machine; ignored when using native DDE in Windows), service
name and topic string. If the server allows a connection, a wxConnection object will be
returned. The type of wxConnection returned can be altered by overriding the
wxClient::OnMakeConnection (p. 127) member to return your own derived connection
object.

Under Unix, the service name may be either an integer port identifier in which case an
Internet domain socket will be used for the communications, or a valid file name (which
shouldn't exist and will be deleted afterwards) in which case a Unix domain socket is
created.

SECURITY NOTE: Using Internet domain sockets if extremely insecure for IPC as there
is absolutely no access control for them, use Unix domain sockets whenever possible!

wxClient::OnMakeConnection

wxConnectionBase * OnMakeConnection()

Called by wxClient::MakeConnection (p. 126), by default this simply returns a new
wxConnection object. Override this method to return a wxConnection descendant
customised for the application.

The advantage of deriving your own connection class is that it will enable you to

intercept messages initiated by the server, such as wxConnection::OnAdvise (p. 193).
You may also want to store application-specific data in instances of the new class.

wxClient::ValidHost

bool ValidHost(const wxString& host)

Returns TRUE if this is a valid host name, FALSE otherwise. This always returns TRUE
under MS Windows.

wxClientDC

A wxClientDC must be constructed if an application wishes to paint on the client area of
a window from outside an OnPaint event. This should normally be constructed as a
temporary stack object; don't store a wxClientDC object.

To draw on a window from within OnPaint, construct a wxPaintDC (p. 971) object.

To draw on the whole window including decorations, construct a wxWindowDC (p. 1450)
object (Windows only).

Derived from

127

CHAPTER 6

wxWindowDC (p. 1450)
wxDC (p. 343)

Include files
<wx/dcclient.h>
See also

wxDC (p. 343), wxMemoryDC (p. 884), wxPaintDC (p. 971), wxWindowDC (p. 1450),
wxScreenDC (p. 1095)

wxClientDC::wxClientDC

wxClientDC(wxWindow* window)

Constructor. Pass a pointer to the window on which you wish to paint.

wxClientData

All classes deriving from wxEvtHandler (p. 445)(such as all controls and wxApp (p. 21))
can hold arbitrary data which is here referred to as "client data". This is useful e.g. for
scripting languages which need to handle shadow objects for most of wxWindows'
classes and which store a handle to such a shadow class as client data in that class.
This data can either be of type void - in which case the datacontainer does not take care
of freeing the data again or it is of type wxClientData or its derivates. In that case the
container (e.g. a control) will free the memory itself later. Note that you must not assign
both void data and data derived from the wxClientData class to a container.

Some controls can hold various items and these controls can additionally hold client data
for each item. This is the case forwxChoice (p. 117), wxComboBox (p. 154)and
wxListBox (p. 797). wxTreeCtrl (p. 1349)has a specialized class wxTreeltemData (p.
1371)for each item in the tree.

If you want to add client data to your own classes, you may use the mix-in class
wxClientDataContainer (p. 129).

Include files
<wx/cIntdata.h>

See also

128

CHAPTER 6

wxEvtHandler (p. 445), wxTreeltemData (p. 1371),wxStringClientData (p. 1243),
wxClientDataContainer (p. 129)

wxClientData::wxClientData

wxClientData()

Constructor.

wxClientData::~wxClientData

~wxClientData()

Virtual destructor.

wxClientDataContainer

This class is a mixin that provides storage and management of "client data." This data
can either be of type void - in which case the datacontainer does not take care of freeing
the data again or it is of type wxClientData or its derivates. In that case the container will
free the memory itself later. Note that you must not assign both void data and data
derived from the wxClientData class to a container.

NOTE: This functionality is currently duplicated in wxEvtHandler in order to avoid having
more than one vtable in that class heirachy.

See also

wxEvtHandler (p. 445), wxClientData (p. 128)
Derived from

No base class

Include files

<clntdata.h>

Data structures

129

CHAPTER 6

wxClientDataContainer::wxClientDataContainer

wxClientDataContainer()

wxClientDataContainer::~wxClientDataContainer

~wxClientDataContainer()

wxClientDataContainer::GetClientData

void* GetClientData() const

Get the untyped client data.

wxClientDataContainer::GetClientObject

wxClientData* GetClientObject() const

Get a pointer to the client data object.

wxClientDataContainer::SetClientData

void SetClientData(void* data)

Set the untyped client data.

wxClientDataContainer::SetClientObject

void SetClientObject(wxClientData* data)

Set the client data object. Any previous object will be deleted.

wxClipboard

A class for manipulating the clipboard. Note that this is not compatible with the clipboard
class from wxWindows 1.xx, which has the same name but a different implementation.

To use the clipboard, you call member functions of the global wxTheClipboard object.

See also the wxDataObject overview (p. 1690) for further information.

130

CHAPTER 6

Call wxClipboard::Open (p. 133) to get ownership of the clipboard. If this operation
returns TRUE, you now own the clipboard. Call wxClipboard::SetData (p. 133) to put
data on the clipboard, or wxClipboard::GetData (p. 132) to retrieve data from the
clipboard. Call wxClipboard::Close (p. 132) to close the clipboard and relinquish
ownership. You should keep the clipboard open only momentarily.

For example:

// Write some text to the clipboard
if (wxTheClipboard->Open())

{
// This data objects are held by the clipboard,

// so do not delete them in the app.
wxTheClipboard->SetData (new wxTextDataObject ("Some text"));
wxTheClipboard->Close () ;

}

// Read some text
if (wxTheClipboard->Open())

{
if (wxTheClipboard->IsSupported(wxDF_TEXT))

{
wxTextDataObject data;
wxTheClipboard->GetData (data);
wxMessageBox (data.GetText ());

}
wxTheClipboard->Close () ;

}

Derived from
wxObject (p. 958)
Include files
<wx/clipbrd.h>
See also

Drag and drop overview (p. 1688), wxDataObject (p. 222)

wxClipboard::wxClipboard

wxClipboard()

Constructor.

wxClipboard::~wxClipboard

~wxClipboard()

131

CHAPTER 6

Destructor.

wxClipboard::AddData

bool AddData(wxDataObject* data)

Call this function to add the data object to the clipboard. You may call this function
repeatedly after having cleared the clipboard using wxClipboard::Clear (p. 132).

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::SetData (p. 133)

wxClipboard::Clear

void Clear()

Clears the global clipboard object and the system's clipboard if possible.

wxClipboard::Close

bool Close()

Call this function to close the clipboard, having opened it with wxClipboard::Open (p.
133).

wxClipboard::Flush

bool Flush()

Flushes the clipboard: this means that the data which is currently on clipboard will stay
available even after the application exits (possibly eating memory), otherwise the
clipboard will be emptied on exit. Returns FALSE if the operation is unsuccesful for any
reason.

wxClipboard::GetData

bool GetData(wxDataObject& data)

Call this function to fill data with data on the clipboard, if available in the required format.
Returns TRUE on success.

132

CHAPTER 6

wxClipboard::IsOpened

bool IsOpened() const

Returns TRUE if the clipboard has been opened.

wxClipboard::IsSupported

bool IsSupported(const wxDataFormat& format)

Returns TRUE if the format of the given data object is available on the clipboard.

wxClipboard::Open

bool Open()

Call this function to open the clipboard before calling wxClipboard::SetData (p. 133) and
wxClipboard::GetData (p. 132).

Call wxClipboard::Close (p. 132) when you have finished with the clipboard. You should
keep the clipboard open for only a very short time.

Returns TRUE on success. This should be tested (as in the sample shown above).

wxClipboard::SetData

bool SetData(wxDataObject* data)

Call this function to set the data object to the clipboard. This function will clear all
previous contents in the clipboard, so calling it several times does not make any sense.

After this function has been called, the clipboard owns the data, so do not delete the
data explicitly.

See also

wxClipboard::AddData (p. 132)

wxClipboard::UsePrimarySelection

void UsePrimarySelection(bool primary = TRUE)

On platforms supporting it (currently only GTK), selects the so called PRIMARY
SELECTION as the clipboard as opposed to the normal clipboard, if primary is TRUE.

133

CHAPTER 6

wxCloseEvent

This event class contains information about window and session close events.

The handler function for EVT_CLOSE is called when the user has tried to close a a
frame or dialog box using the window manager (X) or system menu (Windows). It is
called via the wxWindow::Close (p. 1409) function, so that the application can also
invoke the handler programmatically.

You should check whether the application is forcing the deletion of the window using
wxCloseEvent::CanVeto (p. 135). If this is FALSE, you must destroy the window using
wxWindow::Destroy (p. 1412). If the return value is TRUE, it is up to you whether you
respond by destroying the window.

If you don't destroy the window, you should call wxCloseEvent::Veto (p. 136) to let the
calling code know that you did not destroy the window. This allows the wxWindow::Close
(p. 1409) function to return TRUE or FALSE depending on whether the close instruction
was honoured or not.

Derived from
wxEvent (p. 441)
Include files
<wx/event.h>

Event table macros

To process a close event, use these event handler macros to direct input to member
functions that take a wxCloseEvent argument.

EVT_CLOSE(func) Process a close event, supplying the member
function. This event applies to wxFrame and
wxDialog classes.

EVT_QUERY_END_SESSION(func) Process a query end session event, supplying
the member function. This event applies to
wxApp only.

EVT_END_SESSION(func) Process an end session event, supplying the
member function. This event applies to wxApp
only.

See also

wxWindow::Close (p. 1409), wxApp::OnQueryEndSession (p. 28), Window deletion

134

CHAPTER 6

overview (p. 1626)

wxCloseEvent::wxCloseEvent

wxCloseEvent(WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCloseEvent::CanVeto

bool CanVeto()
Returns TRUE if you can veto a system shutdown or a window close event. Vetoing a

window close event is not possible if the calling code wishes to force the application to
exit, and so this function must be called to check this.

wxCloseEvent::GetLoggingOff

bool GetLoggingOff() const

Returns TRUE if the user is logging off.

wxCloseEvent::GetSessionEnding

bool GetSessionEnding() const

Returns TRUE if the session is ending.

wxCloseEvent::GetForce

bool GetForce() const

Returns TRUE if the application wishes to force the window to close. This will shortly be
obsolete, replaced by CanVeto.

wxCloseEvent::SetCanVeto

void SetCanVeto(bool canVeto)

Sets the 'can veto' flag.

135

CHAPTER 6

wxCloseEvent::SetForce

void SetForce(bool force) const

Sets the 'force' flag.

wxCloseEvent::SetLoggingOff

void SetLoggingOff(bool loggingOff) const

Sets the 'logging off' flag.

wxCloseEvent::Veto

void Veto(bool veto = TRUE)

Call this from your event handler to veto a system shutdown or to signal to the calling
application that a window close did not happen.

You can only veto a shutdown if wxCloseEvent::CanVeto (p. 135) returns TRUE.

wxCmdLineParser

wxCmdLineParser is a class for parsing command line.
It has the following features:

distinguishes options, switches and parameters; allows option grouping

allows both short and long options

automatically generates the usage message from the command line description
does type checks on the options values (number, date, ...).

el

To use it you should follow these steps:

1. construct (p. 138) an object of this class giving it the command line to parse and
optionally its description or use Addxxx () functions later

2. callrarse()

3. use Found () to retrieve the results

In the documentation below the following terminology is used:
switch This is a boolean option which can be given or

not, but which doesn't have any value. We use
the word switch to distinguish such boolean

136

CHAPTER 6

options from more generic options like those
described below. For example, —v might be a
switch meaning "enable verbose mode".
option Option for us here is something which comes
with a value 0 unlike a switch. For example, -
o:filename might be an option which allows
to specify the name of the output file.
parameter This is a required program argument.

Derived from
No base class
Include files
<wx/cmdline.h>
Constants

The structure wxCmdLineEntryDesc is used to describe the one command line switch,
option or parameter. An array of such structures should be passed to SetDesc() (p. 143).
Also, the meanings of parameters of the Addxxx () functions are the same as of the
corresponding fields in this structure:

struct wxCmdLineEntryDesc

{
wxCmdLineEntryType kind;
const wxChar *shortName;
const wxChar *longName;
const wxChar *description;
wxCmdLineParamType type;
int flags;

}i

The type of a command line entity is in the kind field and may be one of the following
constants:

enum wxCmdLineEntryType
{
wxCMD_LINE_SWITCH,
wxCMD_LINE_OPTION,
wxCMD_LINE_PARAM,
wxCMD_LINE_NONE // use this to terminate the list

The field shortName is the usual, short, name of the switch or the option.1ongName is
the corresponding long name or NULL if the option has no long name. Both of these
fields are unused for the parameters. Both the short and long option names can contain
only letters, digits and the underscores.

137

CHAPTER 6

description is used by the Usage() (p. 144) method to construct a help message
explaining the syntax of the program.

The possible values of type which specifies the type of the value accepted by an option
or parameter are:

enum wxCmdLineParamType

{
wxCMD_LINE_VAL_STRING, // default
wxCMD_LINE_VAL_NUMBER,
wxCMD_LINE_VAL_DATE,
wxCMD_LINE_VAL_NONE

Finally, the f1ags field is a combination of the following bit masks:

enum
{
wxCMD_LINE_OPTION_MANDATORY
wxCMD_LINE_PARAM OPTIONAL
wxCMD_LINE_PARAM MULTIPLE
wxCMD_LINE_OPTION_HELP
wxCMD_LINE_NEEDS_SEPARATOR
value

}

0x01, // this option must be given
0x02, // the parameter may be omitted
0x04, // the parameter may be repeated
0x08, // this option is a help request
0x10, // must have sep before the

Notice that by default (i.e. if flags are just 0), options are optional (sic) and each call to
AddParam() (p. 144) allows one more parameter - this may be changed by giving non-
default flags to it, i.e. use wxCMD_LINE_OPTION_MANDATORY to require that the option
is given and wxCMD_LINE_PARAM_OPTIONAL to make a parameter optional. Also,
wxCMD_LINE_PARAM_MULTIPLE may be specified if the programs accepts a variable
number of parameters - but it only can be given for the last parameter in the command
line description. If you use this flag, you will probably need to use GetParamCount (p.
145) to retrieve the number of parameters effectively specified after calling Parse (p.
144).

The last flag wxCMD_LINE_NEEDS_SEPARATOR can be specified to require a separator
(either a colon, an equal sign or white space) between the option name and its value. By
default, no separator is required.

See also

wxApp::argc (p. 22) and wxApp::argv (p. 23)
console sample

Construction

138

CHAPTER 6

Before Parse (p. 144) can be called, the command line parser object must have the
command line to parse and also the rules saying which switches, options and
parameters are valid - this is called command line description in what follows.

You have complete freedom of choice as to when specify the required information, the
only restriction is that it must be done before calling Parse (p. 144).

To specify the command line to parse you may use either one of constructors accepting
it (wxCmdLineParser(argc, argv) (p. 140) or wxCmdLineParser (p. 141) usually) or, if
you use the default constructor (p. 140), you can do it later by calling SetCmdLine (p.
141).

The same holds for command line description: it can be specified either in the
constructor (without command line (p. 140) or together with it (p. 141)) or constructed
later using either SetDesc (p. 143) or combination of AddSwitch (p. 143), AddOption (p.
143) and AddParam (p. 144) methods.

Using constructors or SetDesc (p. 143) uses a (usually const static) table containing
the command line description. If you want to decide which options to accept during the
run-time, using one of the Addxxx () functions above might be preferable.

Customization

wxCmdLineParser has several global options which may be changed by the application.
All of the functions described in this section should be called before Parse (p. 144).

First global option is the support for long (also known as GNU-style) options. The long
options are the ones which start with two dashes ("--") and look like this: ——verbose,
i.e. they generally are complete words and not some abbreviations of them. As long
options are used by more and more applications, they are enabled by default, but may
be disabled with DisableLongOptions (p. 142).

Another global option is the set of characters which may be used to start an option
(otherwise, the word on the command line is assumed to be a parameter). Under Unix,
'—' is always used, but Windows has at least two common choices for this: '-' and
'/ '. Some programs also use '+'. The default is to use what suits most the current
platform, but may be changed with SetSwitchChars (p. 142) method.

Finally, SetLogo (p. 142) can be used to show some application-specific text before the
explanation given by Usage (p. 144) function.

Parsing command line

After the command line description was constructed and the desired options were set,
you can finally call Parse (p. 144) method. It returns 0 if the command line was correct
and was parsed, -1 if the help option was specified (this is a separate case as, normally,
the program will terminate after this) or a positive number if there was an error during the

139

CHAPTER 6

command line parsing.

In the latter case, the appropriate error message and usage information are logged by
wxCmdLineParser itself using the standard wxWindows logging functions.

Getting results

After calling Parse (p. 144) (and if it returned 0), you may access the results of parsing
using one of overloaded Found () methods.

For a simple switch, you will simply call Found (p. 144) to determine if the switch was
given or not, for an option or a parameter, you will call a version of Found () which also
returns the associated value in the provided variable. All Found () functions return
TRUE if the switch or option were found in the command line or FALSE if they were not
specified.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser()

Default constructor. You must use SetCmdLine (p. 141) later.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(int argc, char** argv)

Constructor specifies the command line to parse. This is the traditional (Unix) command
line format. The parameters argc and argv have the same meaning as for main ()
function.

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxString& cmdline)

Constructor specifies the command line to parse in Windows format. The parameter
cmdline has the same meaning as the corresponding parameter of WinMain ().

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc)

Same as wxCmdLineParser (p. 140), but also specifies the command line description (p.
143).

140

CHAPTER 6

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc, int argc, char** argv)

Same as wxCmdLineParser (p. 140), but also specifies the command line description (p.
143).

wxCmdLineParser::wxCmdLineParser

wxCmdLineParser(const wxCmdLineEntryDesc* desc, const wxString& cmadline)

Same as wxCmdLineParser (p. 140), but also specifies the command line description (p.
143).

wxCmdLineParser::ConvertStringToArgs

static wxArrayString ConvertStringToArgs(const wxChar *cmdline)
Breaks down the string containing the full command line in words. The words are

separated by whitespace. The quotes can be used in the input string to quote the white
space and the back slashes can be used to quote the quotes.

wxCmdLineParser::SetCmdLine

void SetCmdLine(int argc, char** argv)
Set command line to parse after using one of the constructors which don't do it.
See also

wxCmdLineParser (p. 140)

wxCmdLineParser::SetCmdLine

void SetCmdLine(const wxString& cmdline)
Set command line to parse after using one of the constructors which don't do it.
See also

wxCmadLineParser (p. 140)

141

CHAPTER 6

wxCmdLineParser::~wxCmdLineParser

~wxCmdLineParser()
Frees resources allocated by the object.

NB: destructor is not virtual, don't use this class polymorphically.

wxCmdLineParser::SetSwitchChars

void SetSwitchChars(const wxString& switchChars)

switchChars contains all characters with which an option or switch may start. Default is
m—m for Unix, "—/" for Windows.

wxCmdLineParser::EnableLongOptions

void EnableLongOptions(bool enable = TRUE)
Enable or disable support for the long options.

As long options are not (yet) POSIX-compliant, this option allows to disable them.

See also

Customization (p. 139) and AreLongOptionsEnabled (p. 142)

wxCmdLineParser::DisableLongOptions

void DisableLongOptions()

Identical to EnableLongOptions(FALSE) (p. 142).

wxCmdLineParser::AreLongOptionsEnabled

bool AreLongOptionsEnabled()

Returns TRUE if long options are enabled, otherwise FALSE.

See also

EnableLongOptions (p. 142)

wxCmdLineParser::SetLogo

142

CHAPTER 6

void SetLogo(const wxString& /0go)

logo is some extra text which will be shown by Usage (p. 144) method.

wxCmdLineParser::SetDesc

void SetDesc(const wxCmdLineEntryDesc* desc)
Construct the command line description
Take the command line description from the wxCMD_LINE_NONE terminated table.

Example of usage:

static const wxCmdLineEntryDesc cmdLineDesc[] =

{

{ wxCMD_LINE_SWITCH, "v", "verbose", "be verbose" },

{ wxCMD_LINE_SWITCH, "g", "quiet", "be quiet" 1},

{ wxCMD_LINE_OPTION, "o", "output", "output file" 1},

{ wxCMD_LINE_OPTION, "i", "input", "input dir" },

{ wxCMD_LINE_OPTION, "s", "size", "output block size",

wxCMD_LINE_VAL_NUMBER 1},
{ wxCMD_LINE_OPTION, "d", "date", "output file date",
wxCMD_LINE_VAL_DATE 1},

{ wxCMD_LINE_PARAM, NULL, NULL, "input file",
wxCMD_LINE_VAL_STRING, wxCMD_LINE_PARAM MULTIPLE },

{ wxCMD_LINE_NONE }
}i

wxCmdLineParser parser;

parser.SetDesc (cmdLineDesc) ;

wxCmdLineParser::AddSwitch

void AddSwitch(const wxString& name, const wxString& /Ing = wxEmptyString,
const wxString& desc = wxEmptyString, int flags = 0)

Add a switch name with an optional long name Ing (no long name if it is empty, which is
default), description desc and flags flags to the command line description.

wxCmdLineParser::AddOption

void AddOption(const wxString& name, const wxString& /Ing = wxEmptyString,
const wxString& desc = wxEmptyString, wxCmdLineParamType type =
wxCMD_LINE_VAL_STRING, int flags = 0)

143

CHAPTER 6

Add an option name with an optional long name Ing (no long name if it is empty, which is
default) taking a value of the given type (string by default) to the command line
description.

wxCmdLineParser::AddParam

void AddParam(const wxString& desc = wxEmptyString, wxCmdLineParamType
type = wxCMD_LINE_VAL_STRING, int flags = 0)

Add a parameter of the given type to the command line description.

wxCmdLineParser::Parse

int Parse(bool giveUsage = TRUE)

Parse the command line, return 0 if ok, -1 if "-h" or "--help" option was encountered
and the help message was given or a positive value if a syntax error occured.

Parameters

giveUsage
If TRUE (default), the usage message is given if a syntax error was encountered
while parsing the command line or if help was requested. If FALSE, only error
messages about possible syntax errors are given, use Usage (p. 144) to show the
usage message from the caller if needed.

wxCmdLineParser::Usage

void Usage()

Give the standard usage message describing all program options. It will use the options
and parameters descriptions specified earlier, so the resulting message will not be
helpful to the user unless the descriptions were indeed specified.

See also

SetLogo (p. 142)

wxCmdLineParser::Found

bool Found(const wxString& name) const

Returns TRUE if the given switch was found, FALSE otherwise.

wxCmdLineParser::Found

144

CHAPTER 6

bool Found(const wxString& name, wxString* value) const

Returns TRUE if an option taking a string value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found(const wxString& name, long* value) const

Returns TRUE if an option taking an integer value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::Found

bool Found(const wxString& name, wxDateTime* value) const

Returns TRUE if an option taking a date value was found and stores the value in the
provided pointer (which should not be NULL).

wxCmdLineParser::GetParamCount

size_t GetParamCount() const

Returns the number of parameters found. This function makes sense mosily if you had
used wxCMD_LINE_PARAM MULTIPLE flag.

wxCmdLineParser::GetParam

wxString GetParam(size_t n = Ou) const
Returns the value of Nth parameter (as string only for now).
See also

GetParamCount (p. 145)

wxColour

A colour is an object representing a combination of Red, Green, and Blue (RGB)
intensity values, and is used to determine drawing colours. See the entry for
wxColourDatabase (p. 151) for how a pointer to a predefined, named colour may be

145

CHAPTER 6

returned instead of creating a new colour.
Valid RGB values are in the range 0 to 255.
You can retrieve the current system font settings with wxSystemSettings (p. 1251).
Derived from

wxObject (p. 958)

Include files

<wx/colour.h>

Predefined objects

Objects:

wxNullColour

Pointers:

wxBLACK

wxWHITE

wxRED

wxBLUE

wxGREEN

wxCYAN

wxLIGHT_GREY

See also

wxColourDatabase (p. 151), wxPen (p. 982), wxBrush (p. 83), wxColourDialog (p. 152),
wxSystemSettings (p. 1251)

wxColour::wxColour

wxColour()
Default constructor.

wxColour(const unsigned char red, const unsigned char green, const unsigned
char blue)

Constructs a colour from red, green and blue values.

wxColour(const wxString& colourNname)

146

CHAPTER 6

Constructs a colour object using a colour name listed in wxTheColourDatabase.
wxColour(const wxColour& colour)

Copy constructor.

Parameters

red
The red value.

green
The green value.

blue
The blue value.

colourName
The colour name.

colour
The colour to copy.

See also
wxColourDatabase (p. 151)
wxPython note: Constructors supported by wxPython are:

wxColour(red=0, green=0, blue=0)
wxNamedColour(name)

wxColour::Blue

unsigned char Blue() const

Returns the blue intensity.

wxColour::GetPixel

long GetPixel() const

Returns a pixel value which is platform-dependent. On Windows, a COLORREF is
returned. On X, an allocated pixel value is returned.

-1 is returned if the pixel is invalid (on X, unallocated).

147

CHAPTER 6

wxColour::Green

unsigned char Green() const

Returns the green intensity.

wxColour::0k

bool Ok() const

Returns TRUE if the colour object is valid (the colour has been initialised with RGB
values).

wxColour::Red

unsigned char Red() const

Returns the red intensity.

wxColour::Set

void Set(const unsigned char red, const unsigned char green, const unsigned char
blue)

Sets the RGB intensity values.

wxColour::operator =

wxColour& operator =(const wxColour& colour)

Assignment operator, taking another colour object.

wxColour& operator =(const wxString& colourName)

Assignment operator, using a colour name to be found in the colour database.
See also

wxColourDatabase (p. 151)

wxColour::operator ==

bool operator ==(const wxColour& colour)

148

CHAPTER 6

Tests the equality of two colours by comparing individual red, green blue colours.

wxColour::operator !=

bool operator !=(const wxColour& colour)

Tests the inequality of two colours by comparing individual red, green blue colours.

wxColourData

This class holds a variety of information related to colour dialogs.
Derived from

wxObject (p. 958)

Include files

<wx/cmndata.h>

See also

wxColour (p. 145), wxColourDialog (p. 152), wxColourDialog overview (p. 1669)

wxColourData::wxColourData

wxColourData()

Constructor. Initializes the custom colours to white, the data colour setting to black, and
the choose full setting to TRUE.

wxColourData::~wxColourData

~wxColourData()

Destructor.

wxColourData::GetChooseFull

149

CHAPTER 6

bool GetChooseFull() const

Under Windows, determines whether the Windows colour dialog will display the full
dialog with custom colour selection controls. Has no meaning under other platforms.

The default value is TRUE.

wxColourData::GetColour

wxColour& GetColour() const
Gets the current colour associated with the colour dialog.

The default colour is black.

wxColourData::GetCustomColour

wxColour& GetCustomColour(int /) const

Gets the tth custom colour associated with the colour dialog. i should be an integer
between 0 and 15.

The default custom colours are all white.

wxColourData::SetChooseFull

void SetChooseFull(const bool flag)

Under Windows, tells the Windows colour dialog to display the full dialog with custom
colour selection controls. Under other platforms, has no effect.

The default value is TRUE.

wxColourData::SetColour

void SetColour(const wxColour& colour)
Sets the default colour for the colour dialog.

The default colour is black.

wxColourData::SetCustomColour

void SetCustomColour(int /, const wxColour& colour)

150

CHAPTER 6

Sets the th custom colour for the colour dialog. i should be an integer between 0 and 15.

The default custom colours are all white.

wxColourData::operator =

void operator =(const wxColourData& data)

Assignment operator for the colour data.

wxColourDatabase

wxWindows maintains a database of standard RGB colours for a predefined set of
named colours (such as "BLACK", "LIGHT GREY"). The application may add to this set
if desired by using Append. There is only one instance of this class:
wxTheColourDatabase.

Derived from

wxList (p. 790)
wxObject (p. 958)

Include files

<wx/gdicmn.h>

Remarks

The colours in the standard database are as follows:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL,
CORNFLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN,
DARK ORCHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM
GREY, FIREBRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN
YELLOW, INDIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE,
LIME GREEN, MAGENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE,
MEDIUM FOREST GREEN, MEDIUM GOLDENROD, MEDIUM ORCHID, MEDIUM
SEA GREEN, MEDIUM SLATE BLUE, MEDIUM SPRING GREEN, MEDIUM
TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT BLUE, NAVY, ORANGE, ORANGE
RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE, RED, SALMON, SEA GREEN,
SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL BLUE, TAN, THISTLE,
TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW, YELLOW GREEN.

See also

wxColour (p. 145)

151

CHAPTER 6

wxColourDatabase::wxColourDatabase

wxColourDatabase()

Constructs the colour database.

wxColourDatabase::FindColour

wxColour* FindColour(const wxString& colourName)

Finds a colour given the name. Returns NULL if not found.

wxColourDatabase::FindName

wxString FindName(const wxColour& colour) const

Finds a colour name given the colour. Returns NULL if not found.

wxColourDatabase::Initialize

void Initialize()

Initializes the database with a number of stock colours. Called by wxWindows on start-
up.

wxColourDialog

This class represents the colour chooser dialog.

Derived from
wxDialog (p. 369)
wxWindow (p. 1404)
wxEvtHandler (p. 445)
wxObject (p. 958)
Include files

<wx/colordlg.h>

152

CHAPTER 6

See also

wxColourDialog Overview (p. 1669),
wxColour (p. 145),

wxColourData (p. 149),
wxGetColourFromUser (p. 1503)

wxColourDialog::wxColourDialog

wxColourDialog(wxWindow* parent, wxColourData* data = NULL)

Constructor. Pass a parent window, and optionally a pointer to a block of colour data,
which will be copied to the colour dialog's colour data.

See also

wxColourData (p. 149)

wxColourDialog::~wxColourDialog

~wxColourDialog()

Destructor.

wxColourDialog::Create

bool Create(wxWindow* parent, wxColourData* data = NULL)

Same as constructor (p. 153).

wxColourDialog::GetColourData

wxColourData& GetColourData()

Returns the colour data (p. 149) associated with the colour dialog.

wxColourDialog::ShowModal

int ShowModal()

Shows the dialog, returning wxID_OK if the user pressed OK, and wxOK_CANCEL
otherwise.

153

CHAPTER 6

wxComboBox

A combobox is like a combination of an edit control and a listbox. It can be displayed as
static list with editable or read-only text field; or a drop-down list with text field; or a drop-
down list without a text field.

A combobox permits a single selection only. Combobox items are numbered from zero.
Derived from

wxChoice (p. 117)

wxControl (p. 198)

wxWindow (p. 1404)

wxEvtHandler (p. 445)

wxObject (p. 958)

Include files

<wx/combobox.h>

Window styles

wxCB_SIMPLE Creates a combobox with a permanently
displayed list. Windows only.

wxCB_DROPDOWN Creates a combobox with a drop-down list.

wxCB_READONLY Same as wxCB_DROPDOWN but only the

strings specified as the combobox choices can
be selected, it is impossible to select (even
from a program) a string which is not in the
choices list.

wxCB_SORT Sorts the entries in the list alphabetically.

See also window styles overview (p. 1626).
Event handling
EVT_COMBOBOX(id, func) Process a

wxEVT_COMMAND_COMBOBOX_SELECTE
D event, when an item on the list is selected.

EVT_TEXT_ENTER(id, func) Process a wxEVT_COMMAND_TEXT_ENTER
event, when return is pressed in the combobox.
EVT_TEXT(id, func) Process a

wxEVT_COMMAND_TEXT_UPDATED event,
when the combobox text changes.

154

CHAPTER 6

See also

wxListBox (p. 797), wxTextCtrl (p. 1268), wxChoice (p. 117), wxCommandEvent (p. 164)

wxComboBox::wxComboBox

wxComboBox()

Default constructor.

wxComboBox(wxWindow* parent, wxWindowlID id, const wxString& value = ",
const wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n,
const wxString choices[], long style = 0, const wxValidator& validator =

wxDefaultValidator, const wxString& name = "comboBox")
Constructor, creating and showing a combobox.
Parameters

parent
Parent window. Must not be NULL.

id
Window identifier. A value of -1 indicates a default value.
value
Initial selection string. An empty string indicates no selection.
pos
Window position.
size
Window size. If the default size (-1, -1) is specified then the window is sized
appropriately.
n
Number of strings with which to initialise the control.
choices
An array of strings with which to initialise the control.
style
Window style. See wxComboBox (p. 154).
validator

Window validator.

155

CHAPTER 6

name
Window name.

See also
wxComboBox::Create (p. 156), wxValidator (p. 1386)

wxPython note: The wxComboBox constructor in wxPython reduces the nand
choices arguments are to a single argument, which is a list of strings.

wxPerl note: In wxPerl there is just an array reference in place of nand choices.

wxComboBox::~wxComboBox

~wxComboBox()

Destructor, destroying the combobox.

wxComboBox::Append

void Append(const wxString& item)

Adds the item to the end of the combobox.

void Append(const wxString& item, void* clientData)

Adds the item to the end of the combobox, associating the given data with the item.
Parameters

item
The string to add.

clientData
Client data to associate with the item.

wxComboBox::Clear

void Clear()

Clears all strings from the combobox.

wxComboBox::Create

nn

bool Create(wxWindow* parent, wxWindowlID id, const wxString& value = ", const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, int n, const

156

CHAPTER 6

wxString choices[], long style = 0, const wxValidator& validator = wxDefaultValidator,
const wxString& name = "comboBox")

Creates the combobox for two-step construction. Derived classes should call or replace
this function. See wxComboBox::wxComboBox (p. 155) for further details.

wxComboBox::Copy

void Copy()

Copies the selected text to the clipboard.

wxComboBox::Cut

void Cut()

Copies the selected text to the clipboard and removes the selection.

wxComboBox::Delete

void Delete(int n)
Deletes an item from the combobox.
Parameters

n
The item to delete, starting from zero.

wxComboBox::FindString

int FindString(const wxString& string)
Finds a choice matching the given string.
Parameters

string
The item to find.

Return value

The position if found, or -1 if not found.

wxComboBox::GetClientData

157

CHAPTER 6

void* GetClientData(int n) const
Returns a pointer to the client data associated with the given item (if any).
Parameters

n
An item, starting from zero.

Return value

A pointer to the client data, or NULL if the item was not found.

wxComboBox::GetCount

int GetCount() const

Returns the number of items in the combobox.

wxComboBox::GetlnsertionPoint

long GetlnsertionPoint() const

Returns the insertion point for the combobox's text field.

wxComboBox::GetLastPosition

long GetlLastPosition() const

Returns the last position in the combobox text field.

wxComboBox::GetSelection

int GetSelection() const

Gets the position of the selected string, or -1 if there is no selection.

wxComboBox::GetString

wxString GetString(int n) const
Returns the string at position n.

Parameters

158

CHAPTER 6

The item position, starting from zero.
Return value

The string if the item is found, otherwise the empty string.

wxComboBox::GetStringSelection

wxString GetStringSelection() const

Gets the selected string.

wxComboBox::GetValue

wxString GetValue() const

Returns the current value in the combobox text field.

wxComboBox::Number

int Number() const

Obsolescence note: This method is obsolete and was replaced with GetCount (p. 158),
please use the new method in the new code. This method is only available if wxWindows
was compiled with WXWIN_COMPATIBILITY_2_2 defined and will disappear completely

in future versions.

Returns the number of items in the combobox list.

wxComboBox::Paste

void Paste()

Pastes text from the clipboard to the text field.

wxComboBox::Replace

void Replace(long from, long to, const wxString& texi)

Replaces the text between two positions with the given text, in the combobox text field.

Parameters

159

CHAPTER 6

from
The first position.

to
The second position.

text
The text to insert.

wxComboBox::Remove

void Remove(long from, long to)

Removes the text between the two positions in the combobox text field.

Parameters

from
The first position.

to
The last position.

wxComboBox::SetClientData

void SetClientData(int n, void* data)
Associates the given client data pointer with the given item.
Parameters

n
The zero-based item.

data
The client data.

wxComboBox::SetinsertionPoint

void SetlnsertionPoint(long pos)
Sets the insertion point in the combobox text field.
Parameters

pos
The new insertion point.

160

CHAPTER 6

wxComboBox::SetinsertionPointEnd

void SetInsertionPointEnd()

Sets the insertion point at the end of the combobox text field.

wxComboBox::SetSelection

void SetSelection(int n)

Selects the given item in the combobox list. This does not cause a
wxEVT_COMMAND_COMBOBOX_SELECTED event to get emitted.

void SetSelection(long from, long to)
Selects the text between the two positions, in the combobox text field.
Parameters

n
The zero-based item to select.

from
The first position.

to
The second position.

wxPython note: The second form of this method is called setMark in wxPython.

wxComboBox::SetString

void SetString(int n, const wxString& texi)
Replaces the specified string in the control with another one.
Parameters

n
The zero-based index of the string to replace

text
The new value for this item

NB: This method is currently not implemented in wxGTK.

161

CHAPTER 6

wxComboBox::SetValue

void SetValue(const wxString& ftexi)
Sets the text for the combobox text field.

NB: For a combobox with wxCB_READONLY style the string must be in the combobox
choices list, otherwise the call to SetValue() is ignored.

Parameters

text
The text to set.

wxCommand

wxCommand is a base class for modelling an application command, which is an action
usually performed by selecting a menu item, pressing a toolbar button or any other
means provided by the application to change the data or view.

Derived from

wxObject (p. 958)

Include files

<wx/cmdproc.h>

See also

Overview (p. 1677)

wxCommand::wxCommand

wxCommand(bool canUndo = FALSE, const wxString& name = NULL)

Constructor. wxCommand is an abstract class, so you will need to derive a new class
and call this constructor from your own constructor.

canUndo tells the command processor whether this command is undo-able. You can
achieve the same functionality by overriding the CanUndo member function (if for
example the criteria for undoability is context-dependent).

162

CHAPTER 6

name must be supplied for the command processor to display the command name in the
application's edit menu.

wxCommand::~wxCommand

~wxCommand()

Destructor.

wxCommand::CanUndo

bool CanUndo()

Returns TRUE if the command can be undone, FALSE otherwise.

wxCommand::Do

bool Do()

Override this member function to execute the appropriate action when called. Return
TRUE to indicate that the action has taken place, FALSE otherwise. Returning FALSE
will indicate to the command processor that the action is not undoable and should not be
added to the command history.

wxCommand::GetName

wxString GetName()

Returns the command name.

wxCommand::Undo

bool Undo()

Override this member function to un-execute a previous Do. Return TRUE to indicate
that the action has taken place, FALSE otherwise. Returning FALSE will indicate to the
command processor that the action is not redoable and no change should be made to
the command history.

How you implement this command is totally application dependent, but typical strategies
include:

e Perform an inverse operation on the last modified piece of data in the document.
When redone, a copy of data stored in command is pasted back or some
operation reapplied. This relies on the fact that you know the ordering of Undos;

163

CHAPTER 6

the user can never Undo at an arbitrary position in the command history.

e Restore the entire document state (perhaps using document transactioning).
Potentially very inefficient, but possibly easier to code if the user interface and
data are complex, and an 'inverse execute' operation is hard to write.

The docview sample uses the first method, to remove or restore segments in the
drawing.

wxCommandEvent

This event class contains information about command events, which originate from a
variety of simple controls. More complex controls, such as wxTreeCtrl (p. 1349), have
separate command event classes.

Derived from
wxEvent (p. 441)
Include files
<wx/event.h>

Event table macros

To process a menu command event, use these event handler macros to direct input to
member functions that take a wxCommandEvent argument.

EVT_COMMAND(id, event, func) Process a command, supplying the window
identifier, command event identifier, and
member function.

EVT_COMMAND_RANGE(id1, id2, event, func) Process a command for a range of
window identifiers, supplying the minimum and
maximum window identifiers, command event
identifier, and member function.

EVT_BUTTON(id, func) Process a
wxEVT_COMMAND_BUTTON_CLICKED
command, which is generated by a wxButton
control.

EVT_CHECKBOX(id, func) Process a
wxEVT_COMMAND_CHECKBOX_CLICKED
command, which is generated by a
wxCheckBox control.

EVT_CHOICE(id, func) Process a
wxEVT_COMMAND_CHOICE_SELECTED
command, which is generated by a wxChoice
control.

EVT_LISTBOX(id, func) Process a

164

CHAPTER 6

EVT_LISTBOX_DCLICK(id, func)

EVT_TEXT(id, func)

EVT_TEXT_ENTER(id, func)

EVT_TEXT_MAXLEN(id, func)

EVT_MENU(id, func)

EVT_MENU_RANGE(id1, id2, func)

EVT_CONTEXT_MENU(func)

EVT_SLIDER(id, func)

EVT_RADIOBOX(id, func)

EVT_RADIOBUTTON(id, func)

EVT_SCROLLBAR(id, func)

wxEVT_COMMAND_LISTBOX_SELECTED
command, which is generated by a wxListBox
control.

Process a
wxEVT_COMMAND_LISTBOX_DOUBLECLIC
KED command, which is generated by a
wxListBox control.

Process a
wxEVT_COMMAND_TEXT_UPDATED
command, which is generated by a wxTextCtrl
control.

Process a wxEVT_COMMAND_TEXT_ENTER
command, which is generated by a wxTextCtrl
control. Note that you must use
wxTE_PROCESS_ENTER flag when creating
the control if you want it to generate such
events.

Process a
wxEVT_COMMAND_TEXT_MAXLEN
command, which is generated by a wxTextCtrl
control when the user tries to enter more
characters into it than the limit previously set
with SetMaxLength (p. 1282).

Process a
wxEVT_COMMAND_MENU_SELECTED
command, which is generated by a menu item.
Process a
wxEVT_COMMAND_MENU_RANGE
command, which is generated by a range of
menu items.

Process the event generated when the user
has requested a popup menu to appear by
pressing a special keyboard key (under
Windows) or by right clicking the mouse.
Process a
wxEVT_COMMAND_SLIDER_UPDATED
command, which is generated by a wxSlider
control.

Process a
wxEVT_COMMAND_RADIOBOX_SELECTED
command, which is generated by a
wxRadioBox control.

Process a
wxEVT_COMMAND_RADIOBUTTON_SELEC
TED command, which is generated by a
wxRadioButton control.

Process a
wxEVT_COMMAND_SCROLLBAR_UPDATED
command, which is generated by a wxScrollBar
control. This is provided for compatibility only;
more specific scrollbar event macros should be

165

CHAPTER 6

used instead (see wxScrollEvent (p. 1116)).

EVT_COMBOBOX(id, func) Process a
wxEVT_COMMAND_COMBOBOX_SELECTE
D command, which is generated by a
wxComboBox control.

EVT_TOOL(id, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event (a
synonym for
wxEVT_COMMAND_MENU_SELECTED).
Pass the id of the tool.

EVT_TOOL_RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_CLICKED event
for a range id identifiers. Pass the ids of the
tools.

EVT_TOOL_RCLICKED(id, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event.
Pass the id of the tool.

EVT_TOOL_RCLICKED RANGE(id1, id2, func) Process a
wxEVT_COMMAND_TOOL_RCLICKED event
for a range of ids. Pass the ids of the tools.

EVT_TOOL_ENTER(id, func) Process a wxEVT_COMMAND_TOOL_ENTER
event. Pass the id of the toolbar itself. The
value of wxCommandEvent::GetSelection is
the tool id, or -1 if the mouse cursor has moved
off a tool.

EVT_COMMAND_LEFT_CLICK(id, func) Process a
wxEVT_COMMAND_LEFT_CLICK command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_LEFT_DCLICK(id, func) Process a
wxEVT_COMMAND_LEFT_DCLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_RIGHT_CLICK(id, func) Process a
wxEVT_COMMAND_RIGHT_CLICK
command, which is generated by a control
(Windows 95 and NT only).

EVT_COMMAND_SET FOCUS(id, func) Process a
wxEVT_COMMAND_SET_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_KILL_FOCUS(id, func) Process a
wxEVT_COMMAND_KILL_FOCUS command,
which is generated by a control (Windows 95
and NT only).

EVT_COMMAND_ENTER(id, func) Process a wxEVT_COMMAND_ENTER
command, which is generated by a control.

166

CHAPTER 6

wxCommandEvent::m_clientData

void* m_clientData

Contains a pointer to client data for listboxes and choices, if the event was a selection.
Beware, this is not implemented anyway...

wxCommandEvent::m_commandint

int m_commandint
Contains an integer identifier corresponding to a listbox, choice or radiobox selection

(only if the event was a selection, not a deselection), or a boolean value representing the
value of a checkbox.

wxCommandEvent::m_commandString

char* m_commandString

Contains a string corresponding to a listbox or choice selection.

wxCommandEvent::m_extraLong

long m_extralLong

Extra information. If the event comes from a listbox selection, it is a boolean determining
whether the event was a selection (TRUE) or a deselection (FALSE). A listbox
deselection only occurs for multiple-selection boxes, and in this case the index and
string values are indeterminate and the listbox must be examined by the application.

wxCommandEvent::wxCommandEvent

wxCommandEvent(WXTYPE commandEventType = 0, int id = 0)

Constructor.

wxCommandEvent::Checked

bool Checked() const

Deprecated, use IsChecked (p. 168) instead.

167

CHAPTER 6

wxCommandEvent::GetClientData

void* GetClientData()

Returns client data pointer for a listbox or choice selection event (not valid for a
deselection).

wxCommandEvent::GetExtraLong

long GetExtraLong()

Returns the m_extraLong member.

wxCommandEvent::GetiInt

int Getint()

Returns the m_commandint member.

wxCommandEvent::GetSelection

int GetSelection()

Returns item index for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::GetString

char* GetString()

Returns item string for a listbox or choice selection event (not valid for a deselection).

wxCommandEvent::IsChecked

bool IsChecked() const

This method can be used with checkbox and menu events: for the checkboxes, the
method returns TRUE for a selection event and FALSE for a deselection one. For the
menu events, this method indicates if the menu item just has become checked or
unchecked (and thus only makes sense for checkable menu items).

wxCommandEvent::IsSelection

bool IsSelection()

168

CHAPTER 6

For a listbox or choice event, returns TRUE if it is a selection, FALSE if it is a

deselection.

wxCommandEvent::SetClientData

void SetClientData(void* clientData)

Sets the client data for this event.

wxCommandEvent::SetExtraLong

void SetExtraLong(int extraLong)

Sets the m_extraLong member.

wxCommandEvent::Setint

void SetInt(int intCommand)

Sets the m_commandInt member.

wxCommandEvent::SetString

void SetString(char* string)

Sets the m_commandString member.

wxCommandProcessor

wxCommandProcessor is a class that maintains a history of wxCommands, with
undo/redo functionality built-in. Derive a new class from this if you want different

behaviour.
Derived from
wxObject (p. 958)
Include files

<wx/cmdproc.h>

169

CHAPTER 6

See also

wxCommandProcessor overview (p. 1678), wxCommand (p. 162)

wxCommandProcessor::wxCommandProcessor

wxCommandProcessor(int maxCommands = -1)
Constructor.
maxCommands may be set to a positive integer to limit the number of commands stored

to it, otherwise (and by default) the list of commands can grow arbitrarily.

wxCommandProcessor::~wxCommandProcessor

~wxCommandProcessor()

Destructor.

wxCommandProcessor::CanUndo

virtual bool CanUndo()

Returns TRUE if the currently-active command can be undone, FALSE otherwise.

wxCommandProcessor::ClearCommands

virtual void ClearCommands()

Deletes all the commands in the list and sets the current command pointer to NULL.

wxCommandProcessor::Redo

virtual bool Redo()

Executes (redoes) the current command (the command that has just been undone if
any).

wxCommandProcessor::GetCommands

wxList& GetCommands() const

170

CHAPTER 6

Returns the list of commands.

wxCommandProcessor::GetMaxCommands

int GetMaxCommands() const

Returns the maximum number of commands that the command processor stores.

wxCommandProcessor::GetEditMenu

wxMenu* GetEditMenu() const

Returns the edit menu associated with the command processor.

wxCommandProcessor::GetRedoAccelerator

const wxString& GetRedoAccelerator() const

Returns the string that will be appended to the Redo menu item.

wxCommandProcessor::GetRedoMenuLabel

wxString GetRedoMenulLabel() const

Returns the string that will be shown for the redo menu item.

wxCommandProcessor::GetUndoAccelerator

const wxString& GetUndoAccelerator() const

Returns the string that will be appended to the Undo menu item.

wxCommandProcessor::GetUndoMenulLabel

wxString GetUndoMenuLabel() const

Returns the string that will be shown for the undo menu item.

wxCommandProcessor::Initialize

virtual void Initialize()

171

CHAPTER 6

Initializes the command processor, setting the current command to the last in the list (if
any), and updating the edit menu (if one has been specified).

wxCommandProcessor::SetEditMenu

void SetEditMenu(wxMenu* menu)

Tells the command processor to update the Undo and Redo items on this menu as
appropriate. Set this to NULL if the menu is about to be destroyed and command
operations may still be performed, or the command processor may try to access an
invalid pointer.

wxCommandProcessor::SetMenuStrings

void SetMenuStrings()

Sets the menu labels according to the currently set menu and the current command
state.

wxCommandProcessor::SetRedoAccelerator

void SetRedoAccelerator(const wxString&accel)

Sets the string that will be appended to the Redo menu item.

wxCommandProcessor::SetUndoAccelerator

void SetUndoAccelerator(const wxString&accel)

Sets the string that will be appended to the Undo menu item.

wxCommandProcessor::Submit

virtual bool Submit(wxCommand *command, bool storelt = TRUE)

Submits a new command to the command processor. The command processor calls
wxCommand::Do to execute the command; if it succeeds, the command is stored in the
history list, and the associated edit menu (if any) updated appropriately. If it fails, the
command is deleted immediately. Once Submit has been called, the passed command
should not be deleted directly by the application.

storelt indicates whether the successful command should be stored in the history list.

172

CHAPTER 6

wxCommandProcessor::Undo

virtual bool Undo()

Undoes the command just executed.

wxCondition

wxCondition variables correspond to pthread conditions or to Win32 event objects. They
may be used in a multithreaded application to wait until the given condition becomes true
which happens when the condition becomes signaled.

For example, if a worker thread is doing some long task and another thread has to wait
until it is finished, the latter thread will wait on the condition object and the worker thread
will signal it on exit (this example is not perfect because in this particular case it would
be much better to just Wait() (p. 1310) for the worker thread, but if there are several
worker threads it already makes much more sense).

Note that a call to Signal() (p. 175) may happen before the other thread calls Wait() (p.
176) and, just as with the pthread conditions, the signal is then lost and so if you want to
be sure to get it you must use a mutex together with the condition variable.

Example

This example shows how a main thread may launch a worker thread which starts
running and then waits until the main thread signals it to continue:

class MySignallingThread : public wxThread
{

public:
MySignallingThread (wxMutex *mutex, wxCondition *condition)
{
m_mutex = mutex;
m_condition = condition;
Create () ;

}
virtual ExitCode Entry ()
{

. do our job ...

// tell the other(s) thread(s) that we're about to terminate: we

must

// lock the mutex first or we might signal the condition before
the

// waiting threads start waiting on it!

wxMutexLocker lock (m_mutex);

m_condition.Broadcast (); // same as Signal () here —-- one waiter
only

return 0O;

173

CHAPTER 6

private:
wxCondition *m_condition;
wxMutex *m_mutex;

}i

int main ()
{
wxMutex mutex;
wxCondition condition (mutex);

// the mutex should be initially locked
mutex.Lock () ;

// create and run the thread but notice that it won't be able to

// exit (and signal its exit) before we unlock the mutex below

MySignallingThread *thread = new MySignallingThread (&mutex,
&condition) ;

thread->Run() ;

// wait for the thread termination: Wait () atomically unlocks the
mutex

// which allows the thread to continue and starts waiting

condition.Wait () ;

// now we can exit
return 0O;

}

Of course, here it would be much better to simply use a joinable thread and call
wxThread::Wait (p. 1310) on it, but this example does illustrate the importance of
properly locking the mutex when using wxCondition.

Constants

The following return codes are returned by wxCondition member functions:

enum wxCondError

{

wxCOND_NO_ERROR = 0, // successful completion

wxCOND_INVALID, // object hasn't been initialized
successfully

wxCOND_TIMEOUT, // WaitTimeout () has timed out

wxCOND_MISC_ERROR // some other error

i

Derived from
None.
Include files
<wx/thread.h>
See also

wxThread (p. 1303), wxMutex (p. 942)

174

CHAPTER 6

wxCondition::wxCondition

wxCondition(wxMutex& mutex)

Default and only constructor. The mutex must be locked by the caller before calling Wait
(p. 176) function.

Use IsOk (p. 175) to check if the object was successfully intiialized.

wxCondition::~wxCondition

~wxCondition()

Destroys the wxCondition object. The destructor is not virtual so this class should not be
used polymorphically.

wxCondition::Broadcast

void Broadcast()

Broadcasts to all waiting threads, waking all of them up. Note that this method may be
called whether the mutex associated with this condition is locked or not.

See also

wxCondition::Signal (p. 175)

wxCondition::IsOk

bool IsOk() const

Returns TRUE if the object had been initialized successfully, FALSE if an error occured.

wxCondition::Signal

void Signal()

Signals the object waking up at most one thread. If several threads are waiting on the
same condition, the exact thread which is woken up is undefined. If no threads are
waiting, the signal is lost and the condition would have to be signalled again to wake up
any thread which may start waiting on it later.

175

CHAPTER 6

Note that this method may be called whether the mutex associated with this condition is
locked or not.

See also

wxCondition::Broadcast (p. 175)

wxCondition::Wait

wxCondError Wait()

Waits until the condition is signalled.

This method atomically releases the lock on the mutex associated with this condition
(this is why it must be locked prior to calling Wait) and puts the thread to sleep until
Signal (p. 175) or Broadcast (p. 175) is called.

Note that even if Signal (p. 175) had been called before Wait without waking up any
thread, the thread would still wait for another one and so it is important to ensure that the
condition will be signalled after Wait or the thread may sleep forever.

Return value

Returns wxCOND_NO_ERROR 0N success, another value if an error occured.

See also

WaitTimeout (p. 176)

wxCondition::WaitTimeout

wxCondError Wait(unsigned long milliseconds)
Waits until the condition is signalled or the timeout has elapsed.

This method is identical to Wait (p. 176) except that it returns, with the return code of
wxCOND_TIMEOUT as soon as the given timeout expires.

Parameters

milliseconds
Timeout in milliseconds

Return value

Returns wxCOND_NO_ERROR if the condition was signalled, wxCOND_TIMEOUT if the
timeout elapsed ebfore this happened or another error code from wxCondError enum.

176

CHAPTER 6

wxConfigBase

wxConfigBase class defines the basic interface of all config classes. It can not be used
by itself (it is an abstract base class) and you will always use one of its derivations:
wxIniConfig, wxFileConfig, wxRegConfig or any other.

However, usually you don't even need to know the precise nature of the class you're
working with but you would just use the wxConfigBase methods. This allows you to write
the same code regardless of whether you're working with the registry under Win32 or
text-based config files under Unix (or even Windows 3.1 .INI files if you're really
unlucky). To make writing the portable code even easier, wxWindows provides a typedef
wxConfig which is mapped onto the native wxConfigBase implementation on the given
platform: i.e. wxRegConfig under Win32, wxIniConfig under Win16 and wxFileConfig
otherwise.

See config overview (p. 1613) for the descriptions of all features of this class.

It is highly recommended to use static functions Get() and/or Set(), so please have a
look at them. (p. 178)

Derived from

No base class

Include files

<wx/config.h> (to let wxWindows choose a wxConfig class for your platform)
<wx/confbase.h> (base config class)

<wx/fileconf.h> (wxFileConfig class)

<wx/msw/regconf.h> (wxRegConfig class)

<wx/msw/iniconf.h> (wxIniConfig class)

Example

Here is how you would typically use this class:

// using wxConfig instead of writing wxFileConfig or wxRegConfig

enhances
// portability of the code
wxConfig *config = new wxConfig ("MyAppName") ;

wxString str;

if (config->Read("LastPrompt", &str)) {
// last prompt was found in the config file/registry and its value
is now
// in str
}
else {

// no last prompt...
}

177

CHAPTER 6

// another example: using default values and the full path instead of
just

// key name: if the key is not found , the value 17 is returned

long value = config->Read("/LastRun/CalculatedValues/MaxValue", 17);

// at the end of the program we would save everything back
config->Write ("LastPrompt", str);
config->Write ("/LastRun/CalculatedvValues/MaxValue", value);

// the changes will be written back automatically
delete config;

This basic example, of course, doesn't show all wxConfig features, such as enumerating,
testing for existence and deleting the entries and groups of entries in the config file, its
abilities to automatically store the default values or expand the environment variables on
the fly. However, the main idea is that using this class is easy and that it should normally
do what you expect it to.

NB: in the documentation of this class, the words "config file" also mean "registry hive"

for wxRegConfig and, generally speaking, might mean any physical storage where a
wxConfigBase-derived class stores its data.

Static functions

These functions deal with the "default" config object. Although its usage is not at all
mandatory it may be convenient to use a global config object instead of creating and
deleting the local config objects each time you need one (especially because creating a
wxFileConfig object might be a time consuming operation). In this case, you may create
this global config object in the very start of the program and Set() it as the default. Then,
from anywhere in your program, you may access it using the Get() function. Note that
wxWindows will delete this config object for you during the program shutdown (from
wxApp::OnExit (p. 26) to be precise) but you can also do it yourself earlier if needed.

As it happens, you may even further simplify the procedure described above: you may
forget about calling Set(). When Get() is called and there is no current object, it will
create one using Create() function. To disable this behaviour DontCreateOnDemand() is
provided.

Note: You should use either Set() or Get() because wxWindows library itself would take
advantage of it and could save various information in it. For example wxFontMapper (p.
539) or Unix version of wxFileDialog (p. 478) have ability to use wxConfig class.

Set (p. 190)

Get (p. 185)

Create (p. 184)
DontCreateOnDemand (p. 184)

178

CHAPTER 6

Constructor and destructor

wxConfigBase (p. 183)
~wxConfigBase (p. 184)

Path management

As explained in config overview (p. 1613), the config classes support a file system-like
hierarchy of keys (files) and groups (directories). As in the file system case, to specify a
key in the config class you must use a path to it. Config classes also support the notion
of the current group, which makes it possible to use the relative paths. To clarify all this,
here is an example (it is only for the sake of demonstration, it doesn't do anything
sensible!):

wxConfig *config = new wxConfig ("FooBarApp");

// right now the current path is '/'
conf->Write ("RootEntry", 1);

// go to some other place: if the group(s) don't exist, they will be
created
conf->SetPath ("/Group/Subgroup") ;

// create an entry in subgroup
conf->Write ("SubgroupEntry", 3);

// '..' is understood

conf->Write ("../GroupEntry", 2);

conf->SetPath("..");

wxASSERT (conf->Read ("Subgroup/SubgroupEntry", 01) ==) ;

// use absolute path: it is allowed, too
wxASSERT (conf->Read ("/RootEntry", 01) ==) ;

Warning: it is probably a good idea to always restore the path to its old value on function
exit:

void foo (wxConfigBase *config)

{
wxString strOldPath = config->GetPath();
config->SetPath ("/Foo/Data") ;

config->SetPath (strOldPath);
}

because otherwise the assert in the following example will surely fail (we suppose here
that foo() function is the same as above except that it doesn't save and restore the path):

void bar (wxConfigBase *config)

{
config->Write ("Test", 17);

foo (confiqg);

179

CHAPTER 6

// we're reading "/Foo/Data/Test" here! -1 will probably be
returned...
wxASSERT (config->Read("Test", -1) == 17);
}

Finally, the path separator in wxConfigBase and derived classes is always /', regardless
of the platform (i.e. it is not \\' under Windows).

SetPath (p. 190)
GetPath (p. 187)

Enumeration

The functions in this section allow to enumerate all entries and groups in the config file.
All functions here return FALSE when there are no more items.

You must pass the same index to GetNext and GetFirst (don't modify it). Please note
that it is not the index of the current item (you will have some great surprises with
wxRegConfig if you assume this) and you shouldn't even look at it: it is just a "cookie"
which stores the state of the enumeration. It can't be stored inside the class because it
would prevent you from running several enumerations simultaneously, that's why you
must pass it explicitly.

Having said all this, enumerating the config entries/groups is very simple:

wxArrayString aNames;

// enumeration variables
wxString str;
long dummy;

// first enum all entries
bool bCont = config->GetFirstEntry(str, dummy);
while (bCont) {

aNames.Add (str) ;

bCont = GetConfig()->GetNextEntry (str, dummy);
}

. we have all entry names in aNames...
// now all groups...
bCont = GetConfig()->GetFirstGroup (str, dummy);
while (bCont) {

aNames.Add (str) ;

bCont = GetConfig()->GetNextGroup (str, dummy);
}

. we have all group (and entry) names in aNames...

There are also functions to get the number of entries/subgroups without actually
enumerating them, but you will probably never need them.

GetFirstGroup (p. 186)

180

CHAPTER 6

GetNextGroup (p. 186)
GetFirstEntry (p. 186)
GetNextEntry (p. 186)
GetNumberOfEntries (p. 187)
GetNumberOfGroups (p. 187)

Tests of existence

HasGroup (p. 187)
HasEntry (p. 187)
Exists (p. 185)
GetEntryType (p. 185)

Miscellaneous functions

GetAppName (p. 185)
GetVendorName (p. 187)
SetUmask (p. 191)

Key access

These function are the core of wxConfigBase class: they allow you to read and write
config file data. All Read function take a default value which will be returned if the
specified key is not found in the config file.

Currently, only two types of data are supported: string and long (but it might change in
the near future). To work with other types: for int or bool you can work with function
taking/returning long and just use the casts. Better yet, just use long for all variables
which you're going to save in the config file: chances are that sizeof (bool) ==
sizeof (int) == sizeof (long) anyhow on your system. For float, double and, in
general, any other type you'd have to translate them to/from string representation and
use string functions.

Try not to read long values into string variables and vice versa: although it just might
work with wxFileConfig, you will get a system error with wxRegConfig because in the
Windows registry the different types of entries are indeed used.

Final remark: the szKey parameter for all these functions can contain an arbitrary path
(either relative or absolute), not just the key name.

Read (p. 188)

Write (p. 191)
Flush (p. 185)

Rename entries/groups

181

CHAPTER 6

The functions in this section allow to rename entries or subgroups of the current group.
They will return FALSE on error. typically because either the entry/group with the original
name doesn't exist, because the entry/group with the new name already exists or
because the function is not supported in this wxConfig implementation.

RenameEntry (p. 189)
RenameGroup (p. 190)

Delete entries/groups

The functions in this section delete entries and/or groups of entries from the config file.
DeleteAll() is especially useful if you want to erase all traces of your program presence:
for example, when you uninstall it.

DeleteEntry (p. 184)

DeleteGroup (p. 184)
DeleteAll (p. 184)

Options

Some aspects of wxConfigBase behaviour can be changed during run-time. The first of
them is the expansion of environment variables in the string values read from the config
file: for example, if you have the following in your config file:

config file for my program
UserData = $HOME/data

the following syntax is valud only under Windows
UserData = %$windir%\\data.dat

the call to config->Read ("UserData") will return something
like" /home/zeitlin/data™ if you're lucky enough to run a Linux system ;-)

Although this feature is very useful, it may be annoying if you read a value which
containts '$' or '%' symbols (% is used for environment variables expansion under
Windows) which are not used for environment variable expansion. In this situation you
may call SetExpandEnvVars(FALSE) just before reading this value and
SetExpandEnvVars(TRUE) just after. Another solution would be to prefix the offending
symbols with a backslash.

The following functions control this option:

IsExpandingEnvVars (p. 187)
SetExpandEnvVars (p. 190)
SetRecordDefaults (p. 190)
IsRecordingDefaults (p. 188)

182

CHAPTER 6

wxConfigBase::wxConfigBase

wxConfigBase(const wxString& appName = wxEmptyString, const wxString&
vendorName = wxEmptyString, const wxString& localFilename = wxEmptyString,
const wxString& globalFilename = wxEmptyString, long style = 0)

This is the default and only constructor of the wxConfigBase class, and derived classes.
Parameters

appName
The application name. If this is empty, the class will normally use
wxApp::GetAppName (p. 24) to set it. The application name is used in the registry
key on Windows, and can be used to deduce the local filename parameter if that is
missing.

vendorName
The vendor name. If this is empty, it is assumed that no vendor name is wanted, if
this is optional for the current config class. The vendor name is appended to the
application name for wxRegConfig.

localFilename
Some config classes require a local filename. If this is not present, but required,
the application name will be used instead.

globalFilename
Some config classes require a global filename. If this is not present, but required,
the application name will be used instead.

style
Can be one of wxCONFIG_USE_LOCAL_FILE and
wxCONFIG_USE_GLOBAL_FILE. The style interpretation depends on the config
class and is ignored by some. For wxFileConfig, these styles determine whether a
local or global config file is created or used. If the flag is present but the parameter
is empty, the parameter will be set to a default. If the parameter is present but the
style flag not, the relevant flag will be added to the style. For wxFileConfig you can
also add wxCONFIG_USE_RELATIVE_PATH by logically or'ing it to either of the
_FILE options to tell wxFileConfig to use relative instead of absolute paths. For
wxFileConfig, you can also add wxCONFIG_USE_NO_ESCAPE_CHARACTERS
which will turn off character escaping for the values of entries stored in the config
file: for example a foo key with some backslash characters will be stored as
foo=C:\mydir instead of the usual storage of foo=C:\\mydir.

The wxCONFIG_USE_NO_ESCAPE_CHARACTERS style can be helpful if your
config file must be read or written to by a non-wxWindows program (which might
not understand the escape characters). Note, however, that if
wxCONFIG_USE_NO_ESCAPE_CHARACTERS style is used, it is is now your
application's responsibility to ensure that there is no newline or other illegal
characters in a value, before writing that value to the file.

183

CHAPTER 6

Remarks

By default, environment variable expansion is on and recording defaults is off.

wxConfigBase::~wxConfigBase

~wxConfigBase()

Empty but ensures that dtor of all derived classes is virtual.

wxConfigBase::Create

static wxConfigBase * Create()

Create a new config object: this function will create the "best" implementation of
wxConfig available for the current platform, see comments near the definition of
wxCONFIG_WIN32_NATIVE for details. It returns the created object and also sets it as
the current one.

wxConfigBase::DontCreateOnDemand

void DontCreateOnDemand()
Calling this function will prevent Get() from automatically creating a new config object if

the current one is NULL. It might be useful to call it near the program end to prevent new
config object "accidental" creation.

wxConfigBase::DeleteAll

bool DeleteAll()

Delete the whole underlying object (disk file, registry key, ...). Primarly for use by
desinstallation routine.

wxConfigBase::DeleteEntry

bool DeleteEntry(const wxString& key, bool bDeleteGrouplfEmpty = TRUE)

Deletes the specified entry and the group it belongs to if it was the last key in it and the
second parameter is true.

wxConfigBase::DeleteGroup

184

CHAPTER 6

bool DeleteGroup(const wxString& key)

Delete the group (with all subgroups)

wxConfigBase::Exists

bool Exists(wxString& strName) const

returns TRUE if either a group or an entry with a given name exists

wxConfigBase::Flush

bool Flush(bool bCurrentOnly = FALSE)

permanently writes all changes (otherwise, they're only written from object's destructor)

wxConfigBase::Get

static wxConfigBase * Get(bool CreateOnDemand = TRUE)

Get the current config object. If there is no current object andCreateOnDemand is
TRUE, creates one (using Create) unless DontCreateOnDemand was called previously.

wxConfigBase::GetAppName

wxString GetAppName() const

Returns the application name.

wxConfigBase::GetEntryType

enum wxConfigBase::EntryType GetEntryType(const wxString& name) const

Returns the type of the given entry or Unknown if the entry doesn't exist. This function
should be used to decide which version of Read() should be used because some of
wxConfig implementations will complain about type mismatch otherwise: e.g., an attempt
to read a string value from an integer key with wxRegConfig will fail.

The result is an element of enum EntryType:

enum EntryType
{
Unknown,
String,
Boolean,
Integer,

185

CHAPTER 6

Float
}i

wxConfigBase::GetFirstGroup

bool GetFirstGroup(wxString& str, long& index) const

Gets the first group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method takes no arguments and returns a 3-element list (
continue, str, index).

wxConfigBase::GetFirstEntry

bool GetFirstEntry(wxString& str, long& index) const

Gets the first entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method takes no arguments and returns a 3-element list (
continue, str, index).

wxConfigBase::GetNextGroup

bool GetNextGroup(wxString& str, long& index) const

Gets the next group.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the
continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method only takes the index parameter and returns a 3-
element list (continue, str, index).

wxConfigBase::GetNextEntry

bool GetNextEntry(wxString& str, long& index) const

Gets the next entry.

wxPython note: The wxPython version of this method returns a 3-tuple consisting of the

186

CHAPTER 6

continue flag, the value string, and the index for the next call.

wxPerl note: In wxPerl this method only takes the index parameter and returns a 3-
element list (continue, str, index).

wxConfigBase::GetNumberOfEntries

uint GetNumberOfEntries(bool bRecursive = FALSE) const

wxConfigBase::GetNumberOfGroups

uint GetNumberOfGroups(bool bRecursive = FALSE) const

Get number of entries/subgroups in the current group, with or without its subgroups.

wxConfigBase::GetPath

const wxString& GetPath() const

Retrieve the current path (always as absolute path).

wxConfigBase::GetVendorName

wxString GetVendorName() const

Returns the vendor name.

wxConfigBase::HasEntry

bool HasEntry(wxString& strName) const

returns TRUE if the entry by this name exists

wxConfigBase::HasGroup

bool HasGroup(const wxString& strName) const

returns TRUE if the group by this name exists

wxConfigBase::IsExpandingEnvVars

bool IsExpandingEnvVars() const

187

CHAPTER 6

Returns TRUE if we are expanding environment variables in key values.

wxConfigBase::IsRecordingDefaults

bool IsRecordingDefaults() const

Returns TRUE if we are writing defaults back to the config file.

wxConfigBase::Read

bool Read(const wxString& key, wxString* str) const

Read a string from the key, returning TRUE if the value was read. If the key was not
found, stris not changed.

bool Read(const wxString& key, wxString* str, const wxString& defaultVal) const
Read a string from the key. The default value is returned if the key was not found.
Returns TRUE if value was really read, FALSE if the default was used.

wxString Read(const wxString& key, const wxString& defaultVal) const

Another version of Read(), returning the string value directly.

bool Read(const wxString& key, long* /) const

Reads a long value, returning TRUE if the value was found. If the value was not found, /
is not changed.

bool Read(const wxString& key, long* /long defaultVal) const

Reads a long value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

long Read(const wxString& key, long defaultVal) const

Reads a long value from the key and returns it. defaultVal is returned if the key is not
found.

NB: writing

conf->Read ("key", 0);

won't work because the call is ambiguous: compiler can not choose between twoRead

188

CHAPTER 6

functions. Instead, write:

conf->Read ("key", 01);

bool Read(const wxString& key, double* d) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, dis not changed.

bool Read(const wxString& key, double* d, double defaultVal) const

Reads a double value, returning TRUE if the value was found. If the value was not
found, defaultVal is used instead.

bool Read(const wxString& key, bool* b) const

Reads a bool value, returning TRUE if the value was found. If the value was not found, b
is not changed.

bool Read(const wxString& key, bool* d,bool defaultVal) const

Reads a bool value, returning TRUE if the value was found. If the value was not found,
defaultVal is used instead.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Read(key, default="") Returns a string.
Readint(key, default=0) Returns an int.
ReadFloat(key, default=0.0) Returns a floating point number.

wxPerl note: In place of a single overloaded method, wxPerl uses:

Read(key, default="") Returns a string

ReadlInt(key, default=0) Returns an integer
ReadFloat(key, default=0.0) Returns a floating point number
ReadBool(key, default=0) Returns a boolean

wxConfigBase::RenameEntry

bool RenameEntry(const wxString& oldName, const wxString& newName)

Renames an entry in the current group. The entries names (both the old and the new
one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths are
accepted by this function.

189

CHAPTER 6

Returns FALSE if the oldName doesn't exist or if newName already exists.

wxConfigBase::RenameGroup

bool RenameGroup(const wxString& oldName, const wxString& newName)
Renames a subgroup of the current group. The subgroup names (both the old and the
new one) shouldn't contain backslashes, i.e. only simple names and not arbitrary paths
are accepted by this function.

Returns FALSE if the oldName doesn't exist or if newName already exists.

wxConfigBase::Set

static wxConfigBase * Set(wxConfigBase *pConfig)

Sets the config object as the current one, returns the pointer to the previous current
object (both the parameter and returned value may be NULL)

wxConfigBase::SetExpandEnvVars

void SetExpandEnvVars (bool bDolt = TRUE)

Determine whether we wish to expand environment variables in key values.

wxConfigBase::SetPath

void SetPath(const wxString& strPath)

Set current path: if the first character is /', it is the absolute path, otherwise it is a relative
path. '.."is supported. If the strPath doesn't exist it is created.

wxConfigBase::SetRecordDefaults

void SetRecordDefaults(bool bDolt = TRUE)

Sets whether defaults are recorded to the config file whenever an attempt to read read
the value which is not present in it is done.

If on (default is off) all default values for the settings used by the program are written
back to the config file. This allows the user to see what config options may be changed
and is probably useful only for wxFileConfig.

190

CHAPTER 6

wxConfigBase::SetUmask

void SetUmask(int mode)

NB: this function is not in the base wxConfigBase class but is only implemented in
wxFileConfig. Moreover, this function is Unix-specific and doesn't do anything on other
platforms.

SetUmask() allows to set the mode to be used for the config file creation. For example,

to create a config file which is not readable by other users (useful if it stores some
sensitive information, such as passwords), you should do SetUmask (0077).

wxConfigBase::Write

bool Write(const wxString& key, const wxString& value)

bool Write(const wxString& key, long value)

bool Write(const wxString& key, double value)

bool Write(const wxString& key, bool value)

These functions write the specified value to the config file and return TRUE on success.

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

Write(key, value) Writes a string.
Writelnt(key, value) Writes an int.
WriteFloat(key, value) Writes a floating point number.

wxPerl note: In place of a single overloaded method, wxPerl uses:

Write(key, value) Writes a string

Writelnt(key, value) Writes an integer
WriteFloat(key, value) Writes a floating point number
WriteBool(key, value) Writes a boolean

wxConnection

A wxConnection object represents the connection between a client and a server. It is
created by making a connection using a wxClient (p. 126) object, or by the acceptance
of a connection by a wxServer (p. 1123) object. The bulk of a DDE-like (Dynamic Data
Exchange) conversation is controlled by calling members in a wxConnection object or
by overriding its members. The actual DDE-based implementation using

191

CHAPTER 6

wxDDEConnection is available on Windows only, but a platform-independent, socket-
based version of this APl is available using wxTCPConnection, which has the same API.

An application should normally derive a new connection class from wxConnection, in
order to override the communication event handlers to do something interesting.

Derived from

wxConnectionBase
wxObject (p. 958)

Include files

<wx/ipc.h>

Types

wxIPCFormat is defined as follows:

enum wxIPCFormat

{
wxIPC_INVALID =
wxIPC_TEXT =
wxIPC_BITMAP =
wxIPC_METAFILE =
wxIPC_SYLK =
wxIPC_DIF =
wxIPC_TIFF =
wxIPC_OEMTEXT
wxIPC_DIB =
wxIPC_PALETTE
wxIPC_PENDATA
wxIPC_RIFF =
wxIPC_WAVE =
wxIPC_UNICODETEXT
wxIPC_ENHMETAFILE
wxIPC_FILENAME =
wxIPC_LOCALE =
wxIPC_PRIVATE =

}i

/* CF_TEXT */
/* CF_BITMAP */
/* CF_METAFILEPICT */

/* CF_OEMTEXT */
/* CF_DIB */

N N N SN S S SN N~

OWoOoJoyurd W EFE O

~

, /* CF_HDROP */

el e e
U WN O
<

[\
o

See also

wxClient (p. 126), wxServer (p. 1123),Interprocess communications overview (p. 1715)

wxConnection::wxConnection

wxConnection()
wxConnection(char* buffer, int size)

Constructs a connection object. If no user-defined connection object is to be derived

192

CHAPTER 6

from wxConnection, then the constructor should not be called directly, since the default
connection object will be provided on requesting (or accepting) a connection. However, if
the user defines his or her own derived connection object,
thewxServer::OnAcceptConnection (p. 1124) and/or wxClient::OnMakeConnection (p.
127) members should be replaced by functions which construct the new connection
object.

If the arguments of the wxConnection constructor are void then the wxConnection object
manages its own connection buffer, allocating memory as needed. A programmer-
supplied buffer cannot be increased if necessary, and the program will assert if it is not
large enough. The programmer-supplied buffer is included mainly for backwards
compatibility.

wxConnection::Advise

bool Advise(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the server application to advise the client of a change in the data associated

with the given item. Causes the client connection's wxConnection::OnAdvise (p. 193)
member to be called. Returns TRUE if successful.

wxConnection::Execute

bool Execute(char* data, int size = -1, wxIPCFormat format = wxCF_TEXT)

Called by the client application to execute a command on the server. Can also be used
to transfer arbitrary data to the server (similar to wxConnection::Poke (p. 195) in that
respect). Causes the server connection's wxConnection::OnExecute (p. 194) member to
be called. Returns TRUE if successful.

wxConnection::Disconnect

bool Disconnect()

Called by the client or server application to disconnect from the other program; it causes
the wxConnection::OnDisconnect (p. 194) message to be sent to the corresponding
connection object in the other program. Returns TRUE if successful or already
disconnected. The application that calls Disconnect must explicitly delete its side of the
connection.

wxConnection::OnAdvise

virtual bool OnAdvise(const wxString& topic, const wxString& item, char* data, int
size, wxIPCFormat format)

193

CHAPTER 6

Message sent to the client application when the server notifies it of a change in the data
associated with the given item, usingAadvise (p. 193).

wxConnection::OnDisconnect

virtual bool OnDisconnect()

Message sent to the client or server application when the other application notifies it to
end the connection. The default behaviour is to delete the connection object and return
true, so applications should generally override OnDisconnect(finally calling the inherited
method as well) so that they know the connection object is no longer available.

wxConnection::OnExecute

virtual bool OnExecute(const wxString& fopic, char* data, int size, wxIPCFormat
format)

Message sent to the server application when the client notifies it to execute the given
data, using Execute (p. 193). Note that there is no item associated with this message.

wxConnection::OnPoke

virtual bool OnPoke(const wxString& fopic, const wxString& item, char* data, int
size, wxIPCFormat format)

Message sent to the server application when the client notifies it to accept the given
data.

wxConnection::OnRequest

virtual char* OnRequest(const wxString& topic, const wxString& item, int *size,
wxIPCFormat format)

Message sent to the server application when the client calls wxConnection::Request (p.
195). The server's OnRequest (p. 194) method should respond by returning a character
string, or NULL to indicate no data, and setting *size. The character string must of
course persist after the call returns.

wxConnection::OnStartAdvise

virtual bool OnStartAdvise(const wxString& topic, const wxString& item)

Message sent to the server application by the client, when the client wishes to start an
'advise loop' for the given topic and item. The server can refuse to participate by
returning FALSE.

194

CHAPTER 6

wxConnection::OnStopAdvise

virtual bool OnStopAdvise(const wxString& topic, const wxString& item)
Message sent to the server application by the client, when the client wishes to stop an

‘advise loop' for the given topic and item. The server can refuse to stop the advise loop
by returning FALSE, although this doesn't have much meaning in practice.

wxConnection::Poke

bool Poke(const wxString& item, char* data, int size = -1, wxIPCFormat format =
wxCF_TEXT)

Called by the client application to poke data into the server. Can be used to transfer
arbitrary data to the server. Causes the server connection's wxConnection::OnPoke (p.
194) member to be called. If size is -1 the size is computed from the string length of
data.

Returns TRUE if successful.

wxConnection::Request

char* Request(const wxString& item, int *size, wxIPCFormat format = wxIPC_TEXT)
Called by the client application to request data from the server. Causes the server
connection's wxConnection::OnRequest (p. 194) member to be called. Size may be
NULL or a pointer to a variable to receive the size of the requested item.

Returns a character string (actually a pointer to the connection's buffer) if successful,
NULL otherwise. This buffer does not need to be deleted.

wxConnection::StartAdvise

bool StartAdvise(const wxString& item)
Called by the client application to ask if an advise loop can be started with the server.

Causes the server connection's wxConnection::OnStartAdvise (p. 194) member to be
called. Returns TRUE if the server okays it, FALSE otherwise.

wxConnection::StopAdvise

bool StopAdvise(const wxString& item)

Called by the client application to ask if an advise loop can be stopped. Causes the

195

CHAPTER 6

server connection's wxConnection::OnStopAdvise (p. 195) member to be called.
Returns TRUE if the server okays it, FALSE otherwise.

wxContextHelp

This class changes the cursor to a query and puts the application into a 'context-
sensitive help mode'. When the user left-clicks on a window within the specified window,
a wxEVT_HELP event is sent to that control, and the application may respond to it by
popping up some help.

For example:
wxContextHelp contextHelp (myWindow) ;
There are a couple of ways to invoke this behaviour implicitly:

e Use the wxDIALOG_EX_CONTEXTHELP style for a dialog (Windows only).
This will put a question mark in the titlebar, and Windows will put the application
into context-sensitive help mode automatically, with further programming.

e Create a wxContextHelpButton (p. 197), whose predefined behaviour is to
create a context help object. Normally you will write your application so that this
button is only added to a dialog for non-Windows platforms (use
wxDIALOG_EX_CONTEXTHELP on Windows).

Derived from
wxObject (p. 958)
Include files
<wx/cshelp.h>

See also

wxHelpEvent (p. 658), wxHelpController (p. 651), wxContextHelpButton (p. 197)

wxContextHelp::wxContextHelp

wxContextHelp(wxWindow* window = NULL, bool doNow = TRUE)

Constructs a context help object, calling BeginContextHelp (p. 197) if doNow is TRUE
(the default).

If window is NULL, the top window is used.

196

CHAPTER 6

wxContextHelp::~wxContextHelp

~wxContextHelp()

Destroys the context help object.

wxContextHelp::BeginContextHelp

bool BeginContextHelp(wxWindow* window = NULL)

Puts the application into context-sensitive help mode. window is the window which will
be used to catch events; if NULL, the top window will be used.

Returns TRUE if the application was successfully put into context-sensitive help mode.
This function only returns when the event loop has finished.

wxContextHelp::EndContextHelp

bool EndContextHelp()

Ends context-sensitive help mode. Not normally called by the application.

wxContextHelpButton

Instances of this class may be used to add a question mark button that when pressed,
puts the application into context-help mode. It does this by creating a wxContextHelp (p.
196) object which itself generates a wxEVT_HELP event when the user clicks on a
window.

On Windows, you may add a question-mark icon to a dialog by use of the
wxDIALOG_EX_CONTEXTHELP extra style, but on other platforms you will have to add
a button explicitly, usually next to OK, Cancel or similar buttons.

Derived from

wxBitmapButton (p. 72)
wxButton (p. 94)
wxControl (p. 198)
wxWindow (p. 1404)
wxEvtHandler (p. 445)
wxObject (p. 958)

Include files

197

CHAPTER 6

<wx/cshelp.h>
See also

wxBitmapButton (p. 72), wxContextHelp (p. 196)

wxContextHelpButton::wxContextHelpButton

wxContextHelpButton()

Default constructor.

wxContextHelpButton(wxWindow* parent, wxWindowlID id =
wxID_CONTEXT_HELP, const wxPoint& pos = wxDefaultPosition, const wxSize&
size = wxDefaultSize, long style = wxBU_AUTODRAW)

Constructor, creating and showing a context help button.

Parameters

parent
Parent window. Must not be NULL.

id
Button identifier. Defaults to wxID_CONTEXT_HELP.
pos
Button position.
size
Button size. If the default size (-1, -1) is specified then the button is sized
appropriately for the question mark bitmap.
style
Window style.
Remarks

Normally you need pass only the parent window to the constructor, and use the defaults
for the remaining parameters.

wxControl

198

CHAPTER 6

This is the base class for a control or 'widget'.

A control is generally a small window which processes user input and/or displays one or
more item of data.

Derived from
wxWindow (p. 1404)
wxEvtHandler (p. 445)
wxObject (p. 958)
Include files
<wx/control.h>

See also

wxValidator (p. 1386)

wxControl::Command

void Command(wxCommandEvent& event)

Simulates the effect of the user issuing a command to the item. See wxCommandEvent
(p. 164).

wxControl::GetLabel

wxString& GetLabel()

Returns the control's text.

wxControl::SetLabel

void SetLabel(const wxString& /abel)

Sets the item's text.

wxCountingOutputStream

wxCountingOutputStream is a specialized output stream which does not write any data
anyway, instead it counts how many bytes would get written if this were a normal

199

CHAPTER 6

stream. This can sometimes be useful or required if some data gets serialized to a
stream or compressed by using stream compression and thus the final size of the
stream cannot be known other than pretending to write the stream. One case where the
resulting size would have to be known is if the data has to be written to a piece of
memory and the memory has to be allocated before writing to it (which is probably
always the case when writing to a memory stream).

Derived from

wxQutputStream (p. 963) wxStreamBase (p. 1210)

Include files

<wx/stream.h>

wxCountingOutputStream::wxCountingOutputStream

wxCountingOutputStream()

Creates a wxCountingOutputStream object.

wxCountingOutputStream::~wxCountingOutputStream

~wxCountingOutputStream()

Destructor.

wxCountingOutputStream::GetSize

size_t GetSize() const

Returns the current size of the stream.

wxCriticalSection

A critical section object is used for exactly the same purpose as mutexes (p. 942). The
only difference is that under Windows platform critical sections are only visible inside
one process, while mutexes may be shared between processes, so using critical
sections is slightly more efficient. The terminology is also slightly different: mutex may be
locked (or acquired) and unlocked (or released) while critical section is entered and left
by the program.

200

CHAPTER 6

Finally, you should try to use wxCriticalSectionLocker (p. 202) class whenever possible
instead of directly using wxCriticalSection for the same reasons wxMutexLocker (p. 945)
is preferrable to wxMutex (p. 942) - please see wxMutex for an example.

Derived from

None.

Include files

<wx/thread.h>

See also

wxThread (p. 1303), wxCondition (p. 173), wxMutexLocker (p. 945), wxCriticalSection (p.
200)

wxCriticalSection::wxCriticalSection

wxCriticalSection()

Default constructor initializes critical section object.

wxCriticalSection::~wxCriticalSection

~wxCriticalSection()

Destructor frees the resources.

wxCriticalSection::Enter

void Enter()
Enter the critical section (same as locking a mutex). There is no error return for this

function. After entering the critical section protecting some global data the thread running
in critical section may safely use/modify it.

wxCriticalSection::Leave

void Leave()

Leave the critical section allowing other threads use the global data protected by it.
There is no error return for this function.

201

CHAPTER 6

wxCriticalSectionLocker

This is a small helper class to be used with wxCriticalSection (p. 200) objects. A
wxCriticalSectionLocker enters the critical section in the constructor and leaves it in the
destructor making it much more difficult to forget to leave a critical section (which, in
general, will lead to serious and difficult to debug problems).

Example of using it:

void Set Foo()
{

// gs_critSect is some (global) critical section guarding access to
the

// object "foo"
wxCriticalSectionLocker locker (gs_critSect);

if (...0)
{
// do something

return;

}

// do something else

return;

}

Without wxCriticalSectionLocker, you would need to remember to manually leave the
critical section before each return.

Derived from
None.
Include files
<wx/thread.h>
See also

wxCriticalSection (p. 200), wxMutexLocker (p. 945)

wxCriticalSectionLocker::wxCriticalSectionLocker

wxCriticalSectionLocker(wxCriticalSection& criticalsection)

Constructs a wxCriticalSectionLocker object associated with givencriticalsection and

202

CHAPTER 6

enters it.

wxCriticalSectionLocker::~wxCriticalSectionLocker

~wxCriticalSectionLocker()

Destructor leaves the critical section.

wxCSConv

This class converts between any character sets and Unicode. It has one predefined
instance, wxConvLocal, for the default user character set.

Derived from
wxMBConv (p. 866)
Include files
<wx/strconv.h>
See also

wxMBConv (p. 866), wxEncodingConverter (p. 437), wxMBConv classes overview (p.
1598)

wxCSConv::wxCSConv

wxCSConv(const wxChar* charset)

Constructor. Specify the name of the character set you want to convert from/to.

wxCSConv::~wxCSConv

~wxCSConv()

Destructor.

wxCSConv::LoadNow

203

CHAPTER 6

void LoadNow()

If the conversion tables needs to be loaded from disk, this method will do so. Otherwise,
they will be loaded when any of the conversion methods are called.

wxCSConv::MB2WC

size_t MB2WC(wchar_t* buf, const char* psz, size_t n) const

Converts from the selected character set to Unicode. Returns the size of the destination
buffer.

wxCSConv::WC2MB

size_t WC2MB(char* buf, const wchar_t* psz, size_t n) const

Converts from Unicode to the selected character set. Returns the size of the destination
buffer.

wxCursor

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a
picture that might indicate the interpretation of a mouse click. As with icons, cursors in X
and MS Windows are created in a different manner. Therefore, separate cursors will be
created for the different environments. Platform-specific methods for creating a
wxCursor object are catered for, and this is an occasion where conditional compilation
will probably be required (see wxlcon (p. 722) for an example).

A single cursor object may be used in many windows (any subwindow type). The
wxWindows convention is to set the cursor for a window, as in X, rather than to set it
globally as in MS Windows, although a global ::wxSetCursor (p. 1512) is also available
for MS Windows use.

Derived from

wxBitmap (p. 58)

wxGDIObject (p. 569)

wxObject (p. 958)

Include files

<wx/cursor.h>

Predefined objects

204

CHAPTER 6

Objects:

wxNullCursor

Pointers:

wxSTANDARD_ CURSOR
wxHOURGLASS CURSOR
wxCROSS CURSOR

See also

wxBitmap (p. 58), wxlcon (p. 722), wxWindow::SetCursor (p. 1436), ::wxSetCursor (p.
1512)

wxCursor::wxCursor

wxCursor()
Default constructor.

wxCursor(const char bits[], int width, int height, int hotSpotX=-1, int hotSpotY=-1,
const char maskBits[]=NULL)

Constructs a cursor by passing an array of bits (Motif and Xt only). maskBits is used only
under Motif.

If either hotSpotX or hotSpotY is -1, the hotspot will be the centre of the cursor image
(Motif only).

wxCursor(const wxString& cursorName, long type, int hotSpotX=0, int hotSpotY=0)
Constructs a cursor by passing a string resource name or filename.

hotSpotX and hotSpotY are currently only used under Windows when loading from an
icon file, to specify the cursor hotspot relative to the top left of the image.

wxCursor(int cursorld)

Constructs a cursor using a cursor identifier.

wxCursor(const wximage& image)

Constructs a cursor from a wxlmage. The cursor is monochrome, colors with the RGB
elements all greater than 127 will be foreground, colors less than this background. The

mask (if any) will be used as transparent.

In MSW the foreground will be white and the background black. The cursor is resized to

205

CHAPTER 6

32x32 In GTK, the two most frequent colors will be used for foreground and background.
The cursor will be displayed at the size of the image.

wxCursor(const wxCursor& cursor)
Copy constructor. This uses reference counting so is a cheap operation.
Parameters

bits
An array of bits.

maskBits
Bits for a mask bitmap.

width
Cursor width.
height
Cursor height.
hotSpotX
Hotspot x coordinate.
hotSpotY
Hotspot y coordinate.
type
Icon type to load. Under Moitif, type defaults to wxBITMAP_TYPE_XBM. Under
Windows, it defaults to wxBITMAP_TYPE_CUR_RESOURCE.
Under X, the permitted cursor types are:
wxBITMAP_TYPE_XBM Load an X bitmap file.
Under Windows, the permitted types are:
wxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h).
wxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as
specified in the .rc file).
wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is
enabled in setup.h). Specify hotSpotX and
hotSpotY.
cursorld

A stock cursor identifier. May be one of:

206

CHAPTER 6

wxCURSOR_ARROW A standard arrow cursor.

wWxCURSOR_RIGHT_ARROW A standard arrow cursor pointing to the right.

wxCURSOR_BLANK Transparent cursor.

wxCURSOR_BULLSEYE Bullseye cursor.

wxCURSOR_CHAR Rectangular character cursor.

wxCURSOR_CROSS A cross cursor.

wxCURSOR_HAND A hand cursor.

wxCURSOR_IBEAM An |-beam cursor (vertical line).

wxCURSOR_LEFT_BUTTON Represents a mouse with the left button
depressed.

wxCURSOR_MAGNIFIER A magnifier icon.

wxCURSOR_MIDDLE_BUTTON Represents a mouse with the middle button
depressed.

wxCURSOR_NO_ENTRY A no-entry sign cursor.

wxCURSOR_PAINT_BRUSH A paintbrush cursor.

wxCURSOR_PENCIL A pencil cursor.

wxCURSOR_POINT_LEFT A cursor that points left.

wxCURSOR_POINT_RIGHT A cursor that points right.
wxCURSOR_QUESTION_ARROW An arrow and question mark.
wxCURSOR_RIGHT _BUTTON Represents a mouse with the right button

depressed.
wxCURSOR_SIZENESW A sizing cursor pointing NE-SW.
wxCURSOR_SIZENS A sizing cursor pointing N-S.
wxCURSOR_SIZENWSE A sizing cursor pointing NW-SE.
wxCURSOR_SIZEWE A sizing cursor pointing W-E.
wxCURSOR_SIZING A general sizing cursor.
wxCURSOR_SPRAYCAN A spraycan cursor.
wxCURSOR_WAIT A wait cursor.
wxCURSOR_WATCH A watch cursor.
wxCURSOR_ARROWWAIT A cursor with both an arrow and an hourglass,

(windows.)

Note that not all cursors are available on all platforms.

cursor
Pointer or reference to a cursor to copy.

wxPython note: Constructors supported by wxPython are:
wxCursor(name, flags, hotSpotX=0, hotSpotY=0) Constructs a cursor
from a filename
wxStockCursor(id) Constructs a stock cursor
wxPerl note: Constructors supported by wxPerl are:
e::Cursor->new(name, type, hotSpotX = 0, hotSpotY =0)

e::Cursor->new(id)
e::Cursor->new(image)

207

CHAPTER 6

e::Cursor->newData(bits, width, height, hotSpotX = -1, hotSpotY = -1, maskBits = 0)

wxCursor::~wxCursor

~wxCursor()
Destroys the cursor. A cursor can be reused for more than one window, and does not

get destroyed when the window is destroyed. wxWindows destroys all cursors on
application exit, although it is best to clean them up explicitly.

wxCursor::0k

bool Ok() const

Returns TRUE if cursor data is present.

wxCursor::operator =

wxCursor& operator =(const wxCursor& cursor)

Assignment operator, using reference counting. Returns a reference to 'this'.

wxCursor::operator ==

bool operator ==(const wxCursor& cursor)
Equality operator. Two cursors are equal if they contain pointers to the same underlying

cursor data. It does not compare each attribute, so two independently-created cursors
using the same parameters will fail the test.

wxCursor::operator !=

bool operator !=(const wxCursor& cursor)

Inequality operator. Two cursors are not equal if they contain pointers to different
underlying cursor data. It does not compare each attribute.

wxCustomDataObject

wxCustomDataObject is a specialization of wxDataObjectSimple (p. 226) for some
application-specific data in arbitrary (either custom or one of the standard ones). The

208

CHAPTER 6

only restriction is that it is supposed that this data can be copied bitwise (i.e. with
memcpy ()), SO it would be a bad idea to make it contain a C++ object (though C struct is
fine).

By default, wxCustomDataObject stores the data inside in a buffer. To put the data into
the buffer you may use either SetData (p. 210) or TakeData (p. 210) depending on
whether you want the object to make a copy of data or not.

If you already store the data in another place, it may be more convenient and efficient to
provide the data on-demand which is possible too if you override the virtual functions
mentioned below.

Virtual functions to override

This class may be used as is, but if you don't want store the data inside the object but
provide it on demand instead, you should override GetSize (p. 210), GetData (p. 210)
and SetData (p. 210) (or may be only the first two or only the last one if you only allow
reading/writing the data)

Derived from

wxDataObjectSimple (p. 226)
wxDataObject (p. 222)

Include files
<wx/dataobj.h>
See also

wxDataObject (p. 222)

wxCustomDataObject::wxCustomDataObject

wxCustomDataObject(const wxDataFormat& format = wxFormatinvalid)

The constructor accepts a format argument which specifies the (single) format supported
by this object. If it isn't set here, SetFormat (p. 228) should be used.

wxCustomDataObject::~wxCustomDataObject

~wxCustomDataObiject()

The destructor will free the data hold by the object. Notice that although it calls a virtual
Free() (p. 210) function, the base class version will always be called (C++ doesn't allow
calling virtual functions from constructors or destructors), so if you override Free (), you

209

CHAPTER 6

should override the destructor in your class as well (which would probably just call the
derived class' version of Free ()).

wxCustomDataObiject::Alloc

virtual void * Alloc(size_t size)

This function is called to allocate size bytes of memory from SetData(). The default
version just uses the operator new.

wxCustomDataObject::Free

wxPython note: This method expects a string in wxPython. You can pass nearly any
object by pickling it first.

virtual void Free()
This function is called when the data is freed, you may override it to anything you want

(or may be nothing at all). The default version calls operator delete[] on the data.

wxCustomDataObject::GetSize

virtual size_t GetSize() const

Returns the data size in bytes.

wxCustomDataObject::GetData

virtual void * GetData() const

Returns a pointer to the data.

wxCustomDataObject::SetData

virtual void SetData(size_t size, const void *data)

Set the data. The data object will make an internal copy.

wxCustomDataObject::TakeData

virtual void TakeData(size_t size, const void “data)

Like SetData (p. 210), but doesn't copy the data - instead the object takes ownership of

210

CHAPTER 6

the pointer.

wxDatabase

Every database object represents an ODBC connection. The connection may be closed
and reopened.

Derived from

wxObject (p. 958)

Include files

<wx/odbc.h>

See also

wxDatabase overview (p. 1711), wxRecordSet (p. 1056)

A much more robust and feature-rich set of ODBC classes is now available and
recommended for use in place of the wxDatabase class.

See details of these classes in:wxDb (p. 267), wxDbTable (p. 306)

wxDatabase::wxDatabase

wxDatabase()

Constructor. The constructor of the first wxDatabase instance of an application initializes
the ODBC manager.

wxDatabase::~wxDatabase

~wxDatabase()
Destructor. Resets and destroys any associated wxRecordSet instances.

The destructor of the last wxDatabase instance will deinitialize the ODBC manager.

wxDatabase::BeginTrans

bool BeginTrans()

211

CHAPTER 6

Not implemented.

wxDatabase::Cancel

void Cancel()

Not implemented.

wxDatabase::CanTransact

bool CanTransact|()

Not implemented.

wxDatabase::CanUpdate

bool CanUpdate()

Not implemented.

wxDatabase::Close

bool Close()

Resets the statement handles of any associated wxRecordSet objects, and disconnects

from the current data source.

wxDatabase::CommitTrans

bool CommitTrans()

Commits previous transactions. Not implemented.

wxDatabase::ErrorOccured

bool ErrorOccured|)

Returns TRUE if the last action caused an error.

wxDatabase::ErrorSnapshot

212

CHAPTER 6

void ErrorSnapshot(HSTMT statement = SQL_NULL_HSTMT)
This function will be called whenever an ODBC error occured. It stores the error related

information returned by ODBC. If a statement handle of the concerning ODBC action is
available it should be passed to the function.

wxDatabase::GetDatabaseName

wxString GetDatabaseName()

Returns the name of the database associated with the current connection.

wxDatabase::GetDataSource

wxString GetDataSource()

Returns the name of the connected data source.

wxDatabase::GetErrorClass

wxString GetErrorClass()
Returns the error class of the last error. The error class consists of five characters where

the first two characters contain the class and the other three characters contain the
subclass of the ODBC error. See ODBC documentation for further details.

wxDatabase::GetErrorCode

wxRETCODE GetErrorCode()

Returns the error code of the last ODBC function call. This will be one of:

SQL_ERROR General error.

SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.
SQL_SUCCESS The call was successful.

SQL_SUCCESS_WITH_INFO The call was successful, but further information can
be obtained from the ODBC manager.

wxDatabase::GetErrorMessage

wxString GetErrorMessage()

213

CHAPTER 6

Returns the last error message returned by the ODBC manager.

wxDatabase::GetErrorNumber

long GetErrorNumber ()

Returns the last native error. A native error is an ODBC driver dependent error number.

wxDatabase::GetHDBC

HDBC GetHDBC()

Returns the current ODBC database handle.

wxDatabase::GetHENV

HENV GetHENV()

Returns the ODBC environment handle.

wxDatabase::GetInfo

bool Getinfo(long infoType, long *buf)
bool Getinfo(long infoType, const wxString& buf, int bufSize=-1)

Returns requested information. The return value is TRUE if successful, FALSE
otherwise.

infoType is an ODBC identifier specifying the type of information to be returned.

bufis a character or long integer pointer to storage which must be allocated by the
application, and which will contain the information if the function is successful.

bufSize is the size of the character buffer. A value of -1 indicates that the size should be
computed by the GetInfo function.

wxDatabase::GetPassword

wxString GetPassword()

Returns the password of the current user.

214

CHAPTER 6

wxDatabase::GetUsername

wxString GetUsername()

Returns the current username.

wxDatabase::GetODBCVersionFloat

float GetODBCVersionFloat(bool implementation=TRUE)
Returns the version of ODBC in floating point format, e.g. 2.50.

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql.h header file.

This function can return the value 0.0 if the header version number is not defined (for
early versions of ODBC).

wxDatabase::GetODBCVersionString

wxString GetODBCVersionString(bool implementation=TRUE)
Returns the version of ODBC in string format, e.g. "02.50".

implementation should be TRUE to get the DLL version, or FALSE to get the version
defined in the sql.h header file.

This function can return the value "00.00" if the header version number is not defined
(for early versions of ODBC).

wxDatabase::InWaitForDataSource

bool InWaitForDataSource()

Not implemented.

wxDatabase::IsOpen

bool IsOpen()

Returns TRUE if a connection is open.

wxDatabase::Open

215

CHAPTER 6

bool Open(const wxString& datasource, bool exclusive = FALSE, bool readOnly =
TRUE, const wxString& username = "ODBC", const wxString& password = ")

Connect to a data source. datasource contains the name of the ODBC data source. The

parameters exclusive and readOnly are not used.

wxDatabase::OnSetOptions

void OnSetOptions(wxRecordSet *recordSet)

Not implemented.

wxDatabase::OnWaitForDataSource

void OnWaitForDataSource(bool stillExecuting)

Not implemented.

wxDatabase::RollbackTrans

bool RollbackTrans()

Sends a rollback to the ODBC driver. Not implemented.

wxDatabase::SetDataSource

void SetDataSource(const wxString& s)

Sets the name of the data source. Not implemented.

wxDatabase::SetLoginTimeout

void SetLoginTimeout(long seconds)

Sets the time to wait for an user login. Not implemented.

wxDatabase::SetPassword

void SetPassword(const wxString& s)

Sets the password of the current user. Not implemented.

216

CHAPTER 6

wxDatabase::SetSynchronousMode

void SetSynchronousMode(bool synchronous)

Toggles between synchronous and asynchronous mode. Currently only synchronous
mode is supported, so this function has no effect.

wxDatabase::SetQueryTimeout

void SetQueryTimeout(long seconds)

Sets the time to wait for a response to a query. Not implemented.

wxDatabase::SetUsername

void SetUsername(const wxString& s)

Sets the name of the current user. Not implemented.

wxDataFormat

A wxDataFormat is an encapsulation of a platform-specific format handle which is used
by the system for the clipboard and drag and drop operations. The applications are
usually only interested in, for example, pasting data from the clipboard only if the data is
in a format the program understands and a data format is something which uniquely
identifies this format.

On the system level, a data format is usually just a number (CLIPFORMATUNder
Windows or At om under X11, for example) and the standard formats are, indeed, just
numbers which can be implicitly converted to wxDataFormat. The standard formats are:

wxDF_INVALID An invalid format - used as default argument for functions
taking a wxDataFormat argument sometimes

wxDF_TEXT Text format (wxString)

wxDF_BITMAP A bitmap (wxBitmap)

wxDF_METAFILE A metafile (wxMetafile, Windows only)
wxDF_FILENAME A list of filenames

wxDF_HTML An HTML string. This is only valid when passed to

wxSetClipboardData when compiled with Visual C++ in
non-Unicode mode

217

CHAPTER 6

As mentioned above, these standard formats may be passed to any function taking
wxDataFormat argument because wxDataFormat has an implicit conversion from them
(or, to be precise from the type wxDataFormat : : NativeFormat which is the type
used by the underlying platform for data formats).

Aside the standard formats, the application may also use custom formats which are
identified by their names (strings) and not numeric identifiers. Although internally custom
format must be created (or registered) first, you shouldn't care about it because it is done
automatically the first time the wxDataFormat object corresponding to a given format
name is created. The only implication of this is that you should avoid having global
wxDataFormat objects with non-default constructor because their constructors are
executed before the program has time to perform all necessary initialisations and so an
attempt to do clipboard format registration at this time will usually lead to a crash!
Virtual functions to override

None

Derived from

None

See also

Clipboard and drag and drop overview (p. 1688), DnD sample (p. 1575), wxDataObject
(p. 222)

wxDataFormat::wxDataFormat

wxDataFormat(NativeFormat format = wxDF_INVALID)

Constructs a data format object for one of the standard data formats or an empty data
object (use SetType (p. 219) or Setld (p. 219) later in this case)

wxPerl note: In wxPerl this function is named newNative.

wxDataFormat::wxDataFormat

wxDataFormat(const wxChar *format)
Constructs a data format object for a custom format identified by its name format.

wxPerl note: In wxPerl this function is named newUser.

218

CHAPTER 6

wxDataFormat::operator ==

bool operator ==(const wxDataFormat& format) const

Returns TRUE if the formats are equal.

wxDataFormat::operator !=

bool operator !=(const wxDataFormat& format) const

Returns TRUE if the formats are different.

wxDataFormat::Getld

wxString Getld() const

Returns the name of a custom format (this function will fail for a standard format).

wxDataFormat::GetType

NativeFormat GetType() const

Returns the platform-specific number identifying the format.

wxDataFormat::Setld

void Setld(const wxChar *format)

Sets the format to be the custom format identified by the given name.

wxDataFormat::SetType

void SetType(NativeFormat format)

Sets the format to the given value, which should be one of wxDF_XXX constants.

wxDatalnputStream

This class provides functions that read binary data types in a portable way. Data can be
read in either big-endian or little-endian format, little-endian being the default on all

219

CHAPTER 6

architectures.

If you want to read data from text files (or streams) use wxTextInputStream (p. 1296)
instead.

The >> operator is overloaded and you can use this class like a standard C++ iostream.
Note, however, that the arguments are the fixed size types wxUint32, wxInt32 etc and on
a typical 32-bit computer, none of these match to the "long" type (wxInt32 is defined as
signed int on 32-bit architectures) so that you cannot use long. To avoid problems (here
and elsewhere), make use of the wxInt32, wxUint32, etc types.

For example:

wxFileInputStream input ("mytext.dat");
wxDataInputStream store(input);
wxUint8 il;

float £2;

wxString line;

store >> il; // read a 8 bit integer.
store >> 11 >> f2; // read a 8 bit integer followed by float.
store >> line; // read a text line

See also wxDataOutputStream (p. 228).
Derived from

None

Include files

<wx/datstrm.h>

wxDatalnputStream::wxDatalnputStream

wxDatalnputStream(wxInputStream& stream)
wxDatalnputStream(wxInputStream& stream, wxMBConv& conv = wxMBConvUTF8)

Constructs a datastream object from an input stream. Only read methods will be
available. The second form is only available in Unicode build of wxWindows.

Parameters

Stream
The input stream.

conv
Charset conversion object object used to decode strings in Unicode mode (see

220

CHAPTER 6

wxDatalnputStream::ReadString (p. 222)documentation for detailed description).
Note that you must not destroyconv before you destroy this wxDatalnputStream
instance!

wxDatalnputStream::~wxDatalnputStream

~wxDatalnputStream()

Destroys the wxDatalnputStream object.

wxDatalnputStream::BigEndianOrdered

void BigEndianOrdered(bool be order)

If be_orderis TRUE, all data will be read in big-endian order, such as written by
programs on a big endian architecture (e.g. Sparc) or written by Java-Streams (which
always use big-endian order).

wxDatalnputStream::Read8

wxUint8 Read8()

Reads a single byte from the stream.

wxDatalnputStream::Read16

wxUint16 Read16()

Reads a 16 bit unsigned integer from the stream.

wxDatalnputStream::Read32

wxUint32 Read32()

Reads a 32 bit unsigned integer from the stream.

wxDatalnputStream::Read64

wxUint64 Read64()

Reads a 64 bit unsigned integer from the stream.

wxDatalnputStream::ReadDouble

221

CHAPTER 6

double ReadDouble()

Reads a double (IEEE encoded) from the stream.

wxDatalnputStream::ReadString

wxString ReadString()

Reads a string from a stream. Actually, this function first reads a long integer specifying
the length of the string (without the last null character) and then reads the string.

In Unicode build of wxWindows, the fuction first reads multibyte (char*) string from the
stream and then converts it to Unicode using the convobject passed to constructor and
returns the result as wxString. You are responsible for using the same convertor as
when writing the stream.

See also wxDataOutputStream::WriteString (p. 230).

wxDataObject

A wxDataObject represents data that can be copied to or from the clipboard, or dragged
and dropped. The important thing about wxDataObject is that this is a 'smart' piece of
data unlike usual 'dumb' data containers such as memory buffers or files. Being 'smart'
here means that the data object itself should know what data formats it supports and
how to render itself in each of supported formats.

A supported format, incidentally, is exactly the format in which the data can be requested
from a data object or from which the data object may be set. In the general case, an
object may support different formats on 'input’ and 'output’, i.e. it may be able to render
itself in a given format but not be created from data on this format or vice versa.
wxDataObject defines an enumeration type

enum Direction
{
Get
Set

0x01, // format is supported by GetDataHere ()
0x02 // format is supported by SetData ()

}i

which allows to distinguish between them. See wxDataFormat (p. 217) documentation
for more about formats.

Not surprisingly, being 'smart' comes at a price of added complexity. This is reasonable
for the situations when you really need to support multiple formats, but may be annoying
if you only want to do something simple like cut and paste text.

To provide a solution for both cases, wxWindows has two predefined classes which
derive from wxDataObject: wxDataObjectSimple (p. 226) and wxDataObjectComposite

222

CHAPTER 6

(p. 225). wxDataObjectSimple (p. 226) is the simplest wxDataObject possible and only
holds data in a single format (such as HTML or text) and wxDataObjectComposite (p.
225) is the simplest way to implement wxDataObject which does support multiple
formats because it achievs this by simply holding several wxDataObjectSimple objects.

So, you have several solutions when you need a wxDataObject class (and you need one
as soon as you want to transfer data via the clipboard or drag and drop):

1. Use one of the built-in classes You may use wxTextDataObject,
wxBitmapDataObject or wxFileDataObject in the simplest
cases when you only need to support one format and your
data is either text, bitmap or list of files.

2. Use wxDataObjectSimple Deriving from wxDataObjectSimple is the simplest
solution for custom data - you will only support one format
and so probably won't be able to communicate with other
programs, but data transfer will work in your program (or
between different copies of it).

3. Use wxDataObjectComposite This is a simple but powerful solution which allows
you to support any number of formats (either standard or
custom if you combine it with the previous solution).

4. Use wxDataObiject directly This is the solution for maximal flexibility and
efficiency, but it is also is the most difficult to implement.

Please note that the easiest way to use drag and drop and the clipboard with multiple
formats is by using wxDataObjectComposite, but it is not the most efficient one as each
wxDataObjectSimple would contain the whole data in its respective formats. Now
imagine that you want to paste 200 pages of text in your proprietary format, as well as
Word, RTF, HTML, Unicode and plain text to the clipboard and even today's computers
are in trouble. For this case, you will have to derive from wxDataObject directly and
make it enumerate its formats and provide the data in the requested format on demand.

Note that neither the GTK data transfer mechanisms for the clipboard and drag and
drop, nor the OLE data transfer copy any data until another application actually requests
the data. This is in contrast to the 'feel' offered to the user of a program who would
normally think that the data resides in the clipboard after having pressed 'Copy' - in
reality it is only declared to be available.

There are several predefined data object classes derived from wxDataObjectSimple:
wxFileDataObject (p. 477), wxTextDataObject (p. 1285) and wxBitmapDataObject (p.
77) which can be used without change.

You may also derive your own data object classes from wxCustomDataObject (p. 208)
for user-defined types. The format of user-defined data is given as mime-type string
literal, such as "application/word" or "image/png". These strings are used as they are
under Unix (so far only GTK) to identify a format and are translated into their Windows
equivalent under Win32 (using the OLE IDataObject for data exchange to and from the
clipboard and for drag and drop). Note that the format string translation under Windows

223

CHAPTER 6

is not yet finished.

wxPython note: At this time this class is not directly usable from wxPython. Derive a
class from wxPyDataObjectSimple (p. 226) instead.

wxPerl note: This class is not currently usable from wxPerl; you may use
Wx::PIDataObjectSimple (p. 226) instead.

Virtual functions to override

Each class derived directly from wxDataObject must override and implement all of its
functions which are pure virtual in the base class.

The data objects which only render their data or only set it (i.e. work in only one
direction), should return 0 from GetFormatCount (p. 225).

Derived from

None

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1688), DnD sample (p. 1575),
wxFileDataObject (p. 477), wxTextDataObject (p. 1285), wxBitmapDataObject (p. 77),

wxCustomDataObject (p. 208), wxDropTarget (p. 433), wxDropSource (p. 430),
wxTextDropTarget (p. 1287), wxFileDropTarget (p. 482)

wxDataObject::wxDataObject

wxDataObject|()

Constructor.

wxDataObject::~wxDataObject

~wxDataObject()

Destructor.

wxDataObject::GetAllIFormats

224

CHAPTER 6

virtual void GetAllFormats(wxDataFormat *formats, Direction dir = Get) const

Copy all supported formats in the given direction to the array pointed to by formats.
There is enough space for GetFormatCount(dir) formats in it.

wxPerl note: In wxPerl this method only takes the dir parameter. In scalar context it
returns the first format, in list context it returns a list containing all the supported formats.

wxDataObject::GetDataHere

virtual bool GetDataHere(const wxDataFormat& format, void *buf) const

The method will write the data of the format format in the buffer buf and return TRUE on
success, FALSE on failure.

wxDataObject::GetDataSize

virtual size_t GetDataSize(const wxDataFormat& format) const

Returns the data size of the given format format.

wxDataObject::GetFormatCount

virtual size_t GetFormatCount(Direction dir = Gef) const

Returns the number of available formats for rendering or setting the data.

wxDataObject::GetPreferredFormat

virtual wxDataFormat GetPreferredFormat(Direction dir = Getf) const

Returns the preferred format for either rendering the data (if dir is Get, its default value)
or for setting it. Usually this will be the native format of the wxDataObject.

wxDataObject::SetData

virtual bool SetData(const wxDataFormat& format, size_t len, const void *buf)
Set the data in the format format of the length len provided in the buffer buf.

Returns TRUE on success, FALSE on failure.

wxDataObjectComposite

225

CHAPTER 6

wxDataObjectComposite is the simplest wxDataObject (p. 222) derivation which may be
sued to support multiple formats. It contains several wxDataObjectSimple (p. 226)
objects and supports any format supported by at least one of them. Only one of these
data objects ispreferred (the first one if not explicitly changed by using the second
parameter of Add (p. 226)) and its format determines the preferred format of the
composite data object as well.

See wxDataObject (p. 222) documentation for the reasons why you might prefer to use
wxDataObject directly instead of wxDataObjectComposite for efficiency reasons.

Virtual functions to override

None, this class should be used directly.

Derived from

wxDataObject (p. 222)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1688), wxDataObject (p. 222),

wxDataObjectSimple (p. 226), wxFileDataObject (p. 477), wxTextDataObject (p. 1285),
wxBitmapDataObject (p. 77)

wxDataObjectComposite::wxDataObjectComposite

wxDataObjectComposite()

The default constructor.

wxDataObjectComposite::Add

void Add(wxDataObjectSimple “dataObject, bool preferred = FALSE)

Adds the dataObject to the list of supported objects and it becomes the preferred object
if preferredis TRUE.

wxDataObjectSimple

226

CHAPTER 6

This is the simplest possible implementation of the wxDataObject (p. 222) class. The
data object of (a class derived from) this class only supports one format, so the number
of virtual functions to be implemented is reduced.

Notice that this is still an abstract base class and cannot be used but should be derived
from.

wxPython note: If you wish to create a derived wxDataObjectSimple class in wxPython
you should derive the class from wxPyDataObjectSimple in order to get Python-aware
capabilities for the various virtual methods.

wxPerl note: In wxPerl, you need to derive your data object class from
Wx::PIDataObjectSimple.

Virtual functions to override

The objects supporting rendering the data must override GetDataSize (p. 228) and
GetDataHere (p. 228) while the objects which may be set must override SetData (p.
228). Of course, the objects supporting both operations must override all three methods.
Derived from

wxDataObject (p. 222)

Include files

<wx/dataobj.h>

See also

Clipboard and drag and drop overview (p. 1688), DnD sample (p. 1575),
wxFileDataObject (p. 477), wxTextDataObject (p. 1285), wxBitmapDataObject (p. 77)

wxDataObjectSimple::wxDataObjectSimple

wxDataObjectSimple(const wxDataFormat& format = wxFormatinvalid)

Constructor accepts the supported format (none by default) which may also be set later
with SetFormat (p. 228).

wxDataObjectSimple::GetFormat

const wxDataFormat& GetFormat() const

Returns the (one and only one) format supported by this object. It is supposed that the

227

CHAPTER 6

format is supported in both directions.

wxDataObjectSimple::SetFormat

void SetFormat(const wxDataFormat& format)

Sets the supported format.

wxDataObjectSimple::GetDataSize

virtual size_t GetDataSize() const

Gets the size of our data. Must be implemented in the derived class if the object
supports rendering its data.

wxDataObjectSimple::GetDataHere

virtual bool GetDataHere(void “buf) const

Copy the data to the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports rendering its data.

wxPython note: When implementing this method in wxPython, no additional parameters
are required and the data should be returned from the method as a string.

wxDataObjectSimple::SetData

virtual bool SetData(size_t /en, const void “buf)

Copy the data from the buffer, return TRUE on success. Must be implemented in the
derived class if the object supports setting its data.

wxPython note: When implementing this method in wxPython, the data comes as a
single string parameter rather than the two shown here.

wxDataOutputStream

This class provides functions that write binary data types in a portable way. Data can be
written in either big-endian or little-endian format, little-endian being the default on all
architectures.

If you want to write data to text files (or streams) use wxTextOutputStream (p. 1298)

228

CHAPTER 6

instead.

The << operator is overloaded and you can use this class like a standard C++ iostream.
See wxDatalnputStream (p. 219) for its usage and caveats.

See also wxDatalnputStream (p. 219).
Derived from

None

wxDataOutputStream::wxDataOutputStream

wxDataOutputStream(wxOutputStream& stream)

wxDataOutputStream(wxOutputStream& stream, wxMBConv& conv =
wxMBConvUTF8)

Constructs a datastream object from an output stream. Only write methods will be
available. The second form is only available in Unicode build of wxWindows.

Parameters

Stream
The output stream.

conv
Charset conversion object object used to encoding Unicode strings before writing
them to the stream in Unicode mode (see wxDataOutputStream::WriteString (p.
230)documentation for detailed description). Note that you must not destroyconv
before you destroy this wxDataOutputStream instance! It is recommended to use

default value (UTF-8).

wxDataOutputStream::~wxDataOutputStream

~wxDataOutputStream()

Destroys the wxDataOutputStream object.

wxDataOutputStream::BigEndianOrdered

void BigEndianOrdered(bool be_order)

If be_orderis TRUE, all data will be written in big-endian order, e.g. for reading on a
Sparc or from Java-Streams (which always use big-endian order), otherwise data will be

229

CHAPTER 6

written in little-endian order.
wxDataOutputStream::Write8

void Write8(wxUint8 /8)

Writes the single byte i8 to the stream.

wxDataOutputStream::Write16

void Write16(wxUint16 /16)

Writes the 16 bit unsigned integer /16 to the stream.

wxDataOutputStream::Write32

void Write32(wxUint32 i32)

Writes the 32 bit unsigned integer i32 to the stream.

wxDataOutputStream::Write64

void Write64(wxUint64 i64)

Writes the 64 bit unsigned integer i64 to the stream.

wxDataOutputStream::WriteDouble

void WriteDouble(double /)

Writes the double fto the stream using the IEEE format.

wxDataOutputStream::WriteString

void WriteString(const wxString&string)

Writes string to the stream. Actually, this method writes the size of the string before

writing string itself.

In ANSI build of wxWindows, the string is written to the stream in exactly same way it is
represented in memory. In Unicode build, however, the string is first converted to
multibyte representation with conv object passed to stream's constructor (consequently,
ANSI application can read data written by Unicode application, as long as they agree on
encoding) and this representation is written to the stream. UTF-8 is used by default.

230

CHAPTER 6

wxDate

A class for manipulating dates.

NOTE: this class is retained only for compatibility, and has been replaced by
wxDateTime (p. 239). wxDate may be withdrawn in future versions of wxWindows.

Derived from
wxObject (p. 958)
Include files
<wx/date.h>

See also

wxTime (p. 1311)

wxDate::wxDate

wxDate()

Default constructor.

wxDate(const wxDate& date)

Copy constructor.

wxDate(int month, int day, int year)

Constructor taking month, day and year.

wxDate(long julian)

Constructor taking an integer representing the Julian date. This is the number of days
since 1st January 4713 B.C., so to convert from the number of days since 1st January
1901, construct a date for 1/1/1901, and add the number of days.

wxDate(const wxString& dateString)

Constructor taking a string representing a date. This must be either the string TODAY, or
of the form MM/DD/YYYY or MM-DD-YYYY. For example:

wxDate date("11/26/1966");

231

CHAPTER 6

Parameters

date
Date to copy.

month
Month: a number between 1 and 12.

day
Day: a number between 1 and 31.

year
Year, such as 1995, 2005.

wxDate::~wxDate

void ~wxDate()

Destructor.

wxDate::AddMonths

wxDate& AddMonths(int months=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::AddWeeks

wxDate& AddWeeks(int weeks=1)

Adds the given number of weeks to the date, returning a reference to 'this'".

wxDate::AddYears

wxDate& AddYears(int years=1)

Adds the given number of months to the date, returning a reference to 'this'.

wxDate::FormatDate

wxString FormatDate(int fype=-1) const
Formats the date according to type if not -1, or according to the current display type if -1.

Parameters

232

CHAPTER 6

type
-1 or one of:
wxDAY Format day only.
wxMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style:
DAYOFWEEK, MONTH, DAY, YEAR.
wxEUROPEAN Format day, month and year in European style: DAY,

MONTH, YEAR.

wxDate::GetDay

int GetDay() const

Returns the numeric day (in the range 1 to 31).

wxDate::GetDayOfWeek

int GetDayOfWeek() const

Returns the integer day of the week (in the range 1 to 7).

wxDate::GetDayOfWeekName

wxString GetDayOfWeekName() const

Returns the name of the day of week.

wxDate::GetDayOfYear

long GetDayOfYear() const

Returns the day of the year (from 1 to 365).

wxDate::GetDaysInMonth

int GetDaysInMonth() const

Returns the number of days in the month (in the range 1 to 31).

233

CHAPTER 6

wxDate::GetFirstDayOfMonth

int GetFirstDayOfMonth() const

Returns the day of week that is first in the month (in the range 1 to 7).

wxDate::GetJulianDate

long GetJulianDate() const

Returns the Julian date.

wxDate::GetMonth

int GetMonth() const

Returns the month number (in the range 1 to 12).

wxDate::GetMonthEnd

wxDate GetMonthEnd()

Returns the date representing the last day of the month.

wxDate::GetMonthName

wxString GetMonthName() const

Returns the name of the month. Do not delete the returned storage.

wxDate::GetMonthStart

wxDate GetMonthStart() const

Returns the date representing the first day of the month.

wxDate::GetWeekOfMonth

int GetWeekOfMonth() const

Returns the week of month (in the range 1 to 6).

234

CHAPTER 6

wxDate::GetWeekOfYear

int GetWeekOfYear() const

Returns the week of year (in the range 1 to 52).

wxDate::GetYear

int GetYear() const

Returns the year as an integer (such as '1995").

wxDate::GetYearEnd

wxDate GetYearEnd() const

Returns the date representing the last day of the year.

wxDate::GetYearStart

wxDate GetYearStart() const

Returns the date representing the first day of the year.

wxDate::IsLeapYear

bool IsLeapYear() const

Returns TRUE if the year of this date is a leap year.

wxDate::Set

wxDate& Set()

Sets the date to current system date, returning a reference to 'this'.

wxDate& Set(long julian)

Sets the date to the given Julian date, returning a reference to 'this'.

wxDate& Set(int month, int day, int year)

Sets the date to the given date, returning a reference to 'this'.

235

CHAPTER 6

month is a number from 1 to 12.
day is a number from 1 to 31.

yearis a year, such as 1995, 2005.

wxDate::SetFormat

void SetFormat(int format)

Sets the current format type.

Parameters
format
-1 or one of:
wxDAY Format day only.
wxMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style:
DAYOFWEEK, MONTH, DAY, YEAR.
wxEUROPEAN Format day, month and year in European style: DAY,
MONTH, YEAR.

wxDate::SetOption

int SetOption(int option, const bool enable=TRUE)
Enables or disables an option for formatting.
Parameters

option
May be one of:

wxNO_CENTURY The century is not formatted.

wxDATE_ABBR Month and day names are abbreviated to 3
characters when formatting.

wxDate::operator wxString

operator wxString()

Conversion operator, to convert wxDate to wxString by calling FormatDate.

236

CHAPTER 6

wxDate::operator +

wxDate operator +(long /)
wxDate operator +(int J)

Adds an integer number of days to the date, returning a date.

wxDate::operator -

wxDate operator -(long /)

wxDate operator -(int /)

Subtracts an integer number of days from the date, returning a date.
long operator -(const wxDate& date)

Subtracts one date from another, return the number of intervening days.

wxDate::operator +=

wxDate& operator +=(long /)

Postfix operator: adds an integer number of days to the date, returning a reference to
'this' date.

wxDate::operator -=

wxDate& operator -=(long /)

Postfix operator: subtracts an integer number of days from the date, returning a
reference to 'this' date.

wxDate::operator ++

wxDate& operator ++()

Increments the date (postfix or prefix).

wxDate::operator --

237

CHAPTER 6

wxDate& operator --()

Decrements the date (postfix or prefix).

wxDate::operator <

friend bool operator <(const wxDate& date?, const wxDate& date?2)

Function to compare two dates, returning TRUE if date1 is earlier than date2.

wxDate::operator <=

friend bool operator <=(const wxDate& date1, const wxDate& date?2)

Function to compare two dates, returning TRUE if date? is earlier than or equal to date2.

wxDate::operator >

friend bool operator >(const wxDate& date?, const wxDate& date?2)

Function to compare two dates, returning TRUE if date1 is later than date2.

wxDate::operator >=

friend bool operator >=(const wxDate& date1, const wxDate& date?2)

Function to compare two dates, returning TRUE if date1 is later than or equal to date2.

wxDate::operator ==

friend bool operator ==(const wxDate& date1, const wxDate& date?2)

Function to compare two dates, returning TRUE if date1 is equal to date2.

wxDate::operator !=

friend bool operator !=(const wxDate& date1, const wxDate& date?2)

Function to compare two dates, returning TRUE if date? is not equal to date2.

wxDate::operator <<

238

CHAPTER 6

friend ostream& operator <<(ostream& os, const wxDate& date)

Function to output a wxDate to an ostream.

wxDateSpan

The documentation for this section has not yet been written.

wxDateTime

wxDateTime class represents an absolute moment in the time.
Types

The type wxDateTime_t is typedefed as unsigned short and is used to contain the
number of years, hours, minutes, seconds and milliseconds.

Constants

Global constant wxDefaultDateTime and synonym for it wxInvalidDateTime are
defined. This constant will be different from any valid wxDateTime object.

All the following constants are defined inside wxDateTime class (i.e., to refer to them you
should prepend their names with wxDateTime: :).

Time zone symbolic names:

enum TZ

{
// the time in the current time zone
Local,

// zones from GMT (= Greenwhich Mean Time): they're guaranteed
to be

// consequent numbers, so writing something like “GMTO + offset'
is

// safe 1f abs(offset) <= 12

// underscore stands for minus

GMT_12, GMT_11, GMT_10, GMT_9, GMT_8, GMT_7,

GMT_6, GMT_5, GMT_4, GMT_3, GMT_2, GMT_1,

GMTO,

GMT1, GMT2, GMT3, GMT4, GMT5, GMT6,

GMT7, GMT8, GMT9, GMT10, GMT1l1l, GMT1l2,

// Note that GMT12 and GMT_12 are not the same: there is a
difference

// of exactly one day between them

239

CHAPTER 6

// some symbolic names for TZ

// Europe

WET = GMTO,

WEST = GMT1,
Time

CET = GMT1,

CEST = GMT2,
Time

EET = GMT2,

EEST = GMT3,
Time

MSK = GMT3,

MSD = GMT4,

// US and Canada

AST = GMT_A4,

ADT = GMT_3,

EST = GMT_5,

EDT = GMT_4,
Time

CST = GMT_6,

CDT = GMT_5,
Time

MST = GMT_7,

MDT = GMT_6,
Time

PST = GMT_S8,

PDT = GMT_7,
Time

HST = GMT_10,

AKST = GMT_9,

AKDT = GMT_S38,
Time

// Australia

A_WST = GMTS,

A_CST = GMT12 + 1,
(+9.5)

A_EST = GMT10,

A_ESST = GMT11,

// Universal Coordinated Time
name

// for GMT
UTC = GMTO
}i

//
//
//
//

//
//

//
//

//
//

//
//
//

//
//

//
//

Western Europe Time
Western Europe Summer

Central Europe Time
Central Europe Summer

Eastern Europe Time
Eastern Europe Summer

Moscow Time
Moscow Summer Time

Atlantic Standard Time
Atlantic Daylight Time
Eastern Standard Time
Eastern Daylight Saving

Central Standard Time
Central Daylight Saving

Mountain Standard Time
Mountain Daylight Saving

Pacific Standard Time
Pacific Daylight Saving

Hawaiian Standard Time
Alaska Standard Time
Alaska Daylight Saving

Western Standard Time
Central Standard Time

Eastern Standard Time
Eastern Summer Time

the new and politically correct

Month names: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec and
Inv_Month for an invalid.month value are the values of wxDateTime: :Monthenum.

Likewise, Sun, Mon, Tue, Wed, Thu, Fri, Sat, and Inv_WeekDay are the values

inwxDateTime: :WeekDay enum.

Finally, Inv_Year is defined to be an invalid value for year parameter.

GetMonthName() (p. 248) andGetWeekDayName (p. 248) functions use the followign

flags:

enum NameFlags

240

CHAPTER 6

0x01, // return full name
0x02 // return abbreviated name

Name_Full
Name_Abbr

}i

Several functions accept an extra parameter specifying the calendar to use (although
most of them only support now the Gregorian calendar). This parameters is one of the
following values:

enum Calendar

{

Gregorian, // calendar currently in use in Western countries
Julian // calendar in use since —-45 until the 1582 (or
later)
}i

Date calculations often depend on the country and wxDateTime allows to set the country
whose conventions should be used using SetCountry (p. 249). It takes one of the
following values as parameter:

enum Country

{
Country_Unknown, // no special information for this country
Country_Default, // set the default country with SetCountry ()
method
// or use the default country with any other

Country_WesternEurope_Start,

Country_EEC = Country_WesternEurope_Start,
France,

Germany,

UK,

Country_WesternEurope_End = UK,

Russia,

USA
}i

Different parts of the world use different conventions for the week start. In some
countries, the week starts on Sunday, while in others -- on Monday. The ISO standard
doesn't address this issue, so we support both conventions in the functions whose result
depends on it (GetWeekOfYear (p. 256) and GetWeekOfMonth (p. 256)).

The desired behvaiour may be specified by giving one of the following constants as
argument to these functions:

enum WeekFlags

{

Default_First, // Sunday_First for US, Monday_First for the
rest

Monday_First, // week starts with a Monday

Sunday_First // week starts with a Sunday

}i
Derived from

No base class

241

CHAPTER 6

Include files
<wx/datetime.h>
See also

Date classes overview (p. 1591), wxTimeSpan (p. 1319), wxDateSpan (p. 239),
wxCalendarCtrl (p. 99)

Static functions

For convenience, all static functions are collected here. These functions either set or
return the static variables of wxDateSpan (the country), return the current moment, year,
month or number of days in it, or do some general calendar-related actions.

Please note that although several function accept an extra Calendamparameter, it is
currently ignored as only the Gregorian calendar is supported. Future versions will
support other calendars.

wxPython note: These methods are standalone functions named
wxDateTime_<StaticMethodName> in wxPython.

SetCountry (p. 249)

GetCountry (p. 247)
IsWestEuropeanCountry (p. 249)
GetCurrentYear (p. 247)
ConvertYearToBC (p. 246)
GetCurrentMonth (p. 247)
IsLeapYear (p. 249)
GetCentury (p. 247)
GetNumberOfDays (p. 248)
GetNumberOfDays (p. 248)
GetMonthName (p. 248)
GetWeekDayName (p. 248)
GetAmPmStrings (p. 246)
IsDSTApplicable (p. 249)
GetBeginDST (p. 247)
GetEndDST (p. 248)

Now (p. 249)

UNow (p. 250)

Today (p. 250)

Constructors, assignment operators and setters

Constructors and various set () methods are collected here. If you construct a date

242

CHAPTER 6

object from separate values for day, month and year, you should use IsValid (p. 254)
method to check that the values were correct as constructors can not return an error
code.

wxDateTime() (p. 250)

wxDateTime(time_t) (p. 250)

wxDateTime(struct tm) (p. 251)

wxDateTime(double jdn) (p. 251)

wxDateTime(h, m, s, ms) (p. 251)

wxDateTime(day, mon, year, h, m, s, ms) (p. 251)

SetToCurrent (p. 251)

Set(time_t) (p. 252)

Set(struct tm) (p. 252)

Set(double jdn) (p. 252)

Set(h, m, s, ms) (p. 252)

Set(day, mon, year, h, m, s, ms) (p. 252)

SetFromDOS(unsigned long ddt) (p. 257)

ResetTime (p. 253)

SetYear (p. 253)

SetMonth (p. 253)

SetDay (p. 252)

SetHour (p. 253)

SetMinute (p. 253)

SetSecond (p. 253)

SetMillisecond (p. 254)

operator=(time_t) (p. 254)

operator=(struct tm) (p. 254)
Accessors

Here are the trivial accessors. Other functions, which might have to perform some more
complicated calculations to find the answer are under the Calendar calculations (p. 245)
section.

IsValid (p. 254)

GetTicks (p. 254)
GetYear (p. 254)
GetMonth (p. 255)
GetDay (p. 255)
GetWeekDay (p. 255)
GetHour (p. 255)
GetMinute (p. 255)
GetSecond (p. 255)
GetMillisecond (p. 255)
GetDayOfYear (p. 256)
GetWeekOfYear (p. 256)
GetWeekOfMonth (p. 256)
GetYearDay (p. 265)
IsWorkDay (p. 256)
IsGregorianDate (p. 256)
GetAsDOS (p. 257)

243

CHAPTER 6

Date comparison

There are several function to allow date comparison. To supplement them, a few global
operators >, < etc taking wxDateTime are defined.

IsEqualTo (p. 257)
IsEarlierThan (p. 257)
IsLaterThan (p. 257)
IsStrictlyBetween (p. 257)
IsBetween (p. 258)
IsSameDate (p. 258)
IsSameTime (p. 258)
IsEqualUpTo (p. 258)

Date arithmetics

These functions carry out arithmetics (p. 1593) on the wxDateTime objects. As explained
in the overview, either wxTimeSpan or wxDateSpan may be added to wxDateTime,
hence all functions are overloaded to accept both arguments.

Also, both add () and subtract () have both const and non-const version. The first
one returns a new obejct which represents the sum/difference of the original one with the
argument while the second form modifies the object to which it is applied. The operators
-= and += are defined to be equivalent to the second forms of these functions.

Add(wxTimeSpan) (p. 258)

Add(wxDateSpan) (p. 259)

Subtract(wxTimeSpan) (p. 258)
Subtract(wxDateSpan) (p. 259)
Subtract(wxDateTime) (p. 259)
oparator+=(wxTimeSpan) (p. 25
oparator+=(wxDateSpan) (p. 259)
oparator-=(wxTimeSpan) (p. 258)
oparator-=(wxDateSpan) (p. 259)

8)

Sooo

Parsing and formatting dates

These functions convert wxDateTime obejcts to and from text. The conversions to text
are mostly trivial: you can either do it using the default date and time representations for
the current locale (FormatDate (p. 261) and FormatTime (p. 261)), using the
international standard representation defined by ISO 8601 (Format/SODate (p. 262) and
FormatISOTime (p. 262)) or by specifying any format at all and using Format (p. 261)
directly.

The conversions from text are more interesting, as there are much more possibilities to
care about. The simplest cases can be taken care of with ParseFormat (p. 260) which
can parse any date in the given (rigid) format. ParseRfc822Date (p. 259) is another

244

CHAPTER 6

function for parsing dates in predefined format -- the one of RFC 822 which (still...)
defines the format of email messages on the Internet. This format can not be described
with strptime (3) -like format strings used by Format (p. 261), hence the need for a
separate function.

But the most interesting functions are ParseTime (p. 261), ParseDate (p. 261) and
ParseDateTime (p. 260). They try to parse the date ans time (or only one of them) in
'free' format, i.e. allow them to be specified in any of possible ways. These functions will
usually be used to parse the (interactive) user input which is not bound to be in any
predefined format. As an example, ParseDateTime (p. 260) can parse the strings such
as "tomorrow", "March first" and even "next Sunday".

ParseRfc822Date (p. 259)
ParseFormat (p. 260)
ParseDateTime (p. 260)
ParseDate (p. 261)
ParseTime (p. 261)
Format (p. 261)
FormatDate (p. 261)
FormatTime (p. 261)
FormatISODate (p. 262)
FormatISOTime (p. 262)

Calendar calculations

The functions in this section perform the basic calendar calculations, mostly related to
the week days. They allow to find the given week day in the week with given number
(either in the month or in the year) and so on.

All (non-const) functions in this section don't modify the time part of the wxDateTime --
they only work with the date part of it.

SetToWeekDayInSameWeek (p. 262)
GetWeekDayInSameWeek (p. 262)
SetToNextWeekDay (p. 262)
GetNextWeekDay (p. 263)
SetToPrevWeekDay (p. 263)
GetPrevWeekDay (p. 263)
SetToWeekDay (p. 263)
GetWeekDay (p. 263)
SetTolLastWeekDay (p. 263)
GetLastWeekDay (p. 264)
SetToTheWeek (p. 264)

GetWeek (p. 264)
SetTolLastMonthDay (p. 264)
GetLastMonthDay (p. 264)
SetToYearDay (p. 265)
GetYearDay (p. 265)

245

CHAPTER 6

Astronomical/historical functions

Some degree of support for the date units used in astronomy and/or history is provided.
You can construct a wxDateTime object from aJDN (p. 252) and you may also get its
JDN,MJUD (p. 265) orRata Die number (p. 266) from it.

wxDate Time(double jdn) (p. 251)
Set(double jdn) (p. 252)
GetJulianDayNumber (p. 265)
GetJDN (p. 265)
GetModifiedJulianDayNumber (p. 265)
GetMJD (p. 266)

GetRataDie (p. 266)

Time zone and DST support

Please see the time zone overview (p. 1594) for more information about time zones.
ormally, these functions should be rarely used.

ToTimezone (p. 266)
MakeTimezone (p. 266)
ToGMT (p. 266)
MakeGMT (p. 266)
GetBeginDST (p. 247)
GetEndDST (p. 248)
IsDST (p. 267)

wxDateTime::ConvertYearToBC

static int ConvertYearToBC(int year)

Converts the year in absolute notation (i.e. a number which can be negative, positive or
zero) to the year in BC/AD notation. For the positive years, nothing is done, but the year
0 is year 1 BC and so for other years there is a difference of 1.

This function should be used like this:

wxDateTime dt (...);

int y = dt.GetYear();

printf ("The year is %d%s", wxDateTime::ConvertYearToBC(y), y > 0 ?
"AD" . "BC") ;

wxDateTime::GetAmPmStrings

static void GetAmPmStrings(wxString *am, wxString *pm)

246

CHAPTER 6

Returns the translations of the strings 2M and PM used for time formatting for the current
locale. Either of the pointers may be NULL if the corresponding value is not needed.

wxDateTime::GetBeginDST

static wxDateTime GetBeginDST(int year = Inv_Year, Country country =
Country_Defaul)

Get the beginning of DST for the given country in the given year (current one by default).
This function suffers from limitations described inDST overview (p. 1594).

See also

GetEndDST (p. 248)

wxDateTime::GetCountry

static Country GetCountry()

Returns the current default country. The default country is used for DST calculations, for
example.

See also

SetCountry (p. 249)

wxDateTime::GetCurrentYear

static int GetCurrentYear(Calendar cal = Gregorian)

Get the current year in given calendar (only Gregorian is currently supported).

wxDateTime::GetCurrentMonth

static Month GetCurrentMonth(Calendar cal = Gregorian)

Get the current month in given calendar (only Gregorian is currently supported).

wxDateTime::GetCentury

static int GetCentury(int year = Inv_Year)

Get the current century, i.e. first two digits of the year, in given calendar (only Gregorian
is currently supported).

247

CHAPTER 6

wxDateTime::GetEndDST

static wxDateTime GetEndDST(int year = Inv_Year, Country country =
Country_Defaul)

Returns the end of DST for the given country in the given year (current one by default).

See also

GetBeginDST (p. 247)

wxDateTime::GetMonthName

static wxString GetMonthName(Month month, NameFlags flags = Name_Full)

Gets the full (default) or abbreviated (specify Name_Abbr name of the given month.

See also

GetWeekDayName (p. 248)

wxDateTime::GetNumberOfDays

static wxDateTime_t GetNumberOfDays(int year, Calendar cal = Gregorian)

static wxDateTime_t GetNumberOfDays(Month month, int year = Inv_Year, Calendar
cal = Gregorian)

Returns the number of days in the given year or in the given month of the year.
The only supported value for cal parameter is currently Gregorian.
wxPython note: These two methods are named GetNumberOfDaysInYearand

GetNumberOfDaysInMonth in wxPython.

wxDateTime::GetWeekDayName

static wxString GetWeekDayName(WeekDay weekday, NameFlags flags =
Name_Full)

Gets the full (default) or abbreviated (specify Name_Abbr name of the given week day.

See also

GetMonthName (p. 248)

248

CHAPTER 6

wxDateTime::IsLeapYear

static bool IsLeapYear(int year = Inv_Year, Calendar cal = Gregorian)
Returns TRUE if the yearis a leap one in the specified calendar.

This functions supports Gregorian and Julian calendars.

wxDateTime::IsWestEuropeanCountry

static bool IsWestEuropeanCountry(Country country = Country Default)
This function returns TRUE if the specified (or default) country is one of Western

European ones. It is used internally by wxDateTime to determine the DST convention
and date and time formatting rules.

wxDateTime::IsDSTApplicable

static bool IsDSTApplicable(int year = Inv_Year, Country country = Country _Default)

Returns TRUE if DST was used n the given year (the current one by default) in the given
country.

wxDateTime::Now

static wxDateTime Now()

Returns the object corresponding to the current time.

Example:
wxDateTime now = wxDateTime: :Now () ;
printf ("Current time in Paris:\t%s\n", now.Format ("%c",

wxDateTime: :CET) .c_str());

Note that this function is accurate up to second: wxDateTime::UNow (p. 250) should be
used for better precision (but it is less efficient and might not be available on all
platforms).

See also

Today (p. 250)

wxDateTime::SetCountry

249

CHAPTER 6

static void SetCountry(Country country)

Sets the country to use by default. This setting influences the DST calculations, date
formatting and other things.

The possible values for country parameter are enumerated inwxDateTime constants
section (p. 239).

See also

GetCountry (p. 247)

wxDateTime::Today

static wxDateTime Today()

Returns the object corresponding to the midnight of the current day (i.e. the same as
Now() (p. 249), but the time part is set to 0).

See also

Now (p. 249)

wxDateTime::UNow

static wxDateTime UNow()

Returns the object corresponding to the current time including the milliseconds if a
function to get time with such precision is available on the current platform (supported
under most Unices and Win32).

See also

Now (p. 249)

wxDateTime::wxDateTime

wxDateTime()

Default constructor. Use one of set () functions to initialize the object later.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(time_t timet)

Same as Set (p. 250).

250

CHAPTER 6

wxPython note: This constructor is named wxDateTimeFromTimeT in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(const struct tm& im)
Same as Set (p. 251)

wxPython note: Unsupported.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(double jdn)
Same as Set (p. 251)

wxPython note: This constructor is named wxDateTimeFromJDN in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(wxDateTime_t hour, wxDateTime_t minute = 0,
wxDateTime_t second = 0, wxDateTime_t millisec = 0)

Same as Set (p. 251)

wxPython note: This constructor is named wxDateTimeFromHMS in wxPython.

wxDateTime::wxDateTime

wxDateTime& wxDateTime(wxDateTime_t day, Month month = Inv_Month, int
Inv_Year, wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second =
0, wxDateTime_t millisec = 0)

Same as Set (p. 252)

wxPython note: This constructor is named wxDateTimeFromDMY in wxPython.

wxDateTime::SetToCurrent

wxDateTime& SetToCurrent()

Sets the date and time of to the current values. Same as assigning the result of Now()
(p. 249) to this object.

251

CHAPTER 6

wxDateTime::Set

wxDateTime& Set(time_t timet)
Constructs the object from timet value holding the number of seconds since Jan 1, 1970.

wxPython note: This method is named SetTimeT in wxPython.

wxDateTime::Set

wxDateTime& Set(const struct tm& tm)
Sets the date and time from the broken down representation in the standardtm structure.

wxPython note: Unsupported.

wxDateTime::Set

wxDateTime& Set(double jadn)

Sets the date from the so-called Julian Day Number.

By definition, the Julian Day Number, usually abbreviated as JDN, of a particular instant
is the fractional number of days since 12 hours Universal Coordinated Time (Greenwich

mean noon) on January 1 of the year -4712 in the Julian proleptic calendar.

wxPython note: This method is named set JDN in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t hour, wxDateTime_t minute = 0, wxDateTime_t
second = 0, wxDateTime_t millisec = 0)

Sets the date to be equal to Today (p. 250) and the time from supplied parameters.

wxPython note: This method is named setHMS in wxPython.

wxDateTime::Set

wxDateTime& Set(wxDateTime_t day, Month month = Inv_Month, int year = Inv_Year,
wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t second = 0,
wxDateTime_t millisec = 0)

Sets the date and time from the parameters.

252

CHAPTER 6

wxDateTime::ResetTime

wxDateTime& ResetTime()

Reset time to midnight (00:00:00) without changing the date.

wxDateTime::SetYear

wxDateTime& SetYear(int year)

Sets the year without changing other date components.

wxDateTime::SetMonth

wxDateTime& SetMonth(Month month)

Sets the month without changing other date components.

wxDateTime::SetDay

wxDateTime& SetDay(wxDateTime_t day)

Sets the day without changing other date components.

wxDateTime::SetHour

wxDateTime& SetHour(wxDateTime_t hour)

Sets the hour without changing other date components.

wxDateTime::SetMinute

wxDateTime& SetMinute(wxDateTime_t minute)

Sets the minute without changing other date components.

wxDateTime::SetSecond

wxDateTime& SetSecond(wxDateTime_t second)

Sets the second without changing other date components.

253

CHAPTER 6

wxDateTime::SetMillisecond

wxDateTime& SetMillisecond(wxDateTime_t millisecond)

Sets the millisecond without changing other date components.

wxDateTime::operator=

wxDateTime& operator(time_t timetl)

Same as Set (p. 252).

wxDateTime::operator=

wxDateTime& operator(const struct tm& im)

Same as Set (p. 252).

wxDateTime::IsValid

bool IsValid() const

Returns TRUE if the object represents a valid time moment.

wxDateTime::GetTm

Tm GetTm(const TimeZone& tz = Local) const

Returns broken down representation of the date and time.

wxDateTime::GetTicks

time_t GetTicks() const

Returns the number of seconds since Jan 1, 1970. An assert failure will occur if the date

is not in the range covered by time_t type.

wxDateTime::GetYear

int GetYear(const TimeZone& {z = Local) const

Returns the year in the given timezone (local one by default).

254

CHAPTER 6

wxDateTime::GetMonth

Month GetMonth(const TimeZone& {z = Local) const

Returns the month in the given timezone (local one by default).

wxDateTime::GetDay

wxDateTime_t GetDay(const TimeZone& tz = Local) const

Returns the day in the given timezone (local one by default).

wxDateTime::GetWeekDay

WeekDay GetWeekDay(const TimeZone& t{z = Local) const

Returns the week day in the given timezone (local one by default).

wxDateTime::GetHour

wxDateTime_t GetHour(const TimeZone& iz = Local) const

Returns the hour in the given timezone (local one by default).

wxDateTime::GetMinute

wxDateTime_t GetMinute(const TimeZone& {z = Local) const

Returns the minute in the given timezone (local one by default).

wxDateTime::GetSecond

wxDateTime_t GetSecond(const TimeZone& tz = Local) const

Returns the seconds in the given timezone (local one by default).

wxDateTime::GetMillisecond

wxDateTime_t GetMillisecond(const TimeZone& tz = Local) const

Returns the milliseconds in the given timezone (local one by default).

255

CHAPTER 6

wxDateTime::GetDayOfYear

wxDateTime_t GetDayOfYear(const TimeZone& {z = Local) const

Returns the day of the year (in 1...366 range) in the given timezone (local one by
default).

wxDateTime::GetWeekOfYear

wxDateTime_t GetWeekOfYear(WeekFlags flags = Monday _First, const TimeZone&
tz = Local) const

Returns the number of the week of the year this date is in. The first week of the year is,
according to international standards, the one containing Jan 4. The week number is in
1...53 range (52 for non leap years).

The function depends on the week start (p. 239) convention specified by the flags
argument.

wxDateTime::GetWeekOfMonth

wxDateTime_t GetWeekOfMonth(WeekFlags flags = Monday _First, const
TimeZone& tz = Local) const

Returns the ordinal number of the week in the month (in 1...5 range).
As GetWeekOfYear (p. 256), this function supports both conventions for the week start.

See the description of theseweek start (p. 239) conventions.

wxDateTime::IsWorkDay

bool IsWorkDay(Country country = Country Default) const

Returns TRUE is this day is not a holiday in the given country.

wxDateTime::IsGregorianDate

bool IsGregorianDate(GregorianAdoption country = Gr_Standard) const

Returns TRUE if the given date os later than the date of adoption of the Gregorian
calendar in the given country (and hence the Gregorian calendar calculations make
sense for it).

256

CHAPTER 6

wxDateTime::SetFromDOS

wxDateTime& Set(unsigned long ddi)
Sets the date from the date and time in DOS

(http://developer.novell.com/ndk/doc/smscomp/index.html?page=/ndk
/doc/smscomp/sms_docs/data/hc2vlu5i.html) format.

wxDateTime::GetAsDOS

unsigned long GetAsDOS() const
Returns the date and time in DOS

(http://developer.novell.com/ndk/doc/smscomp/index.html?page=/ndk
/doc/smscomp/sms_docs/data/hc2vlu5i.html) format.

wxDateTime::IsEqualTo

bool IsEqualTo(const wxDateTime& datetime) const

Returns TRUE if the two dates are strictly identical.

wxDateTime::IsEarlierThan

bool IsEarlierThan(const wxDateTime& datetime) const

Returns TRUE if this date precedes the given one.

wxDateTime::IsLaterThan

bool IsLaterThan(const wxDateTime& datetime) const

Returns TRUE if this date is later than the given one.

wxDateTime::IsStrictlyBetween

bool IsStrictlyBetween(const wxDateTime& {7, const wxDateTime& {2) const
Returns TRUE if this date lies strictly between the two others,
See also

IsBetween (p. 258)

257

CHAPTER 6

wxDateTime::IsBetween

bool IsBetween(const wxDateTime& t7, const wxDateTime& t2) const

Returns TRUE if IsStrictlyBetween (p. 257)is TRUE or if the date is equal to one of the
limit values.

See also

IsStrictlyBetween (p. 257)

wxDateTime::IsSameDate

bool IsSameDate(const wxDateTime& df) const

Returns TRUE if the date is the same without comparing the time parts.

wxDateTime::IsSameTime

bool IsSameTime(const wxDateTime& df) const

Returns TRUE if the time is the same (although dates may differ).

wxDateTime::IsEqualUpTo

bool IsEqualUpTo(const wxDateTime& dt, const wxTimeSpan& ts) const

Returns TRUE if the date is equal to another one up to the given time interval, i.e. if the
absolute difference between the two dates is less than this interval.

wxDateTime::Add

wxDateTime Add(const wxTimeSpan& diff) const
wxDateTime& Add(const wxTimeSpan& diff)
wxDateTime& operator+=(const wxTimeSpan& diff)
Adds the given time span to this object.

wxPython note: This method is named AddTs in wxPython.

wxDateTime::Subtract

258

CHAPTER 6

wxDateTime Subtract(const wxTimeSpan& diff) const
wxDateTime& Subtract(const wxTimeSpan& diff)
wxDateTime& operator-=(const wxTimeSpan& diff)
Subtracts the given time span from this object.

wxPython note: This method is named SubtractTs in wxPython.

wxDateTime::Add

wxDateTime Add(const wxDateSpan& diff) const
wxDateTime& Add(const wxDateSpan& diff)
wxDateTime& operator+=(const wxDateSpan& diff)
Adds the given date span to this object.

wxPython note: This method is named Addbps in wxPython.

wxDateTime::Subtract

wxDateTime Subtract(const wxDateSpan& diff) const
wxDateTime& Subtract(const wxDateSpan& diff)
wxDateTime& operator-=(const wxDateSpan& diff)
Subtracts the given date span from this object.

wxPython note: This method is named SubtractDs in wxPython.

wxDateTime::Subtract

wxTimeSpan Subtract(const wxDateTime& df) const

Subtracts another date from this one and returns the difference between them as
wxTimeSpan.

wxDateTime::ParseRfc822Date

const wxChar * ParseRfc822Date(const wxChar* date)

259

CHAPTER 6

Parses the string date looking for a date formatted according to the RFC 822 in it. The
exact description of this format may, of course, be found in the RFC (section 5), but,
briefly, this is the format used in the headers of Internet email messages and one of the
most common strings expressing date in this format may be something like "sat, 18
Dec 1999 00:48:30 +0100™".

Returns NULL if the conversion failed, otherwise return the pointer to the character
immediately following the part of the string which could be parsed. If the entire string
contains only the date in RFC 822 format, the returned pointer will be pointing to a NUL
character.

This function is intentionally strict, it will return an error for any string which is not RFC

822 compliant. If you need to parse date formatted in more free ways, you should use
ParseDateTime (p. 260) orParseDate (p. 261) instead.

wxDateTime::ParseFormat

const wxChar * ParseFormat(const wxChar *date, const wxChar *format = "%c",
const wxDateTime& dateDef = wxDefaultDate Time)

This function parses the string date according to the givenformat. The system
strptime (3) function is used whenever available, but even if it is not, this function is
still implemented (although support for locale-dependent format specificators such as
"sc", "$x" or"sxX" may be not perfect). This function does handle the month and
weekday names in the current locale on all platforms, however.

Please the description of ANSI C function strftime (3) for the syntax of the format
string.

The dateDef parameter is used to fill in the fields which could not be determined from the
format string. For example, if the format is "$d"(the day of the month), the month and
the year are taken from dateDef. If it is not specified, Today (p. 250) is used as the
default date.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseDateTime

const wxChar * ParseDateTime(const wxChar *datetime)

Parses the string datetime containing the date and time in free format. This function tries
as hard as it can to interpret the given string as date and time. Unlike ParseRfc822Date
(p- 259), it will accept anything that may be accepted and will only reject strings which
can not be parsed in any way at all.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

260

CHAPTER 6

wxDateTime::ParseDate

const wxChar * ParseDate(const wxChar *date)

This function is like ParseDateTime (p. 260), but it only allows the date to be specified. It
is thus less flexible then ParseDateTime (p. 260), but also has less chances to
misinterpret the user input.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::ParseTime

const wxChar * ParseTime(const wxChar *time)

This functions is like ParseDateTime (p. 260), but only allows the time to be specified in
the input string.

Returns NULL if the conversion failed, otherwise return the pointer to the character which
stopped the scan.

wxDateTime::Format

wxString Format(const wxChar *format = "%c", const TimeZone& {z = Local) const

This function does the same as the standard ANSI C strftime (3) function. Please
see its description for the meaning of format parameter.

It also accepts a few wxWindows-specific extensions: you can optionally specify the
width of the field to follow using print f (3) -like syntax and the format specification %1
can be used to get the number of milliseconds.

See also

ParseFormat (p. 260)

wxDateTime::FormatDate

wxString FormatDate() const

Identical to calling Format() (p. 261) with "%x"argument (which means 'preferred date
representation for the current locale').

wxDateTime::FormatTime

261

CHAPTER 6

wxString FormatTime() const

Identical to calling Format() (p. 261) with "$x"argument (which means 'preferred time
representation for the current locale').

wxDateTime::FormatlSODate

wxString FormatlSODate() const

This function returns the date representation in the ISO 8601 format (YYYY-MM-DD).

wxDateTime::FormatlISOTime

wxString FormatlSOTime() const

This function returns the time representation in the ISO 8601 format (HH:MM:SS).

wxDateTime::SetToWeekDaylnSameWeek

wxDateTime& SetToWeekDaylnSameWeek(WeekDay weekday, WeekFlagsflags =
Monday_First)

Adjusts the date so that it will still lie in the same week as before, but its week day will be
the given one.

Returns the reference to the modified object itself.

wxDateTime::GetWeekDaylnSameWeek

wxDateTime GetWeekDaylnSameWeek(WeekDay weekday, WeekFlagsflags =
Monday_First) const

Returns the copy of this object to which SetToWeekDayInSameWeek (p. 262) was
applied.

wxDateTime::SetToNextWeekDay

wxDateTime& SetToNextWeekDay(WeekDay weekday)
Sets the date so that it will be the first weekday following the current date.

Returns the reference to the modified object itself.

262

CHAPTER 6

wxDateTime::GetNextWeekDay

wxDateTime GetNextWeekDay(WeekDay weekday) const

Returns the copy of this object to whichSetToNextWeekDay (p. 262) was applied.

wxDateTime::SetToPrevWeekDay

wxDateTime& SetToPrevWeekDay(WeekDay weekday)
Sets the date so that it will be the last weekday before the current date.

Returns the reference to the modified object itself.

wxDateTime::GetPrevWeekDay

wxDateTime GetPrevWeekDay(WeekDay weekday) const

Returns the copy of this object to whichSetToPrevWeekDay (p. 263) was applied.

wxDateTime::SetToWeekDay

bool SetToWeekDay(WeekDay weekday, int n = 1, Month month = Inv_Month, int
year = Inv_Year)

Sets the date to the n-th weekday in the given month of the given year (the current
month and year are used by default). The parameter nmay be either positive (counting
from the beginning of the month) or negative (counting from the end of it).

For example, setToWeekDay (2, wxDateTime::Wed) will set the date to the second
Wednesday in the current month andset ToweekDay (-1, wxDateTime: :Sun) --t0
the last Sunday in it.

Returns TRUE if the date was modified successfully, FAL.SEotherwise meaning that the
specified date doesn't exist.

wxDateTime::GetWeekDay

wxDateTime GetWeekDay(WeekDay weekday, int n = 1, Month month = Inv_Month,
int year = Inv_Year) const

Returns the copy of this object to whichSetToWeekDay (p. 263) was applied.

wxDateTime::SetToLastWeekDay

263

CHAPTER 6

bool SetToLastWeekDay(WeekDay weekday, Month month = Inv_Month, int year =
Inv_Year)

The effect of calling this function is the same as of callingset ToWeekDay (-1,
weekday, month, year). The date will be set to the lastweekday in the given month
and year (the current ones by default).

Always returns TRUE.

wxDateTime::GetLastWeekDay

wxDateTime GetLastWeekDay(WeekDay weekday, Month month = Inv_Month, int
year = Inv_Year)

Returns the copy of this object to whichSetToLastWeekDay (p. 263) was applied.

wxDateTime::SetToTheWeek

bool SetToTheWeek(wxDateTime_t numWeek, WeekDay weekday = Mon,
WeekFlagsflags = Monday First)

Set the date to the given weekday in the week with given numbernumWeek. The number

should be in range 1...53 and FALSE will be returned if the specified date doesn't exist.
TRUE is returned if the date was changed successfully.

wxDateTime::GetWeek

wxDateTime GetWeek(wxDateTime_t numWeek, WeekDay weekday = Mon,
WeekFlagsflags = Monday First) const

Returns the copy of this object to whichSetToTheWeek (p. 264) was applied.

wxDateTime::SetToLastMonthDay

wxDateTime& SetToLastMonthDay(Month month = Inv_Month, int year = Inv_Year)
Sets the date to the last day in the specified month (the current one by default).

Returns the reference to the modified object itself.

wxDateTime::GetLastMonthDay

wxDateTime GetLastMonthDay(Month month = Inv_Month, int year = Inv_Year)
const

264

CHAPTER 6

Returns the copy of this object to whichSetToLastMonthDay (p. 264) was applied.

wxDateTime::SetToYearDay

wxDateTime& SetToYearDay(wxDateTime_t yday)

Sets the date to the day number yday in the same year (i.e., unlike the other functions,
this one does not use the current year). The day number should be in the range 1...366
for the leap years and 1...365 for the other ones.

Returns the reference to the modified object itself.

wxDateTime::GetYearDay

wxDateTime GetYearDay(wxDateTime_t yday) const

Returns the copy of this object to whichSetToYearDay (p. 265) was applied.

wxDateTime::GetJulianDayNumber

double GetJulianDayNumber() const

Returns the JDN (p. 252) corresponding to this date. Beware of rounding errors!

See also

GetModifiedJulianDayNumber (p. 265)

wxDateTime::GetJDN

double GetJDN() const

Synonym for GetJulianDayNumber (p. 265).

wxDateTime::GetModifiedJulianDayNumber

double GetModifiedJulianDayNumber() const

Returns the Modified Julian Day Number (MJD) which is, by definition, equal to JDN -
2400000.5. The MJDs are simpler to work with as the integral MJDs correspond to
midnights of the dates in the Gregorian calendar and not th noons like JDN. The MJD 0
is Nov 17, 1858.

265

CHAPTER 6

wxDateTime::GetMJD

double GetMJD() const

Synonym for GetModifiedJulianDayNumber (p. 265).

wxDateTime::GetRataDie

double GetRataDie() const
Return the Rata Die number of this date.

By definition, the Rata Die number is a date specified as the number of days relative to a
base date of December 31 of the year 0. Thus January 1 of the year 1 is Rata Die day 1.

wxDateTime::ToTimezone

wxDateTime ToTimezone(const TimeZone& tz, bool noDST = FALSE) const

Transform the date to the given time zone. If noDST is TRUE, no DST adjustments will
be made.

Returns the date in the new time zone.

wxDateTime::MakeTimezone

wxDateTime& MakeTimezone(const TimeZone& iz, bool noDST = FALSE)

Modifies the object in place to represent the date in another time zone. [fnoDST is TRUE,
no DST adjustments will be made.

wxDateTime::ToGMT

wxDateTime ToGMT(bool noDST = FALSE) const

This is the same as calling ToTimezone (p. 266) with the argument GMTO.

wxDateTime::MakeGMT

wxDateTime& MakeGMT(bool noDST = FALSE)

This is the same as calling MakeTimezone (p. 266) with the argument GMTO.

266

CHAPTER 6

wxDateTime::IsDST

int IsDST(Country country = Country _Defaulf) const
Returns TRUE if the DST is applied for this date in the given country.
See also

GetBeginDST (p. 247) andGetEndDST (p. 248)

wxDateTimeHolidayAuthority

TODO

wxDateTimeWorkDays

TODO

wxDb

A wxDb instance is a connection to an ODBC datasource which may be opened, closed,
and re-opened an unlimited number of times. A database connection allows function to
be performed directly on the datasource, as well as allowing access to any tables/views
defined in the datasource to which the user has sufficient privileges.

See the database classes overview (p. 1691) for an introduction to using the ODBC
classes.

Include files

<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in db.cpp/.h for use with the wxDb class.

wxDbColFor (p. 298)
wxDbCollInf (p. 299)
wxDbTablelnf (p. 342)
wxDblInf (p. 306)

267

CHAPTER 6

Constants

NOTE: In a future release, all ODBC class constants will be prefaced with 'wx'.

wxDB_PATH_MAX

DB_MAX_COLUMN_NAME_LEN

DB_MAX_ ERROR_HISTORY

DB_MAX_ ERROR_MSG_LEN
DB_MAX_ STATEMENT_LEN
DB_MAX_TABLE_NAME_LEN
DB_MAX_ WHERE_CLAUSE_LEN

DB_TYPE_NAME_LEN

Enumerated types

Maximum path length allowed to be passed to
the ODBC driver to indicate where the data
file(s) are located.

Maximum supported length for the name of a
column

Maximum number of error messages retained in
the queue before being overwritten by new
errors.

Maximum supported length of an error message
returned by the ODBC classes

Maximum supported length for a complete SQL
statement to be passed to the ODBC driver

Maximum supported length for the name of a
table

Maximum supported WHERE clause length that
can be passed to the ODBC driver

Maximum length of the name of a column's
data type

Enumerated types

enum wxDbSqlLogState
sqlLogOFF, sqglLogON

enum wxDBMS

These are the databases currently tested and working with the ODBC classes. A call to
wxDb::Dbms (p. 277) will return one of these enumerated values listed below.

dbmsUNIDENTIFIED
dbmsORACLE
dbmsSYBASE_ASA //
dbmsSYBASE_ASE //

dbmsMS_SQL_SERVER
dbmsMY_ SQL
dbmsPOSTGRES
dbmsACCESS
dbmsDBASE

dbms INFORMIX
dbmsVIRTUOSO
dbmsDB2
dbmdINTERBASE

Adaptive Server Anywhere
Adaptive Server Enterprise

268

CHAPTER 6

See the remarks in wxDb::Dbms (p. 277) for exceptions/issues with each of these
database engines.

Public member variables

SWORD wxDb::cbErrorMsg
This member variable is populated as a result of calling wxDb::GetNextError (p.
286). Contains the count of bytes in the wxDb::errorMsg string.

int wxDb::DB_STATUS

The last ODBC error/status that occurred on this data connection

. Possible codes

are:
DB_ERR_GENERAL_WARNING // SglState = '01000"
DB_ERR_DISCONNECT_ERROR // SglState = '01002"
DB_ERR_DATA_TRUNCATED // SglState = '01004"'
DB_ERR_PRIV_NOT_REVOKED // SglState = '01006"
DB_ERR_INVALID_CONN_STR_ATTR // SglState = '01sS00"'
DB_ERR_ERROR_IN_ROW // SglState = '01S01"'
DB_ERR_OPTION_VALUE_CHANGED // SglState = '01s02"'
DB_ERR_NO_ROWS_UPD_OR_DEL // SglState = '01sS03"
DB_ERR_MULTI_ROWS_UPD_OR_DEL // SglState = '01S04"'
DB_ERR_WRONG_NO_OF_PARAMS // SglState = '07001"'
DB_ERR_DATA_TYPE_ATTR_VIOL // SglState = '07006"'
DB_ERR_UNABLE_TO_CONNECT // SglState = '08001"
DB_ERR_CONNECTION_IN_USE // SglState = '08002"'
DB_ERR_CONNECTION_NOT_OPEN // SglState = '08003"
DB_ERR_REJECTED_CONNECTION // SglState = '08004"'
DB_ERR_CONN_FATL_IN_TRANS // SglState = '08007"'
DB_ERR_COMM_LINK_FAILURE // SglState = '08s01"
DB_ERR_INSERT_VALUE_LIST_MISMATCH // SglState = '21S01"'
DB_ERR_DERIVED_TABLE_MISMATCH // SglState = '21s02"'
DB_ERR_STRING_RIGHT_TRUNC // SglState = '22001"'
DB_ERR_NUMERIC_VALUE_OUT_OF_RNG // SglState = '22003"'
DB_ERR_ERROR_IN_ASSIGNMENT // SglState = '22005"
DB_ERR_DATETIME_FLD_OVERFLOW // SglState = '22008"
DB_ERR_DIVIDE_BY_ZERO // SglState = '22012"'
DB_ERR_STR_DATA_LENGTH_MISMATCH // SglState = '22026"
DB_ERR_INTEGRITY_CONSTRAINT_VIOL // SglState = '23000"
DB_ERR_INVALID_CURSOR_STATE // SglState = '24000"'
DB_ERR_INVALID_TRANS_STATE // SglState = '25000"
DB_ERR_INVALID_AUTH_SPEC // SglState = '28000"
DB_ERR_INVALID_CURSOR_NAME // SglState = '34000"'
DB_ERR_SYNTAX_ERROR_OR_ACCESS_VIOL // SglState = '37000'
DB_ERR_DUPLICATE_CURSOR_NAME // SglState = '3C000"'
DB_ERR_SERIALIZATION_FAILURE // SglState = '40001"'
DB_ERR_SYNTAX_ERROR_OR_ACCESS_VIOL2 // SglState = '42000"
DB_ERR_OPERATION_ABORTED // SglState = '70100'
DB_ERR_UNSUPPORTED_FUNCTION // SglState = 'IMOO1'
DB_ERR_NO_DATA_SOURCE // SglState = 'IMO0O02'
DB_ERR_DRIVER_LOAD_ERROR // SglState = 'IMO0O03'
DB_ERR_SQLALLOCENV_FAILED // SglState = 'IMO0O04'
DB_ERR_SQLALLOCCONNECT_FAILED // SglState = 'IM005'
DB_ERR_SQLSETCONNECTOPTION_FAILED // SglState = 'IM006'
DB_ERR_NO_DATA_SOURCE_DLG_PROHIB // SglState = 'IM0O7'
DB_ERR_DIALOG_FAILED // SglState = 'IMO0O0S8'
DB_ERR_UNABLE_TO_LOAD_TRANSLATION_DLL // SglState = 'IMO009'
DB_ERR_DATA_SOURCE_NAME_TOO_LONG // SglState = 'IM010'
DB_ERR_DRIVER_NAME_TOO_LONG // SglState = 'IMO11'
DB_ERR_DRIVER_KEYWORD_SYNTAX_ERROR // SglState = 'IMO12'
DB_ERR_TRACE_FILE_ERROR // SglState = 'IM013"'

269

CHAPTER 6

DB_ERR_TABLE_OR_VIEW_ALREADY_ EXISTS // SglState = 'S0001"'
DB_ERR_TABLE_NOT_FOQUND // SglState = 'sS0002"'
DB_ERR_INDEX_ ALREADY EXISTS // SglState = 'S0011"'
DB_ERR_INDEX_NOT_FOUND // SglState = 'S0012"'
DB_ERR_COLUMN_ALREADY_EXISTS // SglState = 'S0021"'
DB_ERR_COLUMN_NOT_FOUND // SglState = 'S0022"'
DB_ERR_NO_DEFAULT_FOR_COLUMN // SglState = 'S0023"'
DB_ERR_GENERAIL_ERROR // SglState = 'S1000"'
DB_ERR_MEMORY_ALLOCATION_FAILURE // SglState = 'S1001"'
DB_ERR_INVALID_COLUMN_NUMBER // SglState = 'S1002"'
DB_ERR_PROGRAM_TYPE_OUT_OF_RANGE // SglState = 'S1003"'
DB_ERR_SQIL_DATA_ TYPE_OUT_OF_RANGE // SglState = 'S1004'
DB_ERR_OPERATION_CANCELLED // SglState = 'S1008"'
DB_ERR_INVALID_ARGUMENT_VALUE // SglState = 'S1009"'
DB_ERR_FUNCTION_SEQUENCE_ERROR // SglState = 'S1010'
DB_ERR_OPERATION_INVALID_AT THIS_TIME // SglState = 'S1011"'
DB_ERR_INVALID_TRANS_OPERATION_CODE // SglState = 'S1012"'
DB_ERR_NO_CURSOR_NAME_AVATIL // SglState = 'S1015"
DB_ERR_INVALID_STR_OR_BUF_LEN // SglState = 'S1090"'
DB_ERR_DESCRIPTOR_TYPE_OUT_OF_RANGE // SglState = 'S1091"'
DB_ERR_OPTION_TYPE_OUT_OF_RANGE // SglState = 'S1092"'
DB_ERR_INVALID_PARAM_NO // SglState = 'S1093"'
DB_ERR_INVALID_SCALE_VALUE // SglState = 'S1094"'
DB_ERR_FUNCTION_TYPE_OUT_OF_RANGE // SglState = 'S1095"'
DB_ERR_INF_TYPE_OUT_OF_RANGE // SglState = 'S1096"'
DB_ERR_COLUMN_TYPE_OUT_OF_RANGE // SglState = 'S1097"'
DB_ERR_SCOPE_TYPE_OUT_OF_RANGE // SglState = 'S1098"'
DB_ERR_NULLABLE_TYPE_OUT_OF_RANGE // SglState = 'S1099"'
DB_ERR_UNIQUENESS_OPTION_TYPE_OUT_OF_RANGE // SglState = 'S1100'
DB_ERR_ACCURACY_OPTION_TYPE_OUT_OF_RANGE // SglState = 'S1101"
DB_ERR_DIRECTION_OPTION_OUT_OF_RANGE // SglState = 'S1103"'
DB_ERR_INVALID_PRECISION_VALUE // SqglState = 'S1104"'
DB_ERR_INVALID_PARAM TYPE // SglState = 'S1105"'
DB_ERR_FETCH_TYPE_OUT_OF_RANGE // SglState = 'S1106"'
DB_ERR_ROW_VALUE_OUT_OF_RANGE // SglState = 'S1107"'
DB_ERR_CONCURRENCY_OPTION_OUT_OF_ RANGE // SglState = 'S1108"
DB_ERR_INVALID_CURSOR_POSITION // SglState = 'S1109"'
DB_ERR_INVALID_DRIVER_COMPLETION // SglState = 'S1110"'
DB_ERR_INVALID_BOOKMARK_VALUE // SglState = 'S1111"'
DB_ERR_DRIVER_NOT_CAPABLE // SglState = 'S1C00'
DB_ERR_TIMEOUT_EXPIRED // SglState = 'S1TO00'

struct wxDb::dbinf
This structure is internal to the wxDb class and contains details of the ODBC
datasource that the current instance of the wxDb is connected to in its members.
When the datasource is opened, all of the information contained in the dbinf
structure is queried from the datasource. This information is used almost
exclusively within the ODBC class library. Where there may be a need for
particular portions of this information outside of the class library, member functions
(e.g.wxDbTable::IsCursorClosedOnCommit (p. 327)) have been added for ease of

use.
wxChar dbmsName [40] — Name of the dbms product
wxChar dbmsVer[64] - Version # of the dbms product
wxChar driverName[40] — Driver name
wxChar odbcVer[60] — ODBC version of the driver
wxChar drvMgrOdbcVer [60] — ODBC version of the driver manager
wxChar driverVer[60] — Driver version
wxChar serverName[80] - Server Name, typically a connect string
wxChar databaseName[128] — Database filename
wxChar outerJoins([2] - Does datasource support outer joins

270

CHAPTER 6

wxChar procedureSupport[2] - Does datasource support stored
procedures

UWORD maxConnections - Maximum # of connections datasource
supports

UWORD maxStmts — Maximum # of HSTMTs per HDBC

UWORD apiConflvl — ODBC API conformance level

UWORD cliConfLvl - Is datasource SAG compliant

UWORD sqglConflLvl - SQL conformance level

UWORD cursorCommitBehavior — How cursors are affected on db commit

UWORD cursorRollbackBehavior - How cursors are affected on db

rollback
UWORD supportNotNullClause — Does datasource support NOT NULL
clause

wxChar supportIEF[2] — Integrity Enhancement Facility (Ref.
Integrity)

UDWORD txnIsolation - Transaction isolation level supported by
driver

UDWORD txnIsolationOptions - Transaction isolation level options
available

UDWORD fetchDirections — Fetch directions supported

UDWORD lockTypes - Lock types supported in SQLSetPos

UDWORD posOperations - Position operations supported in
SQLSetPos

UDWORD posStmts - Position statements supported

UDWORD scrollConcurrency - Scrollable cursor concurrency options
supported

UDWORD scrollOptions — Scrollable cursor options supported

UDWORD staticSensitivity - Can additions/deletions/updates be
detected

UWORD txnCapable — Indicates if datasource supports
transactions

UDWORD loginTimeout — Number seconds to wait for a login
request

wxChar wxDb::errorListiDB_MAX_ERROR_HISTORY][DB_MAX_ERROR_MSG _LEN]
The last n ODBC errors that have occurred on this database connection.

wxChar wxDb::errorMsg[SQL_MAX_MESSAGE_LENGTH)]
This member variable is populated as a result of calling wxDb::GetNextError (p.
286). It contains the ODBC error message text.

SDWORD wxDb::nativeError
Set by wxDb::DispAllErrors, wxDb::GetNextError, and wxDb::DispNextError. It
contains the datasource-specific error code returned by the datasource to the
ODBC driver. Used for reporting ODBC errors.

wxChar wxDb::sqlState[20]
Set by wxDb::TranslateSqlState(). Indicates the error state after a failed ODBC
operation. Used for reporting ODBC errors.

Remarks

Default cursor scrolling is defined by wxODBC_FWD_ONLY_CURSORS in setup.h
when the wxWindows library is built. This behavior can be overridden when an instance
of a wxDb is created (see wxDb constructor (p. 274)). Default setting of this value TRUE,
as not all databases/drivers support both types of cursors.

See also

271

CHAPTER 6

wxDbColFor (p. 298), wxDbColInf (p. 299),wxDbTable (p. 306), wxDbTablelnf (p.
342),wxDbinf (p. 306)

Associated non-class functions

The following functions are used in conjunction with the wxDb class.
void wxDbCloseConnections()
Remarks

Closes all cached connections that have been made through use of
thewxDbGetConnection (p. 272) function.

NOTE: These connections are closed regardless of whether they are in use or not. This
function should only be called after the program has finished using the connections and
all wxDbTable instances that use any of the connections have been closed.

This function performs a wxDb::CommitTrans (p. 276)on the connection before closing it
to commit any changes that are still pending, as well as to avoid any function sequence
errors upon closing each connection.

int wxDbConnectionsinUse()

Remarks

Returns a count of how many database connections are currently free (not being used)
that have been cached through use of the wxDbGetConnection (p. 272)function.

bool wxDbFreeConnection(wxDb *pDb)
Remarks

Searches the list of cached database connections connection for one matching the
passed in wxDb instance. If found, that cached connection is freed.

Freeing a connection means that it is marked as available (free) in the cache of
connections, so that a call to wxDbGetConnection (p. 272)is able to return a pointer to
the wxDb instance for use. Freeing a connection does NOT close the connection, it only
makes the connection available again.

wxDb * wxDbGetConnection(wxDbConnectinf *pDbConfig,bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Remarks

This function is used to request a "new" wxDb instance for use by the program. The
wxDb instance returned is also opened (see wxDb::Open (p. 290)).

272

CHAPTER 6

This function (along with wxDbFreeConnection() and wxDbCloseConnection()) maintain
a cached of wxDb instances for user/re-use by a program. When a program needs a
wxDb instance, it may call this function to obtain a wxDb instance. If there is a wxDb
instance in the cache that is currently unused that matches the connection requirements
specified in ‘'pDbConfig'then that cached connection is marked as no longer being free,
and a pointer to the wxDb instance is returned.

If there are no connections available in the cache that meet the requirements given in
PDbConfig’, then a new wxDb instance is created to connect to the datasource specified
in 'pDbConfig' using the userID and password given in ‘pDbConfig".

NOTE: The caching routine also uses the wxDb::Open (p. 290)connection datatype
copying code. If the call to wxDbGetConnection() requests a connection to a
datasource, and there is not one available in the cache, a new connection is created.
But when the connection is opened, instead of polling the datasource over again for its
datatypes, if a connection to the same datasource (using the same userID/password)
has already been done previously, the new connection skips querying the datasource for
its datatypes, and uses the same datatypes determined previously by the other
connection(s) for that same datasource. This cuts down greatly on network traffic,
database load, and connection creation time.

When the program is done using a connection created through a call to
wxDbGetConnection(), the program should call wxDbFreeConnection() to release the
wxDb instance back to the cache. DO NOT DELETE THE wxDb INSTANCE! Deleting
the wxDb instance returned can cause a crash/memory corruption later in the program
when the cache is cleaned up.

When exiting the program, call wxDbCloseConnections() to close all the cached
connections created by calls to wxDbGetConnection().

const wxChar * wxDbLogExtendedErrorMsg(const wxChar *userText, wxDb *pDb,
wxChar *ErrFile, int ErrLine)

Writes a message to the wxLog window (stdout usually) when an internal error situation
occurs. This function only works in DEBUG builds

bool wxDbSqlLog(wxDbSqlLogState state, const wxString &filename =
SQL_LOG_FILENAME)

Remarks
This function sets the sql log state for all open wxDb objects

bool wxDbGetDataSource(HENV henv, wxChar *Dsn, SWORD DsnMax, wxChar
*DsDesc, SWORD DsDescMax, UWORD direction = SQL_FETCH_NEXT)

Remarks
This routine queries the ODBC driver manager for a list of available datasources.

Repeatedly call this function to obtain all the datasources available through the ODBC
driver manager on the current workstation.

273

CHAPTER 6

wxStringList strList;
while (wxDbGetDataSource (DbConnectInf.GetHenv (), Dsn,

SQL_MAX_DSN_LENGTH+1, DsDesc, 255))
strList.Add (Dsn) ;

wxDb::wxDb

wxDb()
Default constructor.

wxDb(const HENV &aHenv, bool
FwdOnlyCursors=(bool)wxODBC_FWD_ONLY_CURSORS)

Constructor, used to create an ODBC connection to a datasource.
Parameters

aHenv
Environment handle used for this connection. SeewxDConnectinf::AllocHenv (p.
301)

FwdOnlyCursors
Will cursors created for use with this datasource connection only allow forward
scrolling cursors.

Remarks

This is the constructor for the wxDb class. The wxDb object must be created and
opened before any database activity can occur.

Example

wxDbConnectInf ConnectInf;
....S8et values for member variables of ConnectInf here

wxDb sampleDB (ConnectInf.GetHenv());
if (!sampleDB.Open (ConnectInf.GetDsn (), ConnectInf.GetUserID(),
ConnectInf.GetPassword()))

{
}

// Error opening datasource

See also

wxDbGetConnection (p. 272)

274

CHAPTER 6

wxDb::Catalog

bool Catalog(wxChar * user/D, const wxString &fileName =
SQL_CATALOG_FILENAME)

Allows a data "dictionary" of the datasource to be created, dumping pertinent information
about all data tables to which the user specified in userID has access.

Parameters

userlD
Database user name to use in accessing the database. All tables to which this
user has rights will be evaluated in the catalog.

fileName
OPTIONAL. Name of the text file to create and write the DB catalog to. Default is
SQL_CATALOG_FILENAME.

Return value

Returns TRUE if the catalog request was successful, or FALSE if there was some
reason that the catalog could not be generated.

Example

TABLE NAME COLUMN NAME DATA TYPE PRECISION LENGTH
EMPLOYEE RECID (0008) NUMBER 15 8
EMPLOYEE USER_ID (0012) VARCHAR2 13 13
EMPLOYEE FULL_NAME (0012) VARCHAR2 26 26
EMPLOYEE PASSWORD (0012) VARCHAR2 26 26
EMPLOYEE START_DATE (0011)DATE 19 16

wxDb::Close

void Close()

Closes the database connection.

Remarks

At the end of your program, when you have finished all of your database work, you must
close the ODBC connection to the datasource. There are actually four steps involved in

doing this as illustrated in the example.

Any wxDbTable instances which use this connection must be deleted before closing the
database connection.

Example

275

CHAPTER 6

// Commit any open transactions on the datasource
sampleDB.CommitTrans () ;

// Delete any remaining wxDbTable objects allocated with new
delete parts;

// Close the wxDb connection when finished with it
sampleDB.Close () ;

wxDb::CommitTrans

bool CommitTrans()

Permanently "commits" changes (insertions/deletions/updates) to the database.
Return value

Returns TRUE if the commit was successful, or FALSE if the commit failed.

Remarks

Transactions begin implicitly as soon as you make a change to the database with an
insert/update/delete, or any other direct SQL command that performs one of these
operations against the datasource. At any time thereafter, to save the changes to disk
permanently, "commit" them by calling this function.

Calling this member function commits ALL open transactions on this ODBC connection.
For example, if three different wxDbTable instances used the same connection to the
datasource, committing changes made on one of those wxDbTable instances commits
any pending transactions on all three wxDbTable instances.

Until a call to wxDb::CommitTrans() is made, no other user or cursor is able to see any
changes made to the row(s) that have been inserted/modified/deleted.

Special Note : Cursors

It is important to understand that different database/ODBC driver combinations handle
transactions differently. One thing in particular that you must pay attention to is cursors,
in regard to transactions. Cursors are what allow you to scroll through records forward
and backward and to manipulate records as you scroll through them. When you issue a
query, a cursor is created behind the scenes. The cursor keeps track of the query and
keeps track of the current record pointer. After you commit or rollback a transaction, the
cursor may be closed automatically. This is database dependent, and with some
databases this behavior can be controlled through management functions. This means
you would need to requery the datasource before you can perform any additional work
using this cursor. This is only necessary however if the datasource closes the cursor
after a commit or rollback. Use thewxDbTable::IsCursorClosedOnCommit (p.
327)member function to determine the datasource's transaction behavior. Note, in many
situations it is very inefficient to assume the cursor is closed and always requery. This
could put a significant, unnecessary load on datasources that leave the cursors open
after a transaction.

276

CHAPTER 6

wxDb::CreateView

bool CreateView(const wxString & viewName,const wxString & colList, const
wxString &pSqlStmi)

Creates a SQL VIEW of one or more tables in a single datasource. Note that this
function will only work against databases which support views (currently only Oracle as
of November 21 2000).

Parameters

viewName
The name of the view. e.g. PARTS_V

colList
OPTIONAL Pass in a comma delimited list of column names if you wish to
explicitly name each column in the result set. If not desired, pass in an empty
string and the column names from the associated table(s) will be used.

pSqlStmt
Pointer to the select statement portion of the CREATE VIEW statement. Must be a
complete, valid SQL SELECT statement.

Remarks

A 'view' is a logical table that derives columns from one or more other tables or views.
Once the view is created, it can be queried exactly like any other table in the database.

NOTE: Views are not available with all datasources. Oracle is one example of a
datasource which does support views.

Example

// Incomplete code sample
db.CreateView ("PARTS_SD1", "PN, PD, QTY",
"SELECT PART_NO, PART_DESC, QTY_ON_HAND * 1.1 FROM
PARTS \
WHERE STORAGE_DEVICE = 1");

// PARTS_SD1 can now be queried just as if it were a data table.
// e.g. SELECT PN, PD, QTY FROM PARTS_SD1

wxDb::Dbms

wxDBMS Dbms()
Remarks

The return value will be of the enumerated type wxDBMS. This enumerated type

277

CHAPTER 6

contains a list of all the currently tested and supported databases.

Additional databases may work with these classes, but the databases returned by this
function have been tested and confirmed to work with these ODBC classes.

Possible values returned by this function can be viewed in the Enumerated types (p. 268)
section of wxDb.

There are known issues with conformance to the ODBC standards with several
datasources supported by the wxWindows ODBC classes. Please see the overview for
specific details on which datasource have which issues.

Return value

The return value will indicate which of the supported datasources is currently connected

to by this connection. In the event that the datasource is not recognized, a value of
'dbmsUNIDENTIFIED' is returned.

wxDb::DispAllErrors

bool DispAllErrors(HENV aHenv, HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt
=SQL_NULL _HSTMT)

Used to log all database errors that occurred as a result of an executed database
command. This logging is automatic and also includes debug logging when compiled in
debug mode via wxLogDebug (p. 1539). If logging is turned on via
wxDb::SetSqlLogging (p. 292), then an entry is also logged to the defined log file.

Parameters

aHenv
Handle to the ODBC environment.

aHdbc
Handle to the ODBC connection. Pass this in if the ODBC function call that erred
required a hdbc or hstmt argument.

aHstmt
Handle to the ODBC statement being executed against. Pass this in if the ODBC
function call that failed required a hstmt argument.

Remarks

This member function will log all of the ODBC error messages for the last ODBC function
call that was made. This function is normally used internally within the ODBC class
library, but can be used programmatically after calling ODBC functions directly (i.e.
SQLFreeEnv()).

Return value

278

CHAPTER 6

The function always returns FALSE, so a call to this function can be made in the return
statement of a code block in the event of a failure to perform an action (see the example
below).

See also

wxDb::SetSqlLogging (p. 292), wxDbSqlLog

Example

if (SQLExecDirect (hstmt, (UCHAR FAR *) pSqglStmt, SQL_NTS) !=
SQL_SUCCESS)
// Display all ODBC errors for this stmt
return (db.DispAllErrors (db.henv, db.hdbc, hstmt));

wxDb::DispNextError

void DispNextError()
Remarks

This function is normally used internally within the ODBC class library. It could be used
programmatically after calling ODBC functions directly. This function works in
conjunction with wxDb::GetNextError (p. 286) when errors (or sometimes informational
messages) returned from ODBC need to be analyzed rather than simply displaying
them as an error. GetNextError() retrieves the next ODBC error from the ODBC error
queue. The wxDb member variables "sqlState", "nativeError" and "errorMsg" could then
be evaluated. To display the error retrieved, DispNextError() could then be called. The
combination of GetNextError() and DispNextError() can be used to iteratively step
through the errors returned from ODBC evaluating each one in context and displaying
the ones you choose.

Example

// Drop the table before attempting to create it
sprintf (sglStmt, "DROP TABLE %s", tableName);
// Execute the drop table statement
if (SQLExecDirect (hstmt, (UCHAR FAR *)sglStmt, SQL_NTS) != SQL_SUCCESS)
{
// Check for sglState = S0002, "Table or view not found".
// Ignore this error, bomb out on any other error.
pDb—->GetNextError (henv, hdbc, hstmt);
if (wxStrcmp (pDb->sglState, "S0002"))
{
pDb—->DispNextError () ; // Displayed error retrieved
pDb—>DispAllErrors (henv, hdbc, hstmt); // Display all other
errors, 1f any

pDb->RollbackTrans () ; // Rollback the transaction
CloseCursor () ; // Close the cursor
return (FALSE) ; // Return Failure

279

CHAPTER 6

wxDb::DropView

bool DropView(const wxString &viewName)
Drops the data table view named in 'viewName'.
Parameters

viewName
Name of the view to be dropped.

Remarks
If the view does not exist, this function will return TRUE. Note that views are not

supported with all datasources.

wxDb::ExecSql

bool ExecSql(const wxString &pSq/Stmt)

Allows a native SQL command to be executed directly against the datasource. In
addition to being able to run any standard SQL command, use of this function allows a
user to (potentially) utilize features specific to the datasource they are connected to that
may not be available through ODBC. The ODBC driver will pass the specified command
directly to the datasource.

Parameters

pSqlStmt
Pointer to the SQL statement to be executed.

Remarks

This member extends the wxDb class and allows you to build and execute ANY VALID
SQL statement against the datasource. This allows you to extend the class library by
being able to issue any SQL statement that the datasource is capable of processing.

See also

wxDb::GetData (p. 283), wxDb::GetNext (p. 285)

wxDb::FwdOnlyCursors

bool IsFwdOnlyCursors()

Older form (pre-2.3/2.4 of wxWindows) of thewxDb::IsFwdOnlyCursors (p. 287). This
method is provided for backward compatibility only. The
methodwxDb::IsFwdOnlyCursors (p. 287) should be used in place of this method.

280

CHAPTER 6

wxDblnf * GetCatalog(const wxChar *user/D)

wxDb::GetCatalog

wxDblnf * GetCatalog(const wxChar *user/D)

Returns a wxDblinf (p. 306) pointer that points to the catalog (datasource) name,
schema, number of tables accessible to the current user, and a wxDbTablelnf pointer to
all data pertaining to all tables in the users catalog.

Parameters

userlD
Owner/Schema of the table. Specify a userlD when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. userlD is evaluated as follows:

userID == NULL ... UserID is ignored (DEFAULT)
userID == "" ... UserID set equal to 'this->uid'
userID != "" ... UserID set equal to 'userID'

Remarks

The returned catalog will only contain catalog entries for tables to which the user
specified in 'userID' has sufficient privileges. If no user is specified (NULL passed in), a
catalog pertaining to all tables in the datasource accessible to the connected user
(permissions apply) via this connection will be returned.

wxDb::GetColumnCount

int GetColumnCount(const wxString &tableName, const wxChar *user/D)
Parameters

tableName
The table name you wish to obtain column information about.

userlD
Name of the user that owns the table(s) (also referred to as schema). Required for
some datasources for situations where there may be multiple tables with the same
name in the datasource, but owned by different users. userlD is evaluated in the
following manner:

userID == NULL ... UserID is ignored (DEFAULT)
userID == "" ... UserID set equal to 'this->uid'
userID != "" ... UserID set equal to 'userID'

Return value

281

CHAPTER 6

Returns a count of how many columns are in the specified table. If an error occurs
retrieving the number of columns, this function will return a -1.

wxDb::GetColumns

wxDbColinf * GetColumns(const wxString &tableName, UWORD *numCols, const
wxChar *userID=NULL)

wxDbColinf * GetColumns(wxChar *tableName[], const wxChar *user/D)
Parameters

tableName
The table name you wish to obtain column information about.

numCols
Pointer to a UWORD which will hold a count of the number of columns returned by
this function

tableNamel]
An array of pointers to table names you wish to obtain column information about.
The last element of this array must be a NULL string.

userlD
Name of the user that owns the table(s) (also referred to as schema). Required for
some datasources for situations where there may be multiple tables with the same
name in the datasource, but owned by different users. user/D is evaluated in the
following manner:

userID == NULL ... UserID is ignored (DEFAULT)
userID == "" ... UserID set equal to 'this->uid'
userID != "" ... UserID set equal to 'userID'

Return value

This function returns a pointer to an array of wxDbColInf (p. 299)structures, allowing you
to obtain information regarding the columns of the named table(s). If no columns were
found, or an error occurred, this pointer will be NULL.

THE CALLING FUNCTION IS RESPONSIBLE FOR DELETING THE wxDbColInf
MEMORY WHEN IT IS FINISHED WITH IT.

ALL column bindings associated with this wxDb instance are unbound by this function,
including those used by any wxDbTable instances that use this wxDb instance. This
function should use its own wxDb instance to avoid undesired unbinding of columns.

See also
wxDbCollInf (p. 299)

Example

wxChar *tablelList[] = {"PARTS", O0};

282

CHAPTER 6

wxDbColInf *colInf = pDb->GetColumns (tablelist);
if (colInf)
{

// Use the column inf

// Destroy the memory

delete [] collInf;

wxDb::GetData

bool GetData(UWORD co/No, SWORD cType,PTR pData, SDWORD maxLen,
SDWORD FAR * cbReturned)

Used to retrieve result set data without binding column values to memory variables (i.e.
not using a wxDbTable instance to access table data).

Parameters

colNo
Ordinal number of the desired column in the result set to be returned.
cType
The C data type that is to be returned. See a partial list in wxDbTable::SetColDefs
(p. 334)
pData
Memory buffer which will hold the data returned by the call to this function.
maxLen
Maximum size of the buffer jpData’in characters. NOTE: Not UNICODE safe. If
this is a numeric field, a value of 0 may be passed for this parameter, as the API
knows the size of the expected return value.
cbReturned
Pointer to the buffer containing the length of the actual data returned. If this value
comes back as SQL_NULL_DATA, then thewxDb::GetData (p. 283) call has failed.

See also

wxDb::GetNext (p. 285), wxDb.:ExecSql (p. 280)
Example

SDWORD cb;
ULONG reqgQty;
wxString sglStmt;
sglStmt = "SELECT SUM(REQUIRED_QTY - PICKED_QTY) FROM ORDER_TABLE
WHERE \
PART_RECID = 1450 AND REQUIRED_QTY > PICKED_QTY";

// Perform the query
if (!'pDb->ExecSqgl (sglStmt.c_str()))
{

// ERROR

return(0);

283

CHAPTER 6

if

Request the first row of the result set
(!'pDb->GetNext ())

// ERROR
return (0) ;

Read column #1 of the row returned by the call to

and return the value in 'reqQty'
(!pDb->GetData(l, SQL_C_ULONG, &reqgQty, 0, &cb))
// ERROR

return (0) ;

Check for a NULL result
(cb == SQL_NULL_DATA)
return (0) ;

Remarks

::GetNext ()

When requesting multiple columns to be returned from the result set (for example, the
SQL query requested 3 columns be returned), the calls to this function must request the
columns in ordinal sequence (1,2,3 or 1,3 or 2,3).

wxDb::GetDatabaseName

const wxChar * GetDatabaseName()

Returns the name of the database engine.

wxDb::GetDatasourceName

const wxString & GetDatasourceName()

Returns the ODBC datasource name.

wxDb::GetHDBC

HDBC GetHDBC()

Returns the ODBC handle to the database connection.

wxDb::GetHENV

HENV GetHENV/()

Returns the ODBC environment handle.

284

CHAPTER 6

wxDb::GetHSTMT

HSTMT GetHSTMT()

Returns the ODBC statement handle associated with this database connection.

wxDb::GetKeyFields

int GetKeyFields(const wxString &{ableName, wxDbCollnf *colinf, UWORD nocols)

Used to determine which columns are members of primary or non-primary indexes on
the specified table. If a column is a member of a foreign key for some other table, that
information is detected also.

This function is primarily for use by the wxDb::GetColumns (p. 282) function, but may be
called if desired from the client application.

Parameters

tableName
Name of the table for which the columns will be evaluated as to their inclusion in
any indexes.

colinf
Data structure containing the column definitions (obtained with wxDb::GetColumns
(p- 282)). This function populates the PkCol, PkTableName, and FkTableName
members of the collnf structure.

nocols
Number of columns defined in the instance of colinf.

Return value
Currently always returns TRUE.
See also

wxDbColInf (p. 299), wxDb::GetColumns (p. 282)

wxDb::GetNext

bool GetNext()

Called after executing a query, this function requests the next row in the result set after
the current position of the cursor.

See also

wxDb::ExecSql (p. 280), wxDb.:GetData (p. 283)

285

CHAPTER 6

wxDb::GetNextError

bool GetNextError(HENV aHenv,HDBC aHdbc = SQL_NULL_HDBC, HSTMT aHstmt =
SQL_NULL_HSTMT)

Parameters

aHenv
A handle to the ODBC environment.

aHdbc
OPTIONAL. A handle to the ODBC connection. Pass this in if the ODBC function
call that failed required a hdbc or hstmt argument.

AHstmt
OPTIONAL.A handle to the ODBC statement being executed against. Pass this in
if the ODBC function call that failed requires a hstmt argument.

Example

if (SQLExecDirect (hstmt, (UCHAR FAR *) pSqglStmt, SQL_NTS) !=
SQL_SUCCESS)
{

}

return (db.GetNextError (db.henv, db.hdbc, hstmt));

See also

wxDb::DispNextError (p. 279),wxDb::DispAllErrors (p. 278)

wxDb::GetPassword

const wxString & GetPassword()

Returns the password used to establish this connection to the datasource.

wxDb::GetTableCount

int GetTableCount()

Returns the number of wxDbTable() instances currently using this datasource
connection.

wxDb::GetUsername

const wxString & GetUsername()

Returns the user name (uid) used to establish this connection to the datasource.

286

CHAPTER 6

wxDb::Grant

bool Grant(int privileges, const wxString &tableName,const wxString &userList =
"PUBLIC")

Use this member function to GRANT privileges to users for accessing tables in the
datasource.

Parameters

privileges
Use this argument to select which privileges you want to grant. Pass
DB_GRANT_ALL to grant all privileges. To grant individual privileges pass one or
more of the following OR'd together:

DB_GRANT_SELECT
DB_GRANT_INSERT
DB_GRANT_UPDATE
DB_GRANT_DELETE
DB_GRANT_ALL

QO N

DB_GRANT_SELECT | DB_GRANT_INSERT |
DB_GRANT_UPDATE | DB_GRANT_DELETE

tableName
The name of the table you wish to grant privileges on.

userList
OPTIONAL. A comma delimited list of users to grant the privileges to. If this
argument is not passed in, the privileges will be given to the general PUBLIC.

Remarks

Some databases require user names to be specified in all capital letters (i.e. Oracle).
This function does not automatically capitalize the user names passed in the comma-
separated list. This is the responsibility of the calling routine.

The currently logged in user must have sufficient grantor privileges for this function to be
able to successfully grant the indicated privileges.

Example

db.Grant (DB_GRANT_SELECT | DB_GRANT_INSERT, "PARTS", "mary, sue");

wxDb::IsFwdOnlyCursors

bool IsFwdOnlyCursors()

This setting indicates whether this database connection was created as being capable of
using only forward scrolling cursors.

This function does NOT indicate if the ODBC driver or datasource supports backward
scrolling cursors. There is no standard way of detecting if the driver or datasource can

287

CHAPTER 6

support backward scrolling cursors.

If a wxDb instance was created as being capable of only forward scrolling cursors, then
even if the datasource and ODBC driver support backward scrolling cursors, tables
using this database connection would only be able to use forward scrolling cursors.

The default setting of whether a wxDb connection to a database allows forward-only or
also backward scrolling cursors is defined in setup.h by the value of
wxODBC_FWD_ONLY_CURSORS. This default setting can be overridden when the
wxDb connection is initially created (seewxDb constructor (p. 274) and
wxDbGetConnection (p. 272)).

Return value

Returns TRUE if this datasource connection is defined as using only forward scrolling
cursors, or FALSE if the connection is defined as being allowed to use backward
scrolling cursors and their associated functions (see note above).

Remarks

Added as of wxWindows v2.4 release, this function is a renamed version of
wxDb::FwdOnlyCursors() to match the normal wxWindows naming conventions for class
member functions.

This function is not available in versions prior to v2.4. You should use
wxDb::FwdOnlyCursors (p. 280) for wxWindows versions prior to 2.4.

See also

wxDb constructor (p. 274), wxDbGetConnection (p. 272)

wxDb::IsOpen

bool IsOpen()
Indicates whether the database connection to the datasource is currently opened.
Remarks

This function may indicate that the database connection is open, even if the call to
wxDb::Open (p. 290) may have failed to fully initialize the connection correctly. The
connection to the databaseis open and can be used via the direct SQL commands, if this
function returns TRUE. Other functions which depend on thewxDb::Open (p. 290) to
have completed correctly may not function as expected. The return result from
wxDb::Open (p. 290) is the only way to know if complete initialization of this wxDb
connection was successful or not. See wxDb::Open (p. 290) for more details on partial
failures to open a connection instance.

288

CHAPTER 6

wxDb::LogError

void LogError(const wxString &errMsg const wxString &SQL State="")
errMsg
Free-form text to display describing the error/text to be logged.
SQLState
OPTIONAL. Native SQL state error. Default is 0.
Remarks
Calling this function will enter a log message in the error list maintained for the database
connection. This log message is free form and can be anything the programmer wants
to enter in the error list.

If SQL logging is turned on, the call to this function will also log the text into the SQL log
file.

See also

wxDb::WriteSqlLog (p. 296)

wxDb::ModifyColumn

void ModifyColumn(const wxString &tableName const wxString & ColumnNameint
dataType ULONG columnLength=0 const wxString &optionalParam="")

Used to change certain properties of a column such as the length, or whether a column
allows NULLs or not.

tableName
Name of the table that the column to be modified is in.

columnName
Name of the column to be modified. NOTE: Name of column cannot be changed
with this function.

dataType
Any one of DB_DATA_TYPE_VARCHAR, DB_DATA_TYPE_INTEGER,
DB_DATA_TYPE_FLOAT, DB_DATA_TYPE_DATE.

columnLength
New size of the column. Valid only for DB_DATA_TYPE_VARCHAR dataType
fields. Defaultis 0.

optionalParam
Default is "".

Remarks

Cannot be used to modify the precision of a numeric column, therefore 'columnLength' is
ignored unless the dataType is DB_DATA_TYPE_VARCHAR.

289

CHAPTER 6

Some datasources do not allow certain properties of a column to be changed if any rows
currently have data stored in that column. Those datasources that do allow columns to
be changed with data in the rows many handle truncation and/or expansion in different
ways. Please refer to the reference material for the datasource being used for
behavioral descriptions.

Example
ok = pDb->ModifyColumn ("CONTACTS", "ADDRESS2",
DB_, colDefs[]j].SzDataObj,
wxT ("NOT NULL")) ;
wxDb::Open

bool Open(const wxString &Dsn, const wxString &Uid,const wxString &AuthStr)
bool Open(wxDb *copyDb)

Opens a connection to the datasource, sets certain behaviors of the datasource to
confirm to the accepted behaviors (e.g. cursor position maintained on commits), and
queries the datasource for its representations of the basic datatypes to determine the
form in which the data going to/from columns in the data tables are to be handled.

The second form of this function, which accepts a "wxDb *" as a parameter, can be used
to avoid the overhead (execution time, database load, network traffic) which are needed
to determine the data types and representations of data that are necessary for cross-
datasource support by these classes.

Normally the first form of the wxDb::Open() function will open the connection and then
send a series of queries to the datasource asking it for its representation of data types,
and all the features it supports. If one connection to the datasource has already been
made previously, the information gathered when that connection was created can just be
copied to any new connections to the same datasource by passing a pointer to the first
connection in as a parameter to the wxDb::Open() function. Note that this new
connection created from the first connections information will use the same
Dsn/Uid/AuthStr as the first connection used.

Parameters

Dsn
datasource name. The name of the ODBC datasource as assigned when the
datasource is initially set up through the ODBC data source manager.

Uid
User ID. The name (ID) of the user you wish to connect as to the datasource. The
user name (ID) determines what objects you have access to in the datasource and
what datasource privileges you have. Privileges include being able to create new
objects, update objects, delete objects and so on. Users and privileges are
normally administered by the database administrator.

AuthStr
The password associated with the Uid.

290

CHAPTER 6

copyDb
Already completely configured and opened datasource connection from which all
Dsn, Uid, AuthStr, and data typing information is to be copied from for use by this
datasource connection.

Remarks

After a wxDb instance is created, it must then be opened. When opening a datasource,
there must be three pieces of information passed. The data source name, user name
(ID) and the password for the user. No database activity on the datasource can be
performed until the connection is opened. This is normally done at program startup and
the datasource remains open for the duration of the program/module run.

It is possible to have connections to multiple datasources open at the same time to
support distributed database connections by having separate instances of wxDb objects
that use either the same or different Dsn/Uid/AuthStr settings.

If this function returns a value of FALSE, it does not necessarily mean that the
connection to the datasource was not opened. It may mean that some portion of the
initialization of the connection failed (such as a datatype not being able to be determined
how the datasource represents it). To determine if the connection to the database failed,
use the wxDb::IsOpen (p. 288)function after receiving a FALSE result back from this
function to determine if the connection was opened or not. If this function returns
FALSE, but wxDb::IsOpen (p. 288)returns TRUE, then direct SQL commands may be
passed to the database connection and can be successfully executed, but use of the
datatypes (such as by a wxDbTable instance) that are normally determined during open
will not be possible.

The Dsn, Uid, and AuthStr string pointers that are passed in are copied. NOT the strings
themselves, only the pointers. The calling routine must maintain the memory for these
three strings for the life of the wxDb instance.

Example

wxDb sampleDB (DbConnectInf.GetHenv ());
if (!sampleDB.Open ("Oracle 7.1 HP/UX", "gtasker", "myPassword"))
{
if (sampleDb.IsOpen())
{
// Connection is open, but the initialization of
// datatypes and parameter settings failed
}
else
{
// Error opening datasource

}

wxDb::RollbackTrans

bool RollbackTrans()

291

CHAPTER 6

Function to "undo" changes made to the database. After an insert/update/delete, the
operation may be "undone" by issuing this command any time before a
wxDb::CommitTrans (p. 276) is called on the database connection.

Remarks

Transactions begin implicitly as soon as you make a change to the database. The
transaction continues until either a commit or rollback is executed. Calling
wxDb::RollbackTrans() will result in ALL changes done using this database connection
that have not already been committed to be "undone" back to the last commit/rollback
that was successfully executed.

Calling this member function rolls back ALL open (uncommitted) transactions on this
ODBC connection, including all wxDbTable instances that use this connection.

See also

wxDb::CommitTrans (p. 276) for a special note on cursors

wxDb::SetDebugErrorMessages

void SetDebugErrorMessages(bool state)
State
Either TRUE (debug messages are logged) or FALSE (debug messages are not
logged).
Remarks
Turns on/off debug error messages from the ODBC class library. When this function is
passed TRUE, errors are reported to the user/logged automatically in a text or pop-up
dialog when an ODBC error occurs. When passed FALSE, errors are silently handled.
When compiled in release mode (FINAL=1), this setting has no affect.

See also

wxDb constructor (p. 274)

wxDb::SetSqlLogging

bool SetSqlLogging(wxDbSqlLogState state, const wxString &filename =
SQL _LOG_FILENAME, bool append = FALSE)

Parameters

state
Either sqlLogOFF or sqlLogON (see enum wxDbSqlLogState (p. 298)). Turns

292

CHAPTER 6

logging of SQL commands sent to the datasource OFF or ON.
filename
OPTIONAL. Name of the file to which the log text is to be written. Default is
SQL_LOG_FILENAME.
append
OPTIONAL. Whether the file is appended to or overwritten. Default is FALSE.

Remarks

When called with sq/LogON, all commands sent to the datasource engine are logged to
the file specified by filename. Logging is done by embedded wxDb::WriteSqlLog (p.
296) calls in the database member functions, or may be manually logged by adding calls
to wxDb::WriteSqlLog (p. 296) in your own source code.

When called with sq/LogOFF, the logging file is closed, and any calls to
wxDb::WriteSqlLog (p. 296) are ignored.

wxDb::SQLColumnName

const wxString SQLColumnName(const char * colName)

Returns the column name in a form ready for use in SQL statements. In most cases, the
column name is returned verbatim. But some databases (e.g. MS Access, SQL Server,
MSDE) allow for spaces in column names, which must be specially quoted. For
example, if the datasource allows spaces in the column name, the returned string will
have the correct enclosing marks around the name to allow it to be properly included in a
SQL statement for the DBMS that is currently connected to with this connection.

Parameters

colName
Native name of the column in the table that is to be evaluated to determine if any
special quoting marks needed to be added to it before including the column name
in a SQL statement

See also

wxDb::SQLTableName (p. 293)

wxDb::SQLTableName

const wxString SQLTableName(const char * tableName)

Returns the table name in a form ready for use in SQL statements. In most cases, the
table name is returned verbatim. But some databases (e.g. MS Access, SQL Server,
MSDE) allow for spaces in table names, which must be specially quoted. For example,
if the datasource allows spaces in the table name, the returned string will have the
correct enclosing marks around the name to allow it to be properly included in a SQL

293

CHAPTER 6

statement for the data source that is currently connected to with this connection.

Parameters

tableName
Native name of the table that is to be evaluated to determine if any special quoting
marks needed to be added to it before including the table name in a SQL
statement

See also

wxDb::SQLColumnName (p. 293)

wxDb::TableExists

bool TableExists(const wxString &tableName, const wxChar *userl[D=NULL, const
wxString &path="")

Checks the ODBC datasource for the existence of a table. If a userlDis specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters

tableName
Name of the table to check for the existence of.

userlD
Owner of the table (also referred to as schema). Specify a userlD when the
datasource you are connected to allows multiple unique tables with the same
name to be owned by different users. userlDis evaluated as follows:

userID == NULL ... UserID is ignored (DEFAULT)
userID == "" ... UserID set equal to 'this->uid'
userID != "" ... UserID set equal to 'userID'

Remarks

tableName may refer to a table, view, alias or synonym.

This function does not indicate whether or not the user has privileges to query or perform
other functions on the table. Use the wxDb::TablePrivileges (p. 294) to determine if the
user has sufficient privileges or not.

See also

wxDb::TablePrivileges (p. 294)

wxDb::TablePrivileges

294

CHAPTER 6

bool TablePrivileges(const wxString &iableName, const wxString &priv,const
wxChar *userID=NULL, const wxChar *schema=NULL,const wxString &path="")

Checks the ODBC datasource for the existence of a table. If a user/Dis specified, then
the table must be accessible by that user (user must have at least minimal privileges to
the table).

Parameters

tableName
Name of the table on which to check privileges.tableName may refer to a table,
view, alias or synonym.

priv
The table privilege being evaluated. May be one of the following (or a datasource
specific privilege):

SELECT : The connected user is permitted to retrieve data
for
one or more columns of the table.
INSERT : The connected user is permitted to insert new
rows
containing data for one or more columns into the
table.
UPDATE : The connected user is permitted to update the
data in
one or more columns of the table.
DELETE : The connected user is permitted to delete rows of
data from the table.
REFERENCES : Is the connected user permitted to refer to one
or
more columns of the table within a constraint
(for
example, a unique, referential, or table check
constraint) .
userlD

OPTIONAL. User for which to determine if the privilege specified to be checked is
granted or not. Default is "".userID is evaluated as follows:

userID == NULL ... NOT ALLOWED!
userID == "" UserID set equal to 'this->uid'
userID != "" ... UserID set equal to 'userID'

schema
OPTIONAL. Owner of the table. Specify a userlD when the datasource you are
connected to allows multiple unique tables with the same name to be owned by
different users. Specifying the table owner makes determination of the users
privileges MUCH faster. Default is NULL. userlD is evaluated as follows:

schema == NULL ... Any owner (DEFAULT)

295

CHAPTER 6

schema == "" ... Owned by 'this->uid'
schema != "" ... Owned by userID specified in 'schema'

path
OPTIONAL. Path to the table. Default is "". Currently unused.

Remarks

The scope of privilege allowed to the connected user by a given table privilege is
datasource dependent.

For example, the privilege UPDATE might allow the connected user to update all
columns in a table on one datasource, but only those columns for which the grantor (the
user that granted the connected user) has the UPDATE privilege on another datasource.

Looking up a user's privileges to a table can be time consuming depending on the
datasource and ODBC driver. This time can be minimized by passing a schemaas a
parameter. With some datasources/drivers, the difference can be several seconds of
time difference.

wxDb::TranslateSqlState

int TranslateSqlState(const wxString & SQL State)
Converts an ODBC sqlstate to an internal error code.
Parameters

SQLState
State to be converted.

Return value

Returns the internal class DB_ERR code. See wxDb::DB_STATUS (p. 267) definition.

wxDb::WriteSqlLog

bool WriteSqlLog(const wxString &/ogMsg)
Parameters

logMsg
Free form string to be written to the log file.

Remarks

Very useful debugging tool that may be turned on/off during run time (see (see
wxDb::SetSqlLogging (p. 292) for details on turning logging on/off). The passed in string

296

CHAPTER 6

logMsg will be written to a log file if SQL logging is turned on.
Return value

If SQL logging is off when a call to WriteSqglLog() is made, or there is a failure to write
the log message to the log file, the function returns FALSE without performing the
requested log, otherwise TRUE is returned.

See also

wxDb::SetSqlLogging (p. 292)

wxDbColDataPtr

Pointer to dynamic column definitions for use with a wxDbTable instance. Currently there
are no member functions for this class.

See the database classes overview (p. 1691) for an introduction to using the ODBC
classes.

void *PtrDatalObij;
int SzDataObij;
SWORD SglCtype;

wxDbColDef

This class is used to hold information about the columns bound to an instance of a
wxDbTable object.

Each instance of this class describes one column in the wxDbTable object. When
calling the wxDb constructor (p. 274), a parameter passed in indicates the number of
columns that will be defined for the wxDbTable object. The constructor uses this
information to allocate adequate memory for all of the column descriptions in your
wxDbTable object. Private member wxDbTable::colDefs is a pointer to this chunk of
memory maintained by the wxDbTable class (and can be retrieved using
thewxDbTable::GetColDefs (p. 321) function). To access the nth column definition of
your wxDbTable object, just reference wxDbColDefs element [n - 1].

Typically, wxDbTable::SetColDefs (p. 334) is used to populate an array of these data
structures for the wxDbTable instance.

Currently there are no accessor functions for this class, so all members are public.

wxChar ColName [DB_MAX_COLUMN_NAME_LEN+1]; // Column Name
int DbDataType; - Logical Data Type;

297

CHAPTER 6

SWORD SglCtype;
void *PtrDataObij;

int SzDataObij; -
bool KeyField; -
bool Updateable; -
bool InsertAllowed;

bool DerivedCol; -
SDWORD CbValue; -
bool Null; -

See also

e.g. DB_DATA_TYPE_INTEGER

C data type; e.g. SQL_C_LONG

Address of the data object

Size, in bytes, of the data object

Is column part of the PRIMARY KEY for the
table? —-- Date fields should NOT be
KeyFields

Column is updateable?

— Column included in INSERT statements?

Column is a derived value?

!''"!"Internal use only!!!

NOT FULLY IMPLEMENTED

Allows NULL values in Inserts and Updates

database classes overview (p. 1691),wxDbTable::GetColDefs (p. 321), wxDb constructor

(p. 274)

wxDbColDef::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor

automatically.

wxDbColFor

Beginning support for handling international formatting specifically on dates and floats.

wxString
wxString

wxString
int

int

int

SWORD

s_Field;

// Formated String for Output

s_Format[7]; // Formated Objects - TIMESTAMP has

the biggest (7)

s_Amount [7]; // Formated Objects - amount of

things that can be formatted

i_Amount[7]; // Formated Objects -

i_Nation;

TT MM YYYY HH MM SS m
= timestamp
= EU
UK
International
= US

//

S WO

i_dbDataType; // conversion of the 'sqglDataType'

to the generic data type used by
these classes

i_sglDataType;

The constructor for this class initializes all the values to zero or NULL.

The destructor does nothing at this time.

Only one function is provided with this class currently.

See the database classes overview (p. 1691) for an introduction to using the ODBC

298

CHAPTER 6

classes.

wxDbColFor::Format

int Format(int Nation, int dbDataType,SWORD sql/DataType, short columnSize,short

decimalDigits)

Work in progress, and should be inter-related with wxLocale eventually.

wxDbColFor::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor

automatically.

wxDbColInf

Used with the wxDb::GetColumns (p. 282) functions for obtaining all retrievable
information about a column's definition.

wxChar
wxChar
wxChar
wxChar
SWORD
wxChar
SWORD
SWORD
short
short
short
wxChar
int

int

wxChar

int

wxChar

wxDbColFor

catalog[128+1];
schema[128+1];
tableName [DB_MAX_TABLE_NAME_LEN+1];
colName [DB_MAX_ COLUMN_NAME_LEN+1];
sglDataType;
typeName[128+1];
columnSize;
bufferLength;
decimalDigits;
numPrecRadix;
nullable;
remarks[254+1];
dbDataType; // conversion of the 'sglDataType'
// to the generic data type used by
// these classes
PkCol; // Primary key column
0 = No
1 = First Key
2 = Second Key, etc...
PkTableName [DB_MAX_ TABLE_NAME_LEN+1];
// Tables that use this PKey as a FKey
FkCol; // Foreign key column
0 = No
1 = First Key
2 = Second Key, etc...
FkTableName [DB_MAX_ TABLE_NAME_LEN+1];
// Foreign key table name

*pColFor; // How should this column be formatted

The constructor for this class initializes all the values to zero, "", or NULL.

The destructor for this class takes care of deleting the pColFor member if it is non-NULL.

299

CHAPTER 6

See the database classes overview (p. 1691) for an introduction to using the ODBC
classes.

wxDbColinf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbConnectinf

This class is used for holding the data necessary for connecting to the ODBC
datasource. That information includes: SQL environment handle, datasource name,
user ID, password and default directory path (used with dBase). Other optional fields
held in this class are and file type, both for future functions planned to be added for
creating/manipulating datasource definitions.

wxDbConnectinf::wxDbConnectinf

wxDbConnectinf()
Default constructor.

wxDbConnectIinf(HENV henv, const wxString &dsn,const wxString &user/D="",
const wxString &password,const wxString &defaultDir="", const wxString

nn

&description="",const wxString &fileType="")
Constructor which allows initial settings of all the classes member variables.

See the special note below on the henv parameter for forcing this constructor to create a
SQL environment handle automatically, rather than needing to pass one in to the
function.

Parameters

henv
Environment handle used for this connection. SeewxDConnectinf::AllocHenv (p.
301) for how to create an SQL environment handle. NOTE: Passing in a NULL for
this parameter will inform the constructor that it should create its own SQL
environment handle. If NULL is passed for this parameter, the constructor will
callwxDConnectinf::AllocHenv (p. 301) internally. A flag is set internally also to
indicate that the HENV was created by the constructor so that when the default
class destructor is called, the destructor will call wxDConnectlInf::FreeHenv (p.
302)to free the environment handle automatically.

dsn

300

CHAPTER 6

Name of the datasource to be used in creating wxDb instances for creating
connection(s) to a datasource.
userlD
OPTIONAL Many datasources allow (or even require) use of a username to
determine privileges that connecting user is allowed to have when accessing the
datasource or the data tables. Default is "".
password
OPTIONAL Password to be associated with the user ID specified in 'userID'.
Default is "".
defaultDir
OPTIONAL Used for datasources which require the path to where the data file is
stored to be specified. dBase is one example of the type of datasource which
requires this information. Default is "".
description
OPTIONAL FUTURE USE Default is ™.
fileType
OPTIONAL FUTURE USE Default is ™.

Remarks

It is strongly recommended that programs use the longer form of the constructor and
allow the constructor to create the SQL environment handle automatically, and manage
the destruction of the handle.

Example

wxDbConnectInf *DbConnectInf;

DbConnectInf = new wxDbConnectInf (0, "MY_DSN", "MY_USER",
"MY_PASSWORD") ;

....the rest of the program

delete DbConnectInf;
See also

wxDConnectlinf::AllocHenv (p. 301),wxDConnectinf::FreeHenv (p. 302)

wxDbConnectinf::~wxDbConnectinf

~wxDbConnectinf()

Handles the default destruction of the instance of the class. If the long form of the
wxDConnectinf (p. 300) was used, then this destructor also takes care of
callingwxDConnectInf::FreeHenv (p. 302) to free the SQL environment handle.

wxDbConnectinf::AllocHenv

bool AllocHenv()

301

CHAPTER 6

Allocates a SQL environment handle that will be used to interface with an ODBC
datasource.

Remarks

This function can be automatically called by the long from of thewxDbConnectinf (p. 300)
constructor.

wxDbConnectinf::FreeHenv

void FreeHenv()

Frees the SQL environment handle being managed by the instance of this class.
Remarks

If the SQL environment handle was created using the long form of thewxDbConnectinf
(p- 300) constructor, then the flag indicating that the HENV should be destroyed when
the classes destructor is called is reset to be FALSE, so that any future handles created

using thewxDbConnectinf::AllocHenv (p. 301) function must be manually released with a
call to this function.

wxDbConnectInf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbConnectinf::GetAuthStr

const wxChar * GetAuthStr()

Accessor function to return the password assigned for this class instance that will be
used with the user ID.

Synonymous with wxDbConnectinf::GetPassword (p. 303)

wxDbConnectinf::GetDefaultDir

const wxChar * GetDefaultDir()

Accessor function to return the default directory in which the datasource's data table is
stored. This directory is only used for file based datasources like dBase. MS-Access
does not require this to be set, as the path is set in the ODBC Administrator for MS-
Access.

302

CHAPTER 6

wxDbConnectinf::GetDescription

const wxChar * GetDescription()
Accessor function to return the description assigned for this class instance.

NOTE: Description is a FUTURE USE item and is unused currently.

wxDbConnectinf::GetDsn

const wxChar * GetDsn()

Accessor function to return the datasource name assigned for this class instance.

wxDbConnectinf::GetFileType

const wxChar * GetFileType()

Accessor function to return the filetype of the ODBC datasource assigned for this class
instance.

NOTE: FileType is a FUTURE USE item and is unused currently.

wxDbConnectinf::GetHenv

const HENV GetHenv()

Accessor function to return the SQL environment handle being managed by this class
instance.

wxDbConnectiInf::GetPassword

const wxChar * GetPassword()

Accessor function to return the password assigned for this class instance that will be
used with the user ID.

Synonymous with wxDbConnectinf::GetAuthStr (p. 302)

wxDbConnectiInf::GetUid

const wxChar * GetUid()

303

CHAPTER 6

Accessor function to return the user ID assigned for this class instance.

wxDbConnectinf::GetUserlD

const wxChar * GetUserlD()

Accessor function to return the user ID assigned for this class instance.

wxDbConnectinf::SetAuthStr

SetAuthStr(const wxString &authstr)

Accessor function to assign the password for this class instance that will be used with
the user ID.

Synonymous with wxDbConnectlinf::SetPassword (p. 305)

wxDbConnectiInf::SetDefaultDir

SetDefaultDir(const wxString &defDir)

Accessor function to assign the default directory in which the datasource's data table is
stored. This directory is only used for file based datasources like dBase. MS-Access
does not require this to be set, as the path is set in the ODBC Administrator for MS-
Access.

wxDbConnectinf::SetDescription

SetDescription(const wxString &desc)
Accessor function to assign the description assigned for this class instance.

NOTE: Description is a FUTURE USE item and is unused currently.

wxDbConnectinf::SetDsn

SetDsn(const wxString &dsn)

Accessor function to assign the datasource name for this class instance.

wxDbConnectinf::SetFileType

SetFileType(const wxString &)

304

CHAPTER 6

Accessor function to return the filetype of the ODBC datasource assigned for this class
instance.

NOTE: FileType is a FUTURE USE item and is unused currently.

wxDbConnectinf::SetHenv

void SetHenv(const HENV henv)

Accessor function to set the SQL environment handle for this class instance.

wxDbConnectiInf::SetPassword

SetPassword(const wxString &password)

Accessor function to assign the password for this class instance that will be used with
the user ID.

Synonymous with wxDbConnectlinf::SetAuthStr (p. 304)

wxDbConnectiInf::SetUid

SetUid(const wxString &uid)

Accessor function to set the user ID for this class instance.

wxDbConnectiInf::SetUserlD

SetUserID(const wxString &userlID)

Accessor function to assign the user ID for this class instance.

wxDbldxDef

Used in creation of non-primary indexes. Currently there are no member functions for
this class.

wxChar ColName [DB_MAX_ COLUMN_NAME_LEN+1]
// Name of column
bool Ascending // Is index maintained in
ASCENDING sequence?

305

CHAPTER 6

There are no constructors/destructors as of this time, and no member functions.

See the database classes overview (p. 1691) for an introduction to using the ODBC
classes.

wxDblInf

Contains information regarding the database connection (datasource name, number of
tables, etc). A pointer to a wxDbTablelnf is included in this class so a program can
create a wxDbTablelnf array instance to maintain all information about all tables in the
datasource to have all the datasource's information in one memory structure.

Primarily, this class is used internally by the wxWindows ODBC classes.

wxChar catalog[128+1];

wxChar schema[128+1]; // typically means owner of table(s)

int numTables; // How many tables does this
datasource have

wxDbTableInf *pTablelnf; // Equals a new

wxDbTableInf [numTables];
The constructor for this class initializes all the values to zero, ", or NULL.

The destructor for this class takes care of deleting the pTableIlnf member if it is non-
NULL.

See the database classes overview (p. 1691) for an introduction to using the ODBC
classes.

wxDblnf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDbTable

A wxDbTable instance provides re-usable access to rows of data in a table contained
within the associated ODBC datasource

See the database classes overview (p. 1691) for an introduction to using the ODBC
classes.

Include files

306

CHAPTER 6

<wx/dbtable.h>
<wx/db.h>

Helper classes and data structures

The following classes and structs are defined in dbtable.cpp/.h for use with the
wxDbTable class.

e wxDbColDef (p. 297)
e wxDbColDataPtr (p. 297)
e wxDbldxDef (p. 305)

Constants

wxDB_DEFAULT_CURSOR Primary cursor normally used for cursor based
operations.

wxDB_QUERY_ONLY Used to indicate whether a table that is opened
is for query only, or if insert/update/deletes
will be performed on the table. Less overhead
(cursors and memory) are allocated for query
only tables, plus read access times are faster
with some datasources.

wxDB_ROWID_LEN [Oracle only] - Used when CanUpdateByRowID ()
is true. Optimizes updates so they are faster
by updating on the Oracle-specific ROWID column
rather than some other index.

wxDB_DISABLE_VIEW Use to indicate when a database view should not
be if a table is normally set up to use a view.
[Currently unsupported.]

wxDbTable::wxDbTable

wxDbTable(wxDb *pwxDb, const wxString &tb/Name, const UWORD numColumns,
const wxString &qryTbIName = "", bool qryOnly = lwxDB_QUERY_ONLY, const
wxString &tb/Path = "")

Default constructor.
Parameters

pwxDb
Pointer to the wxDb instance to be used by this wxDbTable instance.
tbIName
The name of the table in the RDBMS.
numColumns
The number of columns in the table. (Do NOT include the ROWID column in the
count if using Oracle).

307

CHAPTER 6

gryTbIName
OPTIONAL. The name of the table or view to base your queries on. This
argument allows you to specify a table/view other than the base table for this
object to base your queries on. This allows you to query on a view for example,
but all of the INSERT, UPDATE and DELETES will still be performed on the base
table for this wxDbTable object. Basing your queries on a view can provide a
substantial performance increase in cases where your queries involve many tables

with multiple joins. Default is "".
gryOnly
OPTIONAL. Indicates whether the table will be accessible for query purposes
only, or should the table create the necessary cursors to be able to insert, update,
and delete data from the table. Default is 'wxDB_QUERY_ONLY.
tblPath
OPTIONAL. Some datasources (such as dBase) require a path to where the table

is stored on the system. Default is "".

wxDbTable::wxDbTable

virtual ~wxDbTable()

Virtual default destructor.

wxDbTable::BuildDeleteStmt

void BuildDeleteStmt(wxString &pSq/Stmt,int typeOfDel, const wxString
&pWhereClause="")

Constructs the full SQL statement that can be used to delete all rows matching the
criteria in the pWhereClause.

Parameters

pSqlStmt
Pointer to buffer for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_ MAX_STATEMENT_LEN
bytes.
typeOfDel
The type of delete statement being performed. Can be one of three values:
DB_DEL_KEYFIELDS, DB_DEL_WHERE or DB_DEL_MATCHING
pWhereClause
OPTIONAL. If the typeOfDel is DB_DEL_WHERE, then you must also pass in a
SQL WHERE clause in this argument. Default is "".

Remarks

This member function constructs a SQL DELETE statement. This can be used for
debugging purposes if you are having problems executing your SQL statement.

308

CHAPTER 6

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 339)and
wxDbTable::SetFromClause (p. 337) are ignored by this function.

wxDbTable::BuildSelectStmt

void BuildSelectStmt(wxString &pSq/Stmt,int typeOfSelect, bool distinct)

Constructs the full SQL statement that can be used to select all rows matching the
criteria in the pWhereClause. This function is called internally in the wxDbTable class
whenever the function wxDbTable::Query (p. 329)is called.

NOTE: Only the columns specified in wxDbTable::SetColDefs (p. 334)statements are
included in the list of columns returned by the SQL statement created by a call to this
function.

Parameters

pSqlStmt
Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfSelect
The type of select statement being performed. Can be one of four values:
DB_SELECT_KEYFIELDS, DB_SELECT_WHERE, DB_SELECT_MATCHING or
DB_SELECT_STATEMENT.

distinct
Whether to select distinct records only.

Remarks

This member function constructs a SQL SELECT statement. This can be used for
debugging purposes if you are having problems executing your SQL statement.

WHERE and FROM clauses specified usingwxDbTable::SetWhereClause (p. 339)and
wxDbTable::SetFromClause (p. 337) are ignored by this function.

wxDbTable::BuildUpdateStmt

void BuildUpdateStmt(wxString &pSq/Stmt, int typeOfUpd,const wxString
&pWhereClause="")

Constructs the full SQL statement that can be used to update all rows matching the
criteria in the pWhereClause.

If typeOfUpd is DB_UPD_KEYFIELDS, then the current values in the bound columns are
used to determine which row(s) in the table are to be updated. The exception to this is
when a datasource supports ROW IDs (Oracle). The ROW ID column is used for
efficiency purposes when available.

309

CHAPTER 6

NOTE: Only the columns specified in wxDbTable::SetColDefs (p. 334)statements are
included in the list of columns updated by the SQL statement created by a call to this
function. Any column definitions that were defined as being non-updateable will be
excluded from the SQL UPDATE statement created by this function.

Parameters

pSqlStmt
Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_MAX_STATEMENT_LEN
bytes.

typeOfUpd
The type of update statement being performed. Can be one of two values:
DB_UPD_KEYFIELDS or DB_UPD_WHERE.

pWhereClause
OPTIONAL. If the typeOfUpd is DB_UPD_WHERE, then you must also pass in a
SQL WHERE clause in this argument. Default is ™.

Remarks

This member function allows you to see what the SQL UPDATE statement looks like that
the ODBC class library builds. This can be used for debugging purposes if you are
having problems executing your SQL statement.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 339)and
wxDbTable::SetFromClause (p. 337) are ignored by this function.

wxDbTable::BuildWhereStmt

void BuildSelectStmt(wxString &pWhereClause,int typeOfWhere, const wxString
&qualTableName=""bool uselLikeComparison=FALSE)

Constructs the portion of a SQL statement which would follow the word 'WHERE' in a
SQL statement to be passed to the datasource. The returned string does NOT include
the word 'WHERE'.

Parameters

pWhereClause
Pointer to storage for the SQL statement retrieved. To be sure you have adequate
space allocated for the SQL statement, allocate DB_ MAX_STATEMENT_LEN
bytes.

typeOfWhere
The type of where clause to generate. Can be one of two values:
DB_WHERE_KEYFIELDS or DB_.WHERE_MATCHING.

qualTableName
OPTIONAL. Prepended to all base table column names. For use when a FROM
clause has been specified with thewxDbTable::SetFromClause (p. 337), to clarify

which table a column name reference belongs to. Default is "".

310

CHAPTER 6

uselLikeComparison
OPTIONAL. Should the constructed WHERE clause utilize the LIKE comparison
operator. If FALSE, then the '=' operator is used. Default is FALSE.

Remarks

This member function allows you to see what the SQL WHERE clause looks like that the
ODBC class library builds. This can be used for debugging purposes if you are having
problems executing your own SQL statements.

If using 'typeOfWhere' set to DB_WHERE_MATCHING, any bound columns currently

containing a NULL value are not included in the WHERE clause's list of columns to use
in the comparison.

wxDbTable::CanSelectForUpdate

bool CanSelectForUpdate()

Use this function to determine if the datasource supports SELECT ... FOR UPDATE.
When the keywords "FOR UPDATE" are included as part of your SQL SELECT
statement, all records retrieved (not just queried, but actually retrieved
usingwxDbTable::GetNext (p. 323), etc) from the result set are locked.

Remarks

Not all datasources support the "FOR UPDATE" clause, so you must use this member

function to determine if the datasource currently connected to supports this behavior or
not before trying to select using "FOR UPDATE".

If the wxDbTable instance was created with the parameter wxDB_QUERY_ONLY, then

this function will return FALSE. For all known databases which do not support the FOR
UPDATE clause, this function will return FALSE also.

wxDbTable::CanUpdateByROWID

bool CanUpdateByROWID()

CURRENTLY ONLY POSSIBLE IF USING ORACLE.

--- CURRENTLY DISABLED FOR *ALL* DATASOURCES --- NOV 1 2000 - gt

Every Oracle table has a hidden column named ROWID. This is a pointer to the
physical location of the record in the datasource and allows for very fast updates and
deletes. The key is to retrieve this ROWID during your query so it is available during an

update or delete operation.

Use of the ROWID feature is always handled by the class library except in the case of
wxDbTable::QueryBySqlStmt (p. 330). Since you are passing in the SQL SELECT

311

CHAPTER 6

statement, it is up to you to include the ROWID column in your query. If you do not, the
application will still work, but may not be as optimized. The ROWID is always the last
column in the column list in your SQL SELECT statement. The ROWID is not a column
in the normal sense and should not be considered part of the column definitions for the
wxDbTable object.

Remarks

The decision to include the ROWID in your SQL SELECT statement must be deferred

until runtime since it depends on whether you are connected to an Oracle datasource or
not.

Example

// Incomplete code sample
wxDbTable parts;
if (parts.CanUpdByROWID ())
{
// Note that the ROWID column must always be the last column
selected
sglStmt = "SELECT PART_NO, PART_DESC, ROWID" FROM PARTS";
}
else
sglStmt = "SELECT PART_NO, PART_DESC FROM PARTS";

wxDbTable::ClearMemberVar

void ClearMemberVar(UWORD co/No, bool setToNull=FALSE)

Same as wxDbTable::ClearMemberVars (p. 312) except that this function clears only the
specified column of its values, and optionally sets the column to be a NULL column.

colNo
Column number that is to be cleared. This number (between 0 and (noCols-1)) is
the index of the column definition created using thewxDbTable::SetColDefs (p.
334) function.

setToNull
OPTIONAL. Indicates whether the column should be flagged as being a NULL
value stored in the bound memory variable. |f TRUE, then any value stored in the
bound member variable is cleared. Default is FALSE.

wxDbTable::ClearMemberVars

void ClearMemberVars(bool setToNull=FALSE)

Initializes all bound columns of the wxDbTable instance to zero. In the case of a string,
zero is copied to the first byte of the string.

setToNull
OPTIONAL. Indicates whether all columns should be flagged as having a NULL

312

CHAPTER 6

value stored in the bound memory variable. |f TRUE, then any value stored in the
bound member variable is cleared. Default is FALSE.

Remarks

This is useful before calling functions such aswxDbTable::QueryMatching (p. 332)
orwxDbTable::DeleteMatching (p. 317) since these functions build their WHERE clauses
from non-zero columns. To call eitherwxDbTable::QueryMatching (p. 332)
orwxDbTable::DeleteMatching (p. 317) use this sequence:

1) ClearMemberVars ()
2) Assign columns values you wish to match on
3) Call wxDbTable::QueryMatching () or wxDbTable::DeleteMatching/()

wxDbTable::CloseCursor

bool CloseCursor(HSTMTcursor)
Closes the specified cursor associated with the wxDbTable object.
Parameters

cursor
The cursor to be closed.

Remarks

Typically handled internally by the ODBC class library, but may be used by the
programmer if desired.

DO NOT CLOSE THE wxDB_DEFAULT_CURSOR!

wxDbTable::Count

ULONG Count(const wxString &args=""")

Returns the number of records which would be in the result set using the current query
parameters specified in the WHERE and FROM clauses.

Parameters

args
OPTIONAL. This argument allows the use of the DISTINCT keyword against a
column name to cause the returned count to only indicate the number of rows in
the result set that have a unique value in the specified column. An example is
shown below. Default is "*", meaning a count of the total number of rows matching
is returned, regardless of uniqueness.

Remarks

313

CHAPTER 6

This function can be called before or after an actual query to obtain the count of records
in the result set. Count() uses its own cursor, so result set cursor positioning is not
affected by calls to County().

WHERE and FROM clauses specified usingwxDbTable::SetWhereClause (p. 339)and
wxDbTable::SetFromClause (p. 337) ARE used by this function.

Example

USERS TABLE

FIRST_NAME LAST_NAME
John Doe
Richard Smith
Michael Jones
John Carpenter

// Incomplete code sample
wxDbTable users;

users.SetWhereClause ("");

// This Count () will return 4, as there are four users listed above
// that match the query parameters
totalNumberOfUsers = users.Count ();

// This Count () will return 3, as there are only 3 unique first
names

// in the table above - John, Richard, Michael.
totalNumberOfUniqueFirstNames = users.Count ("DISTINCT FIRST_NAME") ;

wxDbTable::Createlndex

bool Createlndex(const wxString &idxName, bool unique,UWORD noldxCols,
wxDbldxDef *pldxDefs,bool attemptDrop=TRUE)

This member function allows you to create secondary (non primary) indexes on your
tables. You first create your table, normally specifying a primary index, and then create
any secondary indexes on the table. Indexes in relational model are not required. You
do not need indexes to look up records in a table or to join two tables together. In the
relational model, indexes, if available, provide a quicker means to look up data in a table.
To enjoy the performance benefits of indexes, the indexes must be defined on the
appropriate columns and your SQL code must be written in such a way as to take
advantage of those indexes.

Parameters

idxName
Name of the Index. Name must be unique within the table space of the
datasource.

unique
Indicates if this index is unique.

314

CHAPTER 6

noldxCols
Number of columns in the index.

pldxDefs
A pointer to an array wxDbldxDef structures.

attemptDrop
OPTIONAL. Indicates if the function should try to execute a
wxDbTable::Droplndex (p. 319) on the index name provided before trying to create
the index name. Default is TRUE.

Remarks

The first parameter, index name, must be unique and should be given a meaningful
name. Common practice is to include the table name as a prefix in the index name (e.g.
For table PARTS, you might want to call your index PARTS_IDX1). This will allow you
to easily view all of the indexes defined for a given table grouped together alphabetically.

The second parameter indicates if the index is unique or not. Uniqueness is enforced at
the RDBMS level preventing rows which would have duplicate indexes from being
inserted into the table when violating a unique index's uniqueness.

In the third parameter, specify how many columns are in your index. This number must
match the number of columns defined in the 'pldxDefs' parameter.

The fourth parameter specifies which columns make up the index using the wxDbldxDef
structure. For each column in the index, you must specify two things, the column name
and the sort order (ascending / descending). See the example below to see how to build
and pass in the wxDbldxDef structure.

The fifth parameter is provided to handle the differences in datasources as to whether
they will automatically overwrite existing indexes with the same name or not. Some
datasources require that the existing index must be dropped first, so this is the default
behavior.

Some datasources (MySQL, and possibly others) require columns which are to be part
of an index to be defined as NOT NULL. When this function is called, if a column is not
defined to be NOT NULL, a call to this function will modify the column definition to
change any columns included in the index to be NOT NULL. In this situation, if a NULL
value already exists in one of the columns that is being modified, creation of the index
will fail.

PostGres is unable to handle index definitions which specify whether the index is
ascending or descending, and defaults to the system default when the index is created.

It is not necessary to call wxDb::CommitTrans (p. 276)after executing this function.

Example
// Create a secondary index on the PARTS table
wxDbIdxDef idxDef[2]; // 2 columns make up the index
wxStrcpy (idxDef [0] .ColName, "PART_DESC"); // Column 1

idxDef [0] .Ascending = TRUE;

315

CHAPTER 6

wxStrcpy (idxDef[1].ColName, "SERIAL_NO"); // Column 2
idxDef[1] .Ascending = FALSE;

// Create a name for the index based on the table's name
wxString indexName;

indexName.Printf ("%$s_IDX1",parts—->GetTableName ()) ;
parts—->Createlndex (indexName, TRUE, 2, idxDef);

wxDbTable::CreateTable

bool CreateTable(bool attemptDrop=TRUE)
Creates a table based on the definitions previously defined for this wxDbTable instance.
Parameters

attemptDrop
OPTIONAL. Indicates whether the driver should attempt to drop the table before
trying to create it. Some datasources will not allow creation of a table if the table
already exists in the table space being used. Default is TRUE.

Remarks

This function creates the table and primary index (if any) in the table space associated

with the connected datasource. The owner of these objects will be the user id that was
given when wxDb::Open (p. 290) was called. The objects will be created in the default

schema/table space for that user.

In your derived wxDbTable object constructor, the columns and primary index of the
table are described through the wxDbColDef (p. 297) structure.wxDbTable::CreateTable
(p. 316) uses this information to create the table and to add the primary index.
SeewxDbTable (p. 306) ctor and wxDbColDef description for additional information on
describing the columns of the table.

It is not necessary to call wxDb::CommitTrans (p. 276)after executing this function.

wxDbTable::DB_STATUS

bool DB_STATUS()

Accessor function that returns the wxDb private member variable DB_STATUS for the
database connection used by this instance of wxDbTable.

wxDbTable::Delete

bool Delete()

Deletes the row from the table indicated by the current cursor.

316

CHAPTER 6

Remarks

Use wxDbTable::GetFirst (p. 321),wxDbTable::GetLast (p. 322),wxDbTable::GetNext (p.
323) orwxDbTable::GetPrev (p. 324) to position the cursor to a valid record. Once
positioned on a record, call this function to delete the row from the table.

A wxDb::CommitTrans (p. 276) orwxDb::RollbackTrans (p. 291) must be called after use
of this function to commit or rollback the deletion.

NOTE: Most datasources have a limited size "rollback" segment. This means that it is
only possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 276) orwxDb::RollbackTrans (p. 291). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

wxDbTable::DeleteCursor

bool DeleteCursor(HSTMT *hstmtDel)
Allows a program to delete a cursor.
Parameters

hstmtDel
Handle of the cursor to delete.

Remarks

For default cursors associated with the instance of wxDbTable, it is not necessary to
specifically delete the cursors. This is automatically done in the wxDbTable destructor.

NOTE: If the cursor could not be deleted for some reason, an error is logged indicating
the reason. Even if the cursor could not be deleted, the HSTMT that is passed in is
deleted, and the pointer is set to NULL.

DO NOT DELETE THE wxDB_DEFAULT_CURSOR!

wxDbTable::DeleteMatching

bool DeleteMatching()

This member function allows you to delete records from your wxDbTable object by
specifying the data in the columns to match on.

Remarks

317

CHAPTER 6

To delete all users with a first name of "JOHN", do the following:

1. Clear all "columns" using wxDbTable::ClearMemberVars().
2. Setthe FIRST_NAME column equal to "JOHN".
3. Call wxDbTable::DeleteMatching().

The WHERE clause is built by the ODBC class library based on all non-NULL columns.
This allows deletion of records by matching on any column(s) in your wxDbTable
instance, without having to write the SQL WHERE clause.

A wxDb::CommitTrans (p. 276) orwxDb::RollbackTrans (p. 291) must be called after use
of this function to commit or rollback the deletion.

NOTE: Row(s) should be locked before deleting them to make sure they are not already
in use. This can be achieved by callingwxDbTable::QueryMatching (p. 332), and then
retrieving the records, locking each as you go (assuming FOR UPDATE is allowed on
the datasource). After the row(s) have been successfully locked, call this function.

NOTE: Most datasources have a limited "rollback"” segment. This means that it is only
possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 276) orwxDb::RollbackTrans (p. 291). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

Example

// Incomplete code sample to delete all users with a first name
// of "JOHN"

users.ClearMemberVars () ;

wxStrcpy (users.FirstName, "JOHN") ;

users.DeleteMatching () ;

wxDbTable::DeleteWhere

bool DeleteWhere(const wxString &poWhereClause)

Deletes all rows from the table which match the criteria specified in the WHERE clause
that is passed in.

Parameters

pWhereClause
SQL WHERE clause. This WHERE clause determines which records will be
deleted from the table interfaced through the wxDbTable instance. The WHERE
clause passed in must be compliant with the SQL 92 grammar. Do not include the
keyword 'WHERE'

Remarks

318

CHAPTER 6

This is the most powerful form of the wxDbTable delete functions. This function gives
access to the full power of SQL. This function can be used to delete records by passing
a valid SQL WHERE clause. Sophisticated deletions can be performed based on
multiple criteria using the full functionality of the SQL language.

A wxDb::CommitTrans (p. 276) must be called after use of this function to commit the
deletions.

Note: This function is limited to deleting records from the table associated with this
wxDbTable object only. Deletions on joined tables is not possible.

NOTE: Most datasources have a limited size "rollback” segment. This means that it is
only possible to insert/update/delete a finite number of rows without performing a
wxDb::CommitTrans (p. 276) orwxDb::RollbackTrans (p. 291). Size of the rollback
segment varies from database to database, and is user configurable in most databases.
Therefore it is usually best to try to perform a commit or rollback at relatively small
intervals when processing a larger number of actions that insert/update/delete rows in a
table.

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 339)and
wxDbTable::SetFromClause (p. 337) are ignored by this function.

Example

// Delete parts 1 thru 10 from containers 'X', 'Y' and 'Z' that
// are magenta in color
parts.DeleteWhere (" (PART_NUMBER BETWEEN 1 AND 10) AND \
CONTAINER IN ('X', 'Y', 'Z') AND \
UPPER (COLOR) = 'MAGENTA'");

wxDbTable::Droplndex

bool Dropindex(const wxString &idxName)

Allows an index on the associated table to be dropped (deleted) if the user login has
sufficient privileges to do so.

Parameters

idxName
Name of the index to be dropped.

Remarks

If the index specified in the 'idxName' parameter does not exist, an error will be logged,
and the function will return a result of FALSE.

It is not necessary to call wxDb::CommitTrans (p. 276)after executing this function.

319

CHAPTER 6

wxDbTable::DropTable

bool DropTable()

Deletes the associated table if the user has sufficient privileges to do so.

Remarks

This function returns TRUE if the table does not exist, but only for supported databases
(see wxDb::Dbms (p. 277)). If a datasource is not specifically supported, and this
function is called, the function will return FALSE.

Most datasources/ODBC drivers will delete any indexes associated with the table
automatically, and others may not. Check the documentation for your database to
determine the behavior.

It is not necessary to call wxDb.::CommitTrans (p. 276)after executing this function.

wxDbTable::From

const wxString & From()

void From(const wxString &From)

Accessor function for the private class member wxDbTable::from. Can be used as a
synonym for wxDbTable::GetFromClause (p. 322)(the first form of this function)
orwxDbTable::SetFromClause (p. 337) (the second form of this function).

Parameters

From
A comma separated list of table names that are to be outer joined with the base
table's columns so that the joined table's columns may be returned in the result set
or used as a portion of a comparison with the base table's columns. NOTE that
the base tables name must NOT be included in the FROM clause, as it is
automatically included by the wxDbTable class in constructing query statements.

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::from.

The second form of the function has no return value, as it will always set the from clause
successfully.

See also

wxDbTable::GetFromClause (p. 322),wxDbTable::SetFromClause (p. 337)

320

CHAPTER 6

wxDbTable::GetColDefs

wxDbColDef * GetColDefs()

Accessor function that returns a pointer to the array of column definitions that are bound
to the columns that this wxDbTable instance is associated with.

To determine the number of elements pointed to by the returnedwxDbColDef (p. 297)
pointer, use thewxDbTable::GetNumberOfColumns (p. 323) function.

Remarks

These column definitions must not be manually redefined after they have been set.

wxDbTable::GetCursor

HSTMT GetCursor()

Returns the HSTMT value of the current cursor for this wxDbTable object.

Remarks

This function is typically used just before changing to use a different cursor so that after
the program is finished using the other cursor, the current cursor can be set back to
being the cursor in use.

See also

wxDbTable::SetCursor (p. 336), wxDbTable::GetNewCursor (p. 322)

wxDbTable::GetDb

wxDb * GetDb()

Accessor function for the private member variable pDb which is a pointer to the
datasource connection that this wxDbTable instance uses.

wxDbTable::GetFirst

bool GetFirst()

Retrieves the FIRST row in the record set as defined by the current query. Before
retrieving records, a query must be performed usingwxDbTable::Query (p.
329),wxDbTable::QueryOnKeyFields (p. 333),wxDbTable::QueryMatching (p. 332)
orwxDbTable::QueryBySqlStmt (p. 330).

321

CHAPTER 6

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to FALSE. If the connection does not
allow backward scrolling cursors, this function will return FALSE, and the data contained
in the bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 287)

wxDbTable::GetFromClause

const wxString & GetFromClause()

Accessor function that returns the current FROM setting assigned with
thewxDbTable::SetFromClause (p. 337).

See also

wxDbTable::From (p. 320)

wxDbTable::GetLast

bool GetlLast()

Retrieves the LAST row in the record set as defined by the current query. Before
retrieving records, a query must be performed usingwxDbTable::Query (p.
329),wxDbTable::QueryOnKeyFields (p. 333),wxDbTable::QueryMatching (p. 332)
orwxDbTable::QueryBySqlStmt (p. 330).

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to FALSE. If the connection does not
allow backward scrolling cursors, this function will return FALSE, and the data contained
in the bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 287)

wxDbTable::GetNewCursor

HSTMT * GetNewCursor(bool setCursor=FALSE,bool bindColumns=TRUE)

This function will create a new cursor that can be used to access the table being

322

CHAPTER 6

referenced by this wxDbTable instance, or to execute direct SQL commands on without
affecting the cursors that are already defined and possibly positioned.

Parameters

setCursor
OPTIONAL. Should this new cursor be set to be the current cursor after
successfully creating the new cursor. Default is FALSE.

bindColumns
OPTIONAL. Should this new cursor be bound to all the memory variables that the
default cursor is bound to. Default is TRUE.

Remarks
This new cursor must be closed usingwxDbTable::DeleteCursor (p. 317)by the calling

program before the wxDbTable instance is deleted, or both memory and resource leaks
will occur.

wxDbTable::GetNext

bool GetNext()

Retrieves the NEXT row in the record set after the current cursor position as defined by
the current query. Before retrieving records, a query must be performed using
wxDbTable::Query (p. 329),wxDbTable::QueryOnKeyFields (p.
333),wxDbTable::QueryMatching (p. 332) orwxDbTable::QueryBySqlStmt (p. 330).
Return value

This function returns FALSE when the current cursor has reached the end of the result
set. When FALSE is returned, data in the bound columns is undefined.

Remarks
This function works with both forward and backward scrolling cursors.

See alsowxDbTable::++ (p. 342)

wxDbTable::GetNumberOfColumns

UWORD GetNumberOfColumns()

Accessor function that returns the number of columns that are statically bound for
access by the wxDbTable instance.

wxDbTable::GetOrderByClause

323

CHAPTER 6

const wxString & GetOrderByClause()

Accessor function that returns the current ORDER BY setting assigned with the
wxDbTable::SetOrderByClause (p. 338).

See also

wxDbTable::OrderBy (p. 328)

wxDbTable::GetPrev

bool GetPrev()

Retrieves the PREVIOUS row in the record set before the current cursor position as
defined by the current query. Before retrieving records, a query must be performed
using wxDbTable::Query (p. 329),wxDbTable::QueryOnKeyFields (p.
333),wxDbTable::QueryMatching (p. 332) orwxDbTable::QueryBySqlStmt (p. 330).
Return value

This function returns FALSE when the current cursor has reached the beginning of the
result set and there are now other rows prior to the cursors current position. When
FALSE is returned, data in the bound columns is undefined.

Remarks

This function can only be used if the datasource connection used by the wxDbTable
instance was created with FwdOnlyCursors set to FALSE. If the connection does not
allow backward scrolling cursors, this function will return FALSE, and the data contained
in the bound columns will be undefined.

See also

wxDb::IsFwdOnlyCursors (p. 287),wxDbTable::-- (p. 342)

wxDbTable::GetQueryTableName

const wxString & GetQueryTableName()

Accessor function that returns the name of the table/view that was indicated as being the
table/view to query against when this wxDbTable instance was created.

See also

wxDbTable constructor (p. 307)

wxDbTable::GetRowNum

324

CHAPTER 6

UWORD GetRowNum()
Returns the ODBC row number for performing positioned updates and deletes.
Remarks

This function is not being used within the ODBC class library and may be a candidate for
removal if no use is found for it.

Row number with some datasources/ODBC drivers is the position in the result set, while

in others it may be a physical position in the database. Check your database
documentation to find out which behavior is supported.

wxDbTable::GetTableName

const wxString & GetTableName()

Accessor function that returns the name of the table that was indicated as being the
table that this wxDbTable instance was associated with.

wxDbTable::GetTablePath

const wxString & GetTablePath()

Accessor function that returns the path to the data table that was indicated during
creation of this wxDbTable instance.

Remarks

Currently only applicable to dBase and MS-Access datasources.

wxDbTable::GetWhereClause

const wxString & GetWhereClause()

Accessor function that returns the current WHERE setting assigned with
thewxDbTable::SetWhereClause (p. 339)

See also

wxDbTable::Where (p. 341)

wxDbTable::Insert

int Insert()

325

CHAPTER 6

Inserts a new record into the table being referenced by this wxDbTable instance. The
values in the member variables of the wxDbTable instance are inserted into the columns
of the new row in the database.

Return value
DB_SUCCESS Record inserted successfully (value = 1)
DB_FAILURE Insert failed (value = 0)

DB_ERR_INTEGRITY_ CONSTRAINT_VIOL
The insert failed due to an integrity
constraint violation (duplicate non-unique
index entry) is attempted.

Remarks

A wxDb::CommitTrans (p. 276) orwxDb::RollbackTrans (p. 291) must be called after use
of this function to commit or rollback the insertion.

Example

// Incomplete code snippet
wxStrcpy (parts—>PartName, "10");
wxStrcpy (parts—->PartDesc, "Part #10");
parts->Qty = 1000;
RETCODE retcode = parts—>Insert();
switch (retcode)
{
case DB_SUCCESS:
parts—->GetDb () —>CommitTrans () ;
return (TRUE) ;
case DB_ERR_INTEGRITY CONSTRAINT_VIOL:
// Current data would result in a duplicate key
// on one or more indexes that do not allow duplicates
parts—->GetDDb () —>RollbackTrans () ;
return (FALSE) ;
default:
// Insert failed for some unexpected reason
parts—->GetDDb () —>RollbackTrans () ;
return (FALSE) ;

wxDbTable::IsColNull

bool IsColNull(UWORD co/No) const

Used primarily in the ODBC class library to determine if a column value is set to "NULL".
Works for all data types supported by the ODBC class library.

Parameters

colNo
The column number of the bound column as defined by

326

CHAPTER 6

thewxDbTable::SetColDefs (p. 334)calls which defined the columns accessible to
this wxDbTable instance.

Remarks

NULL column support is currently not fully implemented as of wxWindows 2.4.

wxDbTable::IsCursorClosedOnCommit

bool IsCursorClosedOnCommit()

Accessor function to return information collected during the opening of the datasource
connection that is used by this wxDbTable instance. The result returned by this function
indicates whether an implicit closing of the cursor is done after a commit on the
database connection.

Return value

Returns TRUE if the cursor associated with this wxDbTable object is closed after a
commit or rollback operation. Returns FALSE otherwise.

Remarks
If more than one wxDbTable instance used the same database connection, all cursors

which use the database connection are closed on the commit if this function indicates
TRUE.

wxDbTable::IsQueryOnly

bool IsQueryOnly()

Accessor function that returns a value indicating if this wxDbTable instance was created
to allow only queries to be performed on the bound columns. If this function returns
TRUE, then no actions may be performed using this wxDbTable instance that would
modify (insert/delete/update) the table's data.

wxDbTable::Open

bool Open(bool checkPrivileges=FALSE, bool checkTableExists=TRUE)

Every wxDbTable instance must be opened before it can be used. This function checks
for the existence of the requested table, binds columns, creates required cursors,
(insert/select and update if connection is not wxDB_QUERY_ONLY) and constructs the
insert statement that is to be used for inserting data as a new row in the datasource.

Parameters

327

CHAPTER 6

checkPrivileges
Indicates whether the Open() function should check whether the current connected
user has at least SELECT privileges to access the table to which they are trying to
open. Default is FALSE.

checkTableExists
Indicates whether the Open() function should check whether the table exists in the
database or not before opening it. Default is TRUE.

Remarks

If the function returns a FALSE value due to the table not existing, a log entry is
recorded for the datasource connection indicating the problem that was detected when
checking for table existence. Note that it is usually best for the calling routine to check
for the existence of the table and for sufficient user privileges to access the table in the
mode (wxDB_QUERY_ONLY or 'wxDB_QUERY_ONLY) before trying to open the table
for the best possible explanation as to why a table cannot be opened.

Checking the user's privileges on a table can be quite time consuming during the open
phase. With most applications, the programmer already knows that the user has
sufficient privileges to access the table, so this check is normally not required.

For best performance, open the table, and then use thewxDb::TablePrivileges (p. 294)
function to check the users privileges. Passing a schema to the TablePrivileges()
function can significantly speed up the privileges checks.

See also

wxDb:: TableExists (p. 294),wxDb::TablePrivileges (p. 294)

wxDbTable::OrderBy

const wxString & OrderBy()
void OrderBy(const wxString &OrderBy)

Accessor function for the private class member wxDbTable::orderBy. Can be used as a
synonym forwxDbTable::GetOrderByClause (p. 323)(the first form of this function)
orwxDbTable::SetOrderByClause (p. 338)(the second form of this function).

Parameters

OrderBy
A comma separated list of column names that indicate the alphabetized/numeric
sorting sequence that the result set is to be returned in. If a FROM clause has
also been specified, each column name specified in the ORDER BY clause should
be prefaced with the table name to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Return value

328

CHAPTER 6

The first form of this function returns the current value of the wxDbTable member
variable ::orderBy.

The second form of the function has no return value.
See also

wxDbTable::GetOrderByClause (p. 323),wxDbTable::SetFromClause (p. 337)

wxDbTable::Query

virtual bool Query(bool forUpdate=FALSE, bool distinct=FALSE)
Parameters

forUpdate
OPTIONAL. Gives you the option of locking records as they are retrieved. If the
RDBMS is not capable of the FOR UPDATE clause, this argument is ignored.
SeewxDbTable::CanSelectForUpdate (p. 311) for additional information regarding
this argument. Default is FALSE.

distinct
OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is FALSE.

Remarks

This function queries records from the datasource based on the three wxDbTable
members: "where", "orderBy", and "from". UsewxDbTable::SetWhereClause (p. 339) to
filter on records to be retrieved (e.g. All users with a first name of "JOHN"). Use
wxDbTable::SetOrderByClause (p. 338) to change the sequence in which records are
returned in the result set from the datasource (e.g. Ordered by LAST_NAME).
UsewxDbTable::SetFromClause (p. 337) to allow outer joining of the base table (the one
being associated with this instance of wxDbTable) with other tables which share a
related field.

After each of these clauses are set/cleared, call wxDbTable::Query() to fetch the result
set from the datasource.

This scheme has an advantage if you have to requery your record set frequently in that
you only have to set your WHERE, ORDER BY, and FROM clauses once. Then to
refresh the record set, simply call wxDbTable::Query() as frequently as needed.

Note that repeated calls to wxDbTable::Query() may tax the database server and make
your application sluggish if done too frequently or unnecessarily.

The base table name is automatically prepended to the base column names in the event
that the FROM clause has been set (is non-null) usingwxDbTable::SetFromClause (p.
337).

329

CHAPTER 6

The cursor for the result set is positioned before the first record in the result set after the
query. To retrieve the first record, call eitherwxDbTable::GetFirst (p. 321) (only if
backward scrolling cursors are available) orwxDbTable::GetNext (p. 323). Typically, no
data from the result set is returned to the client driver until a request such
aswxDbTable::GetNext (p. 323) is performed, so network traffic and database load are
not overwhelmed transmitting data until the data is actually requested by the client. This
behavior is solely dependent on the ODBC driver though, so refer to the ODBC driver's
reference material for information on its behaviors.

Values in the bound columns' memory variables are undefined after executing a call to
this function and remain that way until a row in the result set is requested to be returned.

The wxDbTable::Query() function is defined as "virtual" so that it may be overridden for
application specific purposes.

Be sure to set the wxDbTable's "where", "orderBy", and "from" member variables to "" if
they are not to be used in the query. Otherwise, the results returned may have
unexpected results (or no results) due to improper or incorrect query parameters
constructed from the uninitialized clauses.

Example

// Incomplete code sample
parts—->SetWhereClause ("DESCRIPTION = 'FOOD'");
parts—->SetOrderByClause ("EXPIRATION_DATE") ;
parts—->SetFromClause ("");
// Query the records based on the where, orderBy and from clauses
// specified above
parts->Query () ;
// Display all records queried
while (parts—->GetNext ())

dispPart (parts); // user defined function

wxDbTable::QueryBySqlStmt

bool QueryBySqlStmt(const wxString &pSq/Stmt)

Performs a query against the datasource by accepting and passing verbatim the SQL
SELECT statement passed to the function.

Parameters

pSqlStmt
Pointer to the SQL SELECT statement to be executed.

Remarks
This is the most powerful form of the query functions available. This member function

allows a programmer to write their own custom SQL SELECT statement for requesting
data from the datasource. This gives the programmer access to the full power of SQL

330

CHAPTER 6

for performing operations such as scalar functions, aggregate functions, table joins, and
sub-queries, as well as datasource specific function calls.

The requirements of the SELECT statement are the following:

1. Must return the correct number of columns. In the derived wxDbTable
constructor, it is specified how many columns are in the wxDbTable object. The
SELECT statement must return exactly that many columns.

2. The columns must be returned in the same sequence as specified when defining
the bounds columns using wxDbTable::SetColDefs(), and the columns returned
must be of the proper data type. For example, if column 3 is defined in the
wxDbTable bound column definitions to be a float, the SELECT statement must
return a float for column 3 (e.g. PRICE * 1.10 to increase the price by 10

3. The ROWID can be included in your SELECT statement as the lastcolumn
selected, if the datasource supports it. Use wxDbTable::CanUpdByROWID() to
determine if the ROWID can be selected from the datasource. If it can, much
better performance can be achieved on updates and deletes by including the
ROWID in the SELECT statement.

Even though data can be selected from multiple tables (joins) in your select statement,
only the base table associated with this wxDbTable object is automatically updated
through the ODBC class library. Data from multiple tables can be selected for display
purposes however. Include columns in the wxDbTable object and mark them as non-
updateable (SeewxDbColDef (p. 297) for details). This way columns can be selected
and displayed from other tables, but only the base table will be updated automatically
when performed through thewxDbTable::Update (p. 340) function after using this type of
query. To update tables other than the base table, use thewxDbTable::Update (p. 340)
function passing a SQL statement.

After this function has been called, the cursor is positioned before the first record in the
record set. To retrieve the first record, call either wxDbTable::GetFirst (p. 321)
orwxDbTable::GetNext (p. 323).

Example

// Incomplete code samples
wxString sglStmt;
sgqlStmt = "SELECT * FROM PARTS WHERE STORAGE_DEVICE = 'SD98' \
AND CONTAINER = 12";
// Query the records using the SQL SELECT statement above
parts—->QueryBySqglStmt (sglStmt) ;
// Display all records queried
while (parts—->GetNext ())
dispPart (&parts) ;

Example SQL statements

// Table Join returning 3 columns
SELECT part_no, part_desc, sd_name
from parts, storage_devices

where parts.storage_device_id =

331

CHAPTER 6

storage_devices.storage_device_id

// Aggregate function returning total number of
// parts in container 99
SELECT count (*) from PARTS where container = 99

// Order by clause; ROWID, scalar function

SELECT part_no, substring(part_desc, 1, 10), gty_on_hand + 1, ROWID
from parts
where warehouse = 10
order by part_no desc // descending order

// Subgquery
SELECT * from parts
where container in (select container
from storage_devices
where device_id = 12)

wxDbTable::QueryMatching

virtual bool QueryMatching(bool forUpdate=FALSE,bool distinct=FALSE)

QueryMatching allows querying of records from the table associated with the wxDbTable
object by matching "columns" to values.

For example: To query the datasource for the row with a PART_NUMBER column value
of "382", clear all column variables of the wxDbTable object, set the PartNumber variable
that is bound to the PART_NUMBER column in the wxDbTable object to "32", and then

call wxDbTable::QueryMatching().

Parameters

forUpdate
OPTIONAL. Gives you the option of locking records as they are queried (SELECT
... FOR UPDATE). If the RDBMS is not capable of the FOR UPDATE clause, this
argument is ignored. SeewxDbTable::CanSelectForUpdate (p. 311) for additional
information regarding this argument. Default is FALSE.

distinct
OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is FALSE.

Remarks

The SQL WHERE clause is built by the ODBC class library based on all non-zero/non-
NULL columns in your wxDbTable object. Matches can be on one, many or all of the
wxDbTable's columns. The base table name is prepended to the column names in the
event that the wxDbTable's FROM clause is non-null.

This function cannot be used to perform queries which will check for columns that are 0
or NULL, as the automatically constructed WHERE clause only will contain comparisons
on column member variables that are non-zero/non-NULL.

332

CHAPTER 6

The primary difference between this function and wxDbTable::QueryOnKeyFields (p.
333)is that this function can query on any column(s) in the wxDbTable object. Note
however that this may not always be very efficient. Searching on non-indexed columns
will always require a full table scan.

The cursor is positioned before the first record in the record set after the query is
performed. To retrieve the first record, the program must call either wxDbTable::GetFirst
(p. 321) orwxDbTable::GetNext (p. 323).

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 339)and
wxDbTable::SetFromClause (p. 337) are ignored by this function.

Example
// Incomplete code sample
parts—->ClearMemberVars () ; // Set all columns to zero
wxStrcpy (parts—->PartNumber, "32") ; // Set columns to query on
parts->0OnHold = TRUE;
parts—->QueryMatching () ; // Query

// Display all records queried
while (parts—->GetNext ())
dispPart (parts); // Some application defined function

wxDbTable::QueryOnKeyFields

bool QueryOnKeyFields(bool forUpdate=FALSE,bool distinct=FALSE)

QueryOnKeyFields provides an easy mechanism to query records in the table
associated with the wxDbTable object by the primary index column(s). Simply assign
the primary index column(s) values and then call this member function to retrieve the
record.

Note that since primary indexes are always unique, this function implicitly always returns
a single record from the database. The base table name is prepended to the column
names in the event that the wxDbTable's FROM clause is non-null.

Parameters

forUpdate
OPTIONAL. Gives you the option of locking records as they are queried (SELECT
... FOR UPDATE). If the RDBMS is not capable of the FOR UPDATE clause, this
argument is ignored. SeewxDbTable::CanSelectForUpdate (p. 311) for additional
information regarding this argument. Default is FALSE.

distinct
OPTIONAL. Allows selection of only distinct values from the query (SELECT
DISTINCT ... FROM ...). The notion of DISTINCT applies to all columns returned
in the result set, not individual columns. Default is FALSE.

Remarks

The cursor is positioned before the first record in the record set after the query is

333

CHAPTER 6

performed. To retrieve the first record, the program must call either wxDbTable::GetFirst
(p- 321) orwxDbTable::GetNext (p. 323).

WHERE and FROM clauses specified using wxDbTable::SetWhereClause (p. 339)and
wxDbTable::SetFromClause (p. 337) are ignored by this function.

Example

// Incomplete code sample
wxStrcpy (parts—->PartNumber, "32");
parts->QueryOnKeyFields () ;
// Display all records queried
while (parts—->GetNext ())
dispPart (parts); // Some application defined function

wxDbTable::Refresh

bool Refresh()

This function re-reads the bound columns into the memory variables, setting them to the
current values stored on the disk.

The cursor position and result set are unaffected by calls to this function. (The one
exception is in the case where the record to be refreshed has been deleted by some
other user or transaction since it was originally retrieved as part of the result set. For
most datasources, the default behavior in this situation is to return the value that was
originally queried for the result set, even though it has been deleted from the database.
But this is datasource dependent, and should be tested before relying on this behavior.)

Remarks
This routine is only guaranteed to work if the table has a unique primary index defined
for it. Otherwise, more than one record may be fetched and there is no guarantee that

the correct record will be refreshed. The table's columns are refreshed to reflect the
current data in the database.

wxDbTable::SetColDefs

void SetColDefs(UWORD index, const wxString &fieldName,int dataType, void
*pData, SWORD cType,int size, bool keyField = FALSE, bool upd = TRUE,bool
insAllow = TRUE, bool derivedCol = FALSE)

wxDbColDataPtr * SetColDefs(wxDbColInf *collnfs, UWORD numCols)
Parameters
index

Column number (0 to n-1, where n is the number of columns specified as being

defined for this wxDbTable instance when the wxDbTable constructor was called.
fieldName

334

CHAPTER 6

Column name from the associated data table.
dataType
Logical data type. Valid logical types include:

DB_DATA_TYPE_VARCHAR : strings
DB_DATA_TYPE_INTEGER : non-floating point numbers
DB_DATA_TYPE_FLOAT : floating point numbers
DB_DATA_TYPE_DATE : dates

pData
Pointer to the data object that will hold the column's value when a row of data is
returned from the datasource.

cType
SQL C Type. This defines the data type that the SQL representation of the data is
converted to to be stored in pData. Other valid types are available also, but these
are the most common ones:

SQL_C_CHAR // strings
SQL_C_LONG

SQL_C_ULONG

SQL_C_SHORT

SQL_C_USHORT

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_NUMERIC
SQL_C_TIMESTAMP

SQL_C_BOOLEAN // defined in db.h

SQL_C_ENUM // defined in db.h
size
Maximum size in bytes of the pData object.
keyField
OPTIONAL. Indicates if this column is part of the primary index. Default is
FALSE.
upd

OPTIONAL. Are updates allowed on this column? Default is TRUE.
insAllow
OPTIONAL. Inserts allowed on this column? Default is TRUE.
derivedCol
OPTIONAL. s this a derived column (non-base table column for query only)?
Default is FALSE.

colinfs
Pointer to an array of wxDbColInf instances which contains all the information
necessary to create numCols column definitions.

numCols
Number of elements of wxDbCollnf type that are pointed to by collnfs, which are to
have column definitions created from them.

Remarks

If pData is to hold a string of characters, be sure to include enough space for the NULL
terminator in pData and in the byte count of size.

335

CHAPTER 6

Both forms of this function provide a shortcut for defining the columns in your wxDbTable
object. Use this function in any derived wxDbTable constructor when describing the
column/columns in the wxDbTable object.

The second form of this function is primarily used when thewxDb::GetColumns (p. 282)
function was used to query the datasource for the column definitions, so that the column
definitions are already stored in wxDbColInf form. One example use of
usingwxDb::GetColumns (p. 282) then using this function is if a data table existed in one
datasource, and the table's column definitions were to be copied over to another
datasource or table.

Example

// Long way not using this function
wxStrcpy (colDefs[0].ColName, "PART_NO");
colDefs[0] .DbDataType DB_DATA_TYPE_VARCHAR;

colDefs[0] .PtrDatalObj = PartNumber;
colDefs[0].SglCtype = SQL_C_CHAR;
colDefs[0].SzDataObj = PART_NUMBER_LEN;
colDefs[0] .KeyField = TRUE;

colDefs[0] .Updateable = FALSE;
colDefs[0].InsertAllowed= TRUE;

colDefs[0] .DerivedCol = FALSE;

// Shortcut using this function
SetColDefs (0, "PART_NUMBER", DB_DATA_TYPE_VARCHAR, PartNumber,
SQL_C_CHAR, PART_NUMBER_LEN, TRUE, FALSE,TRUE,FALSE);

wxDbTable::SetCursor

bool SetCursor(HSTMT *hstmtActivate = (void **) wxDB_DEFAULT_CURSOR)
Parameters

hstmtActivate
OPTIONAL. Pointer to the cursor that is to become the current cursor. Passing no
cursor handle will reset the cursor back to the wxDbTable's default (original) cursor
that was created when the wxDbTable instance was first created. Default is
wxDB_DEFAULT_CURSOR.

Remarks

When swapping between cursors, the member variables of the wxDbTable object are
automatically refreshed with the column values of the row that the current cursor is
positioned at (if any). If the cursor is not positioned, then the data in member variables
is undefined.

The only way to return back to the cursor that was in use before this function was called
is to programmatically determine the current cursor's HSTMTBEFORE calling this
function using wxDbTable::GetCursor (p. 321)and saving a pointer to that cursor.

336

CHAPTER 6

See also

wxDbTable::GetNewCursor (p. 322),wxDbTable::GetCursor (p.
321),wxDbTable::SetCursor (p. 336)

wxDbTable::SetFromClause

void SetFromClause(const wxString &From)

Accessor function for setting the private class member wxDbTable::from that indicates
what other tables should be outer joined with the wxDbTable's base table for access to
the columns in those other tables.

Synonym to this function is one form of wxDbTable::From (p. 320)
Parameters

From
A comma separated list of table names that are to be outer joined with the base
table's columns so that the joined table's columns may be returned in the result set
or used as a portion of a comparison with the base table's columns. NOTE that
the base tables name must NOT be included in the FROM clause, as it is
automatically included by the wxDbTable class in constructing query statements.

Remarks

Used by the wxDbTable::Query (p. 329) andwxDbTable::Count (p. 313) member
functions to allow outer joining of records from multiple tables.

Do not include the keyword "FROM" when setting the FROM clause.

If using the FROM clause when performing a query, be certain to include in the
corresponding WHERE clause a comparison of a column from either the base table or
one of the other joined tables to each other joined table to ensure the datasource knows
on which column values the tables should be joined on.

Example

// Base table is the "LOCATION" table, and it is being

// outer Jjoined to the "PART" table via the the field "PART_NUMBER"
// that can be related between the two tables.
location—>SetWhereClause ("LOCATION.PART_NUMBER = PART.PART_NUMBER")
location—->SetFromClause ("PART") ;

See also

wxDbTable::From (p. 320),wxDbTable::GetFromClause (p. 322)

337

CHAPTER 6

wxDbTable::SetColNull

bool SetColNull(UWORD co/No, bool set=TRUE)
bool SetColNull(const wxString &co/lName,bool set=TRUE)

Both forms of this function allow a member variable representing a column in the table
associated with this wxDbTable object to be set to NULL.

The first form allows the column to be set by the index into the column definitions used
to create the wxDbTable instance, while the second allows the actual column name to
be specified.

Parameters

colNo
Index into the column definitions used when first defining this wxDbTable object.
colName
Actual data table column name that is to be set to NULL.
set
Whether the column is set to NULL or not. Passing TRUE sets the column to
NULL, passing FALSE sets the column to be non-NULL. Default is TRUE.

Remarks

No database updates are done by this function. It only operates on the member
variables in memory. Use and insert or update function to store this value to disk.

wxDbTable::SetOrderByClause

void SetOrderByClause(const wxString &OrderBy)

Accessor function for setting the private class member wxDbTable::orderBy which
determines sequence/ordering of the rows returned in the result set of a query.

A synonym to this function is one form of the function wxDbTable::OrderBy (p. 328)
Parameters

OrderBy
A comma separated list of column names that indicate the alphabetized sorting
sequence that the result set is to be returned in. If a FROM clause has also been
specified, each column name specified in the ORDER BY clause should be
prefaced with the table name to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Remarks

Do not include the keywords "ORDER BY" when setting the ORDER BY clause.

338

CHAPTER 6

Example

parts—->SetOrderByClause ("PART_DESCRIP, QUANTITY");

location->SetOrderByClause ("LOCATION.POSITION, PART.PART_NUMBER) ;

See also

wxDbTable::OrderBy (p. 328),wxDbTable::GetOrderByClause (p. 323)

wxDbTable::SetQueryTimeout

bool SetQueryTimeout(UDWORD nSeconds)
Allows a time period to be set as the timeout period for queries.
Parameters

nSeconds
The number of seconds to wait for the query to complete before timing out.

Remarks
Neither Oracle or Access support this function as of yet. Other databases should be

evaluated for support before depending on this function working correctly.

wxDbTable::SetWhereClause

void SetWhereClause(const wxString & Where)

Accessor function for setting the private class member wxDbTable::where that
determines which rows are returned in the result set by the datasource.

A synonym to this function is one form of the function wxDbTable::Where (p. 341)
Parameters

Where
SQL "where" clause. This clause can contain any SQL language that is legal in
standard where clauses. If a FROM clause has also been specified, each column
name specified in the ORDER BY clause should be prefaced with the table name
to which the column belongs using DOT notation
(TABLE_NAME.COLUMN_NAME).

Remarks

339

CHAPTER 6

Do not include the keywords "WHERE" when setting the WHERE clause.

Example

// Simple where clause
parts—->SetWhereClause ("PART_NUMBER = '32'");

// Any comparison operators
parts—->SetWhereClause ("PART_DESCRIP LIKE 'HAMMERS®'");

// Multiple comparisons, including a function call
parts->Where ("QTY > 0 AND {fn UCASE (PART_DESCRIP)} LIKE '&DRILL%'");

// Using parameters and multiple logical combinations
parts->Where (" ((QTY > 10) OR (ON_ORDER > 0)) AND ON_HOLD = 0");

// This query uses an outer join (requiring a FROM clause also)
// that Jjoins the PART and LOCATION table on he common field
// PART_NUMBER.
parts—>Where ("PART.ON_HOLD = 0 AND \
PART.PART_NUMBER = LOCATION.PART_NUMBER AND \
LOCATION.PART_NUMBER > 0");

See also

wxDbTable::Where (p. 341),wxDbTable::GetWhereClause (p. 325)

wxDbTable::Update

bool Update()
bool Update(const wxString &pSq/Stmt)

The first form of this function will update the row that the current cursor is currently
positioned at with the values in the memory variables that are bound to the columns.
The actual SQL statement to perform the update is automatically created by the ODBC
class, and then executed.

The second form of the function allows full access through SQL statements for updating
records in the database. Write any valid SQL UPDATE statement and submit it to this
function for execution. Sophisticated updates can be performed using the full power of
the SQL dialect. The full SQL statement must have the exact syntax required by the
driver/datasource for performing the update. This usually is in the form of:

UPDATE tablename SET coll=X, col2=Y, ... where ...

Parameters

pSqlStmt
Pointer to SQL UPDATE statement to be executed.

Remarks

340

CHAPTER 6

A wxDb::CommitTrans (p. 276) orwxDb::RollbackTrans (p. 291) must be called after use
of this function to commit or rollback the update.

Example

wxString sglStmt;
sglStmt = "update PART set QTY = 0 where PART_NUMBER = '32'";

wxDbTable::UpdateWhere

bool UpdateWhere(const wxString &pWhereClause)

Performs updates to the base table of the wxDbTable object, updating only the rows
which match the criteria specified in the pWhereClause.

All columns that are bound to member variables for this wxDbTable instance that were
defined with the "updateable" parameter set to TRUE will be updated with the
information currently held in the memory variable.

Parameters

pWhereClause
Pointer to a valid SQL WHERE clause. Do not include the keyword 'WHERE'.

Remarks

Care should be used when updating columns that are part of indexes with this function
so as not to violate an unique key constraints.

A wxDb::CommitTrans (p. 276) orwxDb::RollbackTrans (p. 291) must be called after use
of this function to commit or rollback the update(s).

wxDbTable::Where

const wxString & Where()

void Where(const wxString& Where)

Accessor function for the private class member wxDbTable::where. Can be used as a
synonym for wxDbTable::GetWhereClause (p. 325)(the first form of this function) to
return the current where clause orwxDbTable::SetWhereClause (p. 339) (the second
form of this function) to set the where clause for this table instance.

Parameters

Where
A valid SQL WHERE clause. Do not include the keyword 'WHERE'.

341

CHAPTER 6

Return value

The first form of this function returns the current value of the wxDbTable member
variable ::where.

The second form of the function has no return value, as it will always set the where
clause successfully.

See also

wxDbTable::GetWhereClause (p. 325),wxDbTable::SetWhereClause (p. 339)

wxDbTable::operator ++

bool operator ++()
Synonym for wxDbTable::GetNext (p. 323)
See also

wxDbTable::GetNext (p. 323)

wxDbTable::operator --

bool operator --()
Synonym for wxDbTable::GetPrev (p. 324)
See also

wxDbTable::GetPrev (p. 324)

wxDbTablelnf

tableName [0]
tableType[0]
tableRemarks[0]
numCols
pColInf

o« Ne Ne N

14

NULL;

[
oo oo

Currently only used by wxDb::GetCatalog (p. 281) internally and wxDblInf (p. 306) class,
but may be used in future releases for user functions. Contains information describing
the table (Name, type, etc). A pointer to a wxDbCollnf array instance is included so a
program can create awxDbColInf (p. 299) array instance (usingwxDb::GetColumns (p.
282)) to maintain all information about the columns of a table in one memory structure.

342

CHAPTER 6

Eventually, accessor functions will be added for this class

See the database classes overview (p. 1691) for an introduction to using the ODBC
classes.

wxDbTablelnf::Initialize

Simply initializes all member variables to a cleared state. Called by the constructor
automatically.

wxDC

A wxDC is a device context onto which graphics and text can be drawn. It is intended to
represent a number of output devices in a generic way, so a window can have a device
context associated with it, and a printer also has a device context. In this way, the same
piece of code may write to a number of different devices, if the device context is used as
a parameter.

Derived types of wxDC have documentation for specific features only, so refer to this
section for most device context information.

Please note that in addition to the versions of the methods documented here, there are
also versions which accept single wxPoint parameter instead of two wxCoord ones or
wxPoint and wxSize instead of four of them.

Derived from

wxObject (p. 958)

Include files

<wx/dc.h>

See also

Overview (p. 1662)

wxDC::wxDC

wxDC()

Constructor.

343

CHAPTER 6

wxDC::~wxDC

~wxDC()

Destructor.

wxDC::BeginDrawing

void BeginDrawing()

Allows optimization of drawing code under MS Windows. Enclose drawing primitives
between BeginDrawing and EndDrawing calls.

Drawing to a wxDialog panel device context outside of a system-generated OnPaint
event requires this pair of calls to enclose drawing code. This is because a Windows
dialog box does not have a retained device context associated with it, and selections
such as pen and brush settings would be lost if the device context were obtained and
released for each drawing operation.

wxDC::Blit

bool Blit(wxCoord xdest, wxCoord ydest, wxCoord width, wxCoord height, wxDC*
source, wxCoord xsrc, wxCoord ysrc, int logicalFunc = wxCOPY, bool useMask =
FALSE, wxCoord xsrcMask = -1, wxCoord ysrcMask = -1)

Copy from a source DC to this DC, specifying the destination coordinates, size of area to
copy, source DC, source coordinates, logical function, whether to use a bitmap mask,
and mask source position.

Parameters

xdest
Destination device context x position.

ydest
Destination device context y position.

width
Width of source area to be copied.

height
Height of source area to be copied.

source
Source device context.

XSrc

344

CHAPTER 6

Source device context x position.

ysrc
Source device context y position.

logicalFunc
Logical function to use: see wxDC::SetLogicalFunction (p. 360).

useMask
If TRUE, Blit does a transparent blit using the mask that is associated with the
bitmap selected into the source device context. The Windows implementation does
the following if MaskBIt cannot be used:

1. Creates a temporary bitmap and copies the destination area into it.

2. Copies the source area into the temporary bitmap using the specified
logical function.

3. Sets the masked area in the temporary bitmap to BLACK by ANDing the
mask bitmap with the temp bitmap with the foreground colour set to
WHITE and the bg colour set to BLACK.

4. Sets the unmasked area in the destination area to BLACK by ANDing the
mask bitmap with the destination area with the foreground colour set to
BLACK and the background colour set to WHITE.

5. ORs the temporary bitmap with the destination area.
6. Deletes the temporary bitmap.

This sequence of operations ensures that the source's transparent area need not
be black, and logical functions are supported.

Note: on Windows, blitting with masks can be speeded up considerably by
compiling wxWindows with the wxUSE_DC_CACHE option enabled. You can also
influence whether MaskBIt or the explicit mask blitting code above is used, by
using wxSystemQOptions (p. 1249) and setting the no-maskblt option to 1.

xsrcMask
Source x position on the mask. If both xsrcMask and ysrcMask are -1, xsrc and
ysrc will be assumed for the mask source position. Currently only implemented on
Windows.

ysrcMask
Source y position on the mask. If both xsrcMask and ysrcMask are -1, xsrc and
ysrc will be assumed for the mask source position. Currently only implemented on
Windows.

Remarks

345

CHAPTER 6

There is partial support for Blit in wxPostScriptDC, under X.
See wxMemoryDC (p. 884) for typical usage.
See also

wxMemoryDC (p. 884), wxBitmap (p. 58), wxMask (p. 864)

wxDC::CalcBoundingBox

void CalcBoundingBox(wxCoord x, wxCoord))

Adds the specified point to the bounding box which can be retrieved with MinX (p. 357),
MaxX (p. 357) and MinY (p. 358), MaxY (p. 357) functions.

See also

ResetBoundingBox (p. 358)

wxDC::Clear

void Clear()

Clears the device context using the current background brush.

wxDC::CrossHair

void CrossHair(wxCoord x, wxCoord)

Displays a cross hair using the current pen. This is a vertical and horizontal line the
height and width of the window, centred on the given point.

wxDC::DestroyClippingRegion

void DestroyClippingRegion()

Destroys the current clipping region so that none of the DC is clipped. See also
wxDC::SetClippingRegion (p. 359).

wxDC::DeviceTolLogicalX

wxCoord DeviceTolLogicalX(wxCoord x)

Convert device X coordinate to logical coordinate, using the current mapping mode.

346

CHAPTER 6

wxDC::DeviceTolLogicalXRel

wxCoord DeviceToLogicalXRel(wxCoord x)

Convert device X coordinate to relative logical coordinate, using the current mapping
mode but ignoring the x axis orientation. Use this function for converting a width, for
example.

wxDC::DeviceTolLogicalY

wxCoord DeviceTolLogicalY(wxCoord y)

Converts device Y coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceTolLogicalYRel

wxCoord DeviceToLogicalYRel(wxCoord)
Convert device Y coordinate to relative logical coordinate, using the current mapping

mode but ignoring the y axis orientation. Use this function for converting a height, for
example.

wxDC::DrawArc

void DrawArc(wxCoord x7, wxCoord y7, wxCoord x2, wxCoord y2, double xc,
double yc)

Draws an arc of a circle, centred on (xc, yc), with starting point (x7, y7) and ending at
(x2, y2). The current pen is used for the outline and the current brush for filling the
shape.

The arc is drawn in an anticlockwise direction from the start point to the end point.

wxDC::DrawBitmap

void DrawBitmap(const wxBitmap& bitmap, wxCoord x, wxCoord y, bool
transparent)

Draw a bitmap on the device context at the specified point. If fransparent is TRUE and
the bitmap has a transparency mask, the bitmap will be drawn transparently.

When drawing a mono-bitmap, the current text foreground colour will be used to draw
the foreground of the bitmap (all bits set to 1), and the current text background colour to
draw the background (all bits set to 0). See also SetTextForeground (p. 362),

347

CHAPTER 6

SetTextBackground (p. 362) and wxMemoryDC (p. 884).

wxDC::DrawCheckMark

void DrawCheckMark(wxCoord x, wxCoord y, wxCoord width, wxCoord height)
void DrawCheckMark(const wxRect &rect)

Draws a check mark inside the given rectangle.

wxDC::DrawCircle

void DrawCircle(wxCoord x, wxCoord y, wxCoord radius)
void DrawCircle(const wxPoint& pt, wxCoord radius)
Draws a circle with the given centre and radius.

See also

DrawéEllipse (p. 348)

wxDC::DrawEllipse

void DrawEllipse(wxCoord x, wxCoord y, wxCoord width, wxCoord height)

void DrawEllipse(const wxPoint& pt, const wxSize& size)

void DrawEllipse(const wxRect& rect)

Draws an ellipse contained in the rectangle specified either with the given top left corner
and the given size or directly. The current pen is used for the outline and the current
brush for filling the shape.

See also

DrawCircle (p. 348)

wxDC::DrawEllipticArc

void DrawEllipticArc(wxCoord x, wxCoord y, wxCoord width, wxCoord height,
double start, double end)

Draws an arc of an ellipse. The current pen is used for drawing the arc and the current
brush is used for drawing the pie.

348

CHAPTER 6

x and y specify the x and y coordinates of the upper-left corner of the rectangle that
contains the ellipse.

width and height specify the width and height of the rectangle that contains the ellipse.
start and end specify the start and end of the arc relative to the three-o'clock position
from the center of the rectangle. Angles are specified in degrees (360 is a complete

circle). Positive values mean counter-clockwise motion. If startis equal to end, a
complete ellipse will be drawn.

wxDC::Drawlcon

void Drawlcon(const wxlcon& icon, wxCoord x, wxCoord y)

Draw an icon on the display (does nothing if the device context is PostScript). This can
be the simplest way of drawing bitmaps on a window.

wxDC::DrawlLine

void DrawLine(wxCoord x7, wxCoord y1, wxCoord x2, wxCoord y2)

Draws a line from the first point to the second. The current pen is used for drawing the
line.

wxDC::DrawLines

void DrawLines(int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0)
void DrawLines(wxList *points, wxCoord xoffset = 0, wxCoord yoffset = 0)

Draws lines using an array of points of size n, or list of pointers to points, adding the
optional offset coordinate. The current pen is used for drawing the lines. The
programmer is responsible for deleting the list of points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts as its first parameter a
reference to an array of wxPoint objects.

wxDC::DrawPolygon

void DrawPolygon(int n, wxPoint points[], wxCoord xoffset = 0, wxCoord yoffset = 0,
int fill_style = wxODDEVEN_RULE)

void DrawPolygon(wxList *points, wxCoord xoffset = 0, wxCoord yoffset = 0,

349

CHAPTER 6

int fill_style = wxODDEVEN_RULE)

Draws a filled polygon using an array of points of size n, or list of pointers to points,
adding the optional offset coordinate.

The last argument specifies the fill rule: wxODDEVEN_RULE (the default) or
wxWINDING_RULE.

The current pen is used for drawing the outline, and the current brush for filling the
shape. Using a transparent brush suppresses filling. The programmer is responsible for
deleting the list of points.

Note that wxWindows automatically closes the first and last points.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts as its first parameter a
reference to an array of wxPoint objects.

wxDC::DrawPoint

void DrawPoint(wxCoord x, wxCoord)

Draws a point using the current pen.

wxDC::DrawRectangle

void DrawRectangle(wxCoord x, wxCoord y, wxCoord width, wxCoord height)

Draws a rectangle with the given top left corner, and with the given size. The current
pen is used for the outline and the current brush for filling the shape.

wxDC::DrawRotatedText

void DrawRotatedText(const wxString& text, wxCoord x, wxCoord y, double angle)

Draws the text rotated by angle degrees.

NB: Under Win9x only TrueType fonts can be drawn by this function. In particular, a font
different from wxNORMAI,_FONT should be used as the latter is not a TrueType font.
wxSWISS_FONT is an example of a font which is.

See also

DrawText (p. 351)

350

CHAPTER 6

wxDC::DrawRoundedRectangle

void DrawRoundedRectangle(wxCoord x, wxCoord y, wxCoord width, wxCoord
height, double radius = 20)

Draws a rectangle with the given top left corner, and with the given size. The corners
are quarter-circles using the given radius. The current pen is used for the outline and the
current brush for filling the shape.

If radius is positive, the value is assumed to be the radius of the rounded corner. If
radius is negative, the absolute value is assumed to be the proportion of the smallest
dimension of the rectangle. This means that the corner can be a sensible size relative to
the size of the rectangle, and also avoids the strange effects X produces when the
corners are too big for the rectangle.

wxDC::DrawSpline

void DrawSpline(wxList *points)

Draws a spline between all given control points, using the current pen. Doesn't delete
the wxList and contents. The spline is drawn using a series of lines, using an algorithm
taken from the X drawing program 'XFIG'.

void DrawSpline(wxCoord x7, wxCoord y71, wxCoord x2, wxCoord y2, wxCoord x3,
wxCoord y3)

Draws a three-point spline using the current pen.

wxPython note: The wxPython version of this method accepts a Python list of wxPoint
objects.

wxPerl note: The wxPerl version of this method accepts a reference to an array of
wxPoint objects.

wxDC::DrawText

void DrawText(const wxString& fext, wxCoord x, wxCoord))

Draws a text string at the specified point, using the current text font, and the current text
foreground and background colours.

The coordinates refer to the top-left corner of the rectangle bounding the string. See
wxDC::GetTextExtent (p. 355) for how to get the dimensions of a text string, which can
be used to position the text more precisely.

NB: under wxGTK the current logical function (p. 354) is used by this function but it is
ignored by wxMSW. Thus, you should avoid using logical functions with this function in

351

CHAPTER 6

portable programs.

wxDC::EndDoc

void EndDoc()

Ends a document (only relevant when outputting to a printer).

wxDC::EndDrawing

void EndDrawing()

Allows optimization of drawing code under MS Windows. Enclose drawing primitives
between BeginDrawing and EndDrawing calls.

wxDC::EndPage

void EndPage()

Ends a document page (only relevant when outputting to a printer).

wxDC::FloodFill

bool FloodFill(wxCoord x, wxCoord y, const wxColour& colour, int
style=wxFLOOD_SURFACE)

Flood fills the device context starting from the given point, using the current brush colour,
and using a style:

e wxFLOOD_SURFACE: the flooding occurs until a colour other than the given
colour is encountered.
e wxFLOOD_BORDER: the area to be flooded is bounded by the given colour.
Returns FALSE if the operation failed.
Note: The present implementation for non-Windows platforms may fail to find colour

borders if the pixels do not match the colour exactly. However the function will still return
TRUE.

wxDC::GetBackground

wxBrush& GetBackground()

const wxBrush& GetBackground() const

352

CHAPTER 6

Gets the brush used for painting the background (see wxDC::SetBackground (p. 359)).

wxDC::GetBackgroundMode

int GetBackgroundMode() const
Returns the current background mode: wxSOLID or wxTRANSPARENT.
See also

SetBackgroundMode (p. 359)

wxDC::GetBrush

wxBrush& GetBrush()
const wxBrush& GetBrush() const

Gets the current brush (see wxDC::SetBrush (p. 360)).

wxDC::GetCharHeight

wxCoord GetCharHeight|()

Gets the character height of the currently set font.

wxDC::GetCharWidth

wxCoord GetCharWidth()

Gets the average character width of the currently set font.

wxDC::GetClippingBox

void GetClippingBox(wxCoord *x, wxCoord *y, wxCoord *width, wxCoord *height)
Gets the rectangle surrounding the current clipping region.

wxPython note: No arguments are required and the four values defining the rectangle
are returned as a tuple.

wxPerl note: This method takes no arguments and returns a four element list (x, v,
width, height)

353

CHAPTER 6

wxDC::GetFont

wxFont& GetFont()
const wxFont& GetFont() const

Gets the current font (see wxDC::SetFont (p. 360)).

wxDC::GetLogicalFunction

int GetLogicalFunction()

Gets the current logical function (see wxDC::SetLogicalFunction (p. 360)).

wxDC::GetMapMode

int GetMapMode()

Gets the mapping mode for the device context (see wxDC::SetMapMode (p. 361)).

wxDC::GetOptimization

bool GetOptimization()

Returns TRUE if device context optimization is on. See wxDC::SetOptimization (p. 361)
for details.

wxDC::GetPen

wxPen& GetPen()
const wxPen& GetPen() const

Gets the current pen (see wxDC::SetPen (p. 362)).

wxDC::GetPixel

bool GetPixel(wxCoord x, wxCoord y, wxColour *colour)

Sets colour to the colour at the specified location. Windows only; an X implementation is
being worked on. Not available for wxPostScriptDC or wxMetafileDC.

wxPython note: For wxPython the wxColour value is returned and is not required as a
parameter.

354

CHAPTER 6

wxPerl note: This method only takes the parameters x and y and returns a Wx::Colour
value

wxDC::GetSize

void GetSize(wxCoord *width, wxCoord *height)

For a PostScript device context, this gets the maximum size of graphics drawn so far on
the device context.

For a Windows printer device context, this gets the horizontal and vertical resolution. It
can be used to scale graphics to fit the page when using a Windows printer device
context. For example, if maxX and maxY represent the maximum horizontal and vertical
'pixel' values used in your application, the following code will scale the graphic to fit on
the printer page:

wxCoord w, h;

dc.GetSize (&w, &h);

double scaleX=(double) (maxX/w) ;

double scaleY=(double) (maxY/h) ;
dc.SetUserScale (min(scaleX, scaleY),min(scaleX, scaleY));

wxPython note: In place of a single overloaded method name, wxPython implements
the following methods:

GetSize() Returns a wxSize

GetSizeTuple() Returns a 2-tuple (width, height)

wxPerl note: In place of a single overloaded method, wxPerl uses:
GetSize() Returns a Wx::Size

GetSizeWH() Returns a 2-element list (width, height
)

wxDC::GetTextBackground

wxColour& GetTextBackground()
const wxColour& GetTextBackground() const

Gets the current text background colour (see wxDC::SetTextBackground (p. 362)).

wxDC::GetTextExtent

355

CHAPTER 6

void GetTextExtent(const wxString& string, wxCoord *w, wxCoord *h,
wxCoord *descent = NULL, wxCoord *externalLeading = NULL, wxFont *font =
NULL)

Gets the dimensions of the string using the currently selected font. string is the text
string to measure, w and h are the total width and height respectively, descent is the
dimension from the baseline of the font to the bottom of the descender, and
externalLeading is any extra vertical space added to the font by the font designer
(usually is zero).

The optional parameter font specifies an alternative to the currently selected font: but

note that this does not yet work under Windows, so you need to set a font for the device

context first.

See also wxFont (p. 522), wxDC::SetFont (p. 360).

wxPython note: The following methods are implemented in wxPython:
GetTextExtent(string) Returns a 2-tuple, (width, height)
GetFullTextExtent(string, font=NULL)Returns a 4-tuple, (width, height,

descent, externalLeading)

wxPerl note: In wxPerl this method is implemented as GetTextExtent(string, font =

undef) returning a four element array (width, height, descent,
externalleading)

wxDC::GetTextForeground

wxColour& GetTextForeground()
const wxColour& GetTextForeground() const

Gets the current text foreground colour (see wxDC::SetTextForeground (p. 362)).

wxDC::GetUserScale

void GetUserScale(double *x, double *y)
Gets the current user scale factor (set by SetUserScale (p. 362)).
wxPerl note: In wxPerl this method takes no arguments and return a two element array

(%, v)

wxDC::LogicalToDeviceX

356

CHAPTER 6

wxCoord LogicalToDeviceX(wxCoord x)

Converts logical X coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceXRel

wxCoord LogicalToDeviceXRel(wxCoord x)

Converts logical X coordinate to relative device coordinate, using the current mapping
mode but ignoring the x axis orientation. Use this for converting a width, for example.

wxDC::LogicalToDeviceY

wxCoord LogicalToDeviceY(wxCoord y)

Converts logical Y coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceYRel

wxCoord LogicalToDeviceYRel(wxCoord)

Converts logical Y coordinate to relative device coordinate, using the current mapping
mode but ignoring the y axis orientation. Use this for converting a height, for example.

wxDC::MaxX

wxCoord MaxX()

Gets the maximum horizontal extent used in drawing commands so far.

wxDC::MaxY

wxCoord MaxY ()

Gets the maximum vertical extent used in drawing commands so far.

wxDC::MinX

wxCoord MinX()

Gets the minimum horizontal extent used in drawing commands so far.

357

CHAPTER 6

wxDC::MinY

wxCoord MinY()

Gets the minimum vertical extent used in drawing commands so far.

wxDC::0k

bool Ok()

Returns TRUE if the DC is ok to use.

wxDC::ResetBoundingBox

void ResetBoundingBox()

Resets the bounding box: after a call to this function, the bounding box doesn't contain
anything.

See also

CalcBoundingBox (p. 346)

wxDC::SetAxisOrientation

void SetAxisOrientation(bool xLeftRight, bool yBottomUp)

Sets the x and y axis orientation (i.e., the direction from lowest to highest values on the
axis). The default orientation is the natural orientation, e.g. x axis from left to right and y
axis from bottom up.

Parameters

xLeftRight
True to set the x axis orientation to the natural left to right orientation, false to
invert it.

yBottomUp

True to set the y axis orientation to the natural bottom up orientation, false to invert
it.

wxDC::SetDeviceOrigin

void SetDeviceOrigin(wxCoord x, wxCoord)

358

CHAPTER 6

Sets the device origin (i.e., the origin in pixels after scaling has been applied).

This function may be useful in Windows printing operations for placing a graphic on a
page.

wxDC::SetBackground

void SetBackground(const wxBrush& brush)

Sets the current background brush for the DC.

wxDC::SetBackgroundMode

void SetBackgroundMode(int mode)

mode may be one of wxSOLID and wxTRANSPARENT. This setting determines whether
text will be drawn with a background colour or not.

wxDC::SetClippingRegion

void SetClippingRegion(wxCoord x, wxCoord y, wxCoord width, wxCoord height)
void SetClippingRegion(const wxPoint& pf, const wxSize& s2)

void SetClippingRegion(const wxRect& rect)

void SetClippingRegion(const wxRegion& region)

Sets the clipping region for this device context to the intersection of the given region
described by the parameters of this method and the previously set clipping region. You
should call DestroyClippingRegion (p. 346) if you want to set the clipping region exactly
to the region specified.

The clipping region is an area to which drawing is restricted. Possible uses for the
clipping region are for clipping text or for speeding up window redraws when only a
known area of the screen is damaged.

See also

wxDC::DestroyClippingRegion (p. 346), wxRegion (p. 1078)

wxDC::SetPalette

void SetPalette(const wxPalette& palette)

If this is a window DC or memory DC, assigns the given palette to the window or bitmap

359

CHAPTER 6

associated with the DC. If the argument is wxNullPalette, the current palette is selected
out of the device context, and the original palette restored.

See wxPalette (p. 974) for further details.

wxDC::SetBrush

void SetBrush(const wxBrush& brush)
Sets the current brush for the DC.

If the argument is wxNullBrush, the current brush is selected out of the device context,
and the original brush restored, allowing the current brush to be destroyed safely.

See also wxBrush (p. 83).
See also wxMemoryDC (p. 884) for the interpretation of colours when drawing into a

monochrome bitmap.

wxDC::SetFont

void SetFont(const wxFont& font)

Sets the current font for the DC. It must be a valid font, in particular you should not pass
wxNullFont to this method.

See also wxFont (p. 522).

wxDC::SetLogicalFunction

void SetLogicalFunction(int function)

Sets the current logical function for the device context. This determines how a source
pixel (from a pen or brush colour, or source device context if using wxDC::Blit (p. 344))
combines with a destination pixel in the current device context.

The possible values and their meaning in terms of source and destination pixel values
are as follows:

wxAND src AND dst
wxAND_INVERT (NOT src) AND dst
wxXAND_REVERSE src AND (NOT dst)
wxCLEAR 0

wxCOPY src

wxEQUIV (NOT src) XOR dst
wxINVERT NOT dst

wxNAND (NOT src) OR (NOT dst)
wxNOR (NOT src) AND (NOT dst)
wxNO_OP dst

360

CHAPTER 6

wxOR src OR dst
wxOR_INVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)
wxSET 1

wxXSRC_INVERT NOT src

wxXOR src XOR dst

The default is wxCOPY, which simply draws with the current colour. The others combine
the current colour and the background using a logical operation. wxINVERT is
commonly used for drawing rubber bands or moving outlines, since drawing twice
reverts to the original colour.

wxDC::SetMapMode

void SetMapMode(int int)

The mapping mode of the device context defines the unit of measurement used to
convert logical units to device units. Note that in X, text drawing isn't handled
consistently with the mapping mode; a font is always specified in point size. However,
setting the user scale (see wxDC::SetUserScale (p. 362)) scales the text appropriately.
In Windows, scalable TrueType fonts are always used; in X, results depend on
availability of fonts, but usually a reasonable match is found.

Note that the coordinate origin should ideally be selectable, but for now is always at the
top left of the screen/printer.

Drawing to a Windows printer device context under UNIX uses the current mapping
mode, but mapping mode is currently ignored for PostScript output.

The mapping mode can be one of the following:

wxMM_TWIPS Each logical unit is 1/20 of a point, or 1/1440 of an inch.
wxMM_POINTS Each logical unit is a point, or 1/72 of an inch.
wxMM_METRIC Each logical unit is 1 mm.

wxMM_LOMETRIC Each logical unit is 1/10 of a mm.

WXMM_TEXT Each logical unit is 1 pixel.

wxDC::SetOptimization

void SetOptimization(bool optimize)

If optimize is TRUE (the default), this function sets optimization mode on. This currently
means that under X, the device context will not try to set a pen or brush property if it is
known to be set already. This approach can fall down if non-wxWindows code is using
the same device context or window, for example when the window is a panel on which
the windowing system draws panel items. The wxWindows device context 'memory" will
now be out of step with reality.

Setting optimization off, drawing, then setting it back on again, is a trick that must

361

CHAPTER 6

occasionally be employed.

wxDC::SetPen

void SetPen(const wxPen& pen)
Sets the current pen for the DC.

If the argument is wxNullPen, the current pen is selected out of the device context, and
the original pen restored.

See also wxMemoryDC (p. 884) for the interpretation of colours when drawing into a
monochrome bitmap.

wxDC::SetTextBackground

void SetTextBackground(const wxColour& colour)

Sets the current text background colour for the DC.

wxDC::SetTextForeground

void SetTextForeground(const wxColour& colour)
Sets the current text foreground colour for the DC.
See also wxMemoryDC (p. 884) for the interpretation of colours when drawing into a

monochrome bitmap.

wxDC::SetUserScale

void SetUserScale(double xScale, double yScale)

Sets the user scaling factor, useful for applications which require 'zooming'.

wxDC::StartDoc

bool StartDoc(const wxString& message)

Starts a document (only relevant when outputting to a printer). Message is a message to
show whilst printing.

wxDC::StartPage

362

CHAPTER 6

bool StartPage()

Starts a document page (only relevant when outputting to a printer).

wxDCClipper

This is a small helper class which sets the specified to its constructor clipping region and
then automatically destroys it in its destructor. Using it ensures that unwanted clipping
region is not left set on the DC.

Derived from

No base class

Include files

<wx/dc.h>

See also

wxDC (p. 343)

wxDCClipper::wxDCClipper

wxDCClipper(wxDC& dc, wxCoord x,wxCoord y,wxCoord w,wxCoord h,)
wxDCClipper(wxDC& dc, const wxRect& rect)

Constructor: sets the the clipping region for the given device context to the specified
rectangle.

wxDCClipper::~wxDCClipper

~wxDCClipper()

Destructor: destroys the clipping region set in the constructor.

wxDebugContext

363

CHAPTER 6

A class for performing various debugging and memory tracing operations. Full
functionality (such as printing out objects currently allocated) is only present in a
debugging build of wxWindows, i.e. if the _ WXDEBUG___ symbol is defined.
wxDebugContext and related functions and macros can be compiled out by setting
wxUSE_DEBUG_CONTEXT to 0 is setup.h

Derived from

No parent class.

Include files

<wx/memory.h>

See also

Overview (p. 1612)

wxDebugContext::Check

int Check()

Checks the memory blocks for errors, starting from the currently set checkpoint.
Return value

Returns the number of errors, so a value of zero represents success. Returns -1 if an

error was detected that prevents further checking.

wxDebugContext::Dump

bool Dump()

Performs a memory dump from the currently set checkpoint, writing to the current debug
stream. Calls the Dump member function for each wxObject derived instance.

Return value

TRUE if the function succeeded, FALSE otherwise.

wxDebugContext::GetCheckPrevious

bool GetCheckPrevious()

364

CHAPTER 6

Returns TRUE if the memory allocator checks all previous memory blocks for errors. By
default, this is FALSE since it slows down execution considerably.

See also

wxDebugContext::SetCheckPrevious (p. 367)

wxDebugContext::GetDebugMode

bool GetDebugMode()

Returns TRUE if debug mode is on. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

See also

wxDebugContext::SetDebugMode (p. 367)

wxDebugContext::GetLevel

int GetLevel()

Gets the debug level (default 1). The debug level is used by the wxTracelLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 845) functionality.

See also

wxDebugContext::SetLevel (p. 368)

wxDebugContext::GetStream

ostream& GetStream()

Returns the output stream associated with the debug context.
This is obsolete, replaced by wxLog (p. 845) functionality.
See also

wxDebugContext::SetStream (p. 368)

365

CHAPTER 6

wxDebugContext::GetStreamBuf

streambuf* GetStreamBuf()

Returns a pointer to the output stream buffer associated with the debug context. There
may not necessarily be a stream buffer if the stream has been set by the user.

This is obsolete, replaced by wxLog (p. 845) functionality.

wxDebugContext::HasStream

bool HasStream()

Returns TRUE if there is a stream currently associated with the debug context.
This is obsolete, replaced by wxLog (p. 845) functionality.

See also

wxDebugContext::SetStream (p. 368), wxDebugContext::GetStream (p. 365)

wxDebugContext::PrintClasses

bool PrintClasses|()

Prints a list of the classes declared in this application, giving derivation and whether
instances of this class can be dynamically created.

See also

wxDebugContext::PrintStatistics (p. 366)

wxDebugContext::PrintStatistics

bool PrintStatistics(bool detailed = TRUE)
Performs a statistics analysis from the currently set checkpoint, writing to the current
debug stream. The number of object and non-object allocations is printed, together with
the total size.
Parameters
detailed
If TRUE, the function will also print how many objects of each class have been
allocated, and the space taken by these class instances.

See also

366

CHAPTER 6

wxDebugContext::PrintStatistics (p. 366)

wxDebugContext::SetCheckpoint

void SetCheckpoint(bool all = FALSE)

Sets the current checkpoint: Dump and PrintStatistics operations will be performed from
this point on. This allows you to ignore allocations that have been performed up to this
point.

Parameters

all
If TRUE, the checkpoint is reset to include all memory allocations since the
program started.

wxDebugContext::SetCheckPrevious

void SetCheckPrevious(bool check)

Tells the memory allocator to check all previous memory blocks for errors. By default,
this is FALSE since it slows down execution considerably.

See also

wxDebugContext::GetCheckPrevious (p. 364)

wxDebugContext::SetDebugMode

void SetDebugMode(bool debug)

Sets the debug mode on or off. If debug mode is on, the wxObject new and delete
operators store or use information about memory allocation. Otherwise, a straight malloc
and free will be performed by these operators.

By default, debug mode is on if __ WXDEBUG___is defined. If the application uses this
function, it should make sure that all object memory allocated is deallocated with the
same value of debug mode. Otherwise, the delete operator might try to look for memory
information that does not exist.

See also

wxDebugContext::GetDebugMode (p. 365)

wxDebugContext::SetFile

367

CHAPTER 6

bool SetFile(const wxString& filename)
Sets the current debug file and creates a stream. This will delete any existing stream

and stream buffer. By default, the debug context stream outputs to the debugger
(Windows) or standard error (other platforms).

wxDebugContext::SetLevel

void SetLevel(int /evel)

Sets the debug level (default 1). The debug level is used by the wxTraceLevel function
and the WXTRACELEVEL macro to specify how detailed the trace information is; setting
a different level will only have an effect if trace statements in the application specify a
value other than one.

This is obsolete, replaced by wxLog (p. 845) functionality.

See also

wxDebugContext::GetLevel (p. 365)

wxDebugContext::SetStandardError

bool SetStandardError()

Sets the debugging stream to be the debugger (Windows) or standard error (other
platforms). This is the default setting. The existing stream will be flushed and deleted.

This is obsolete, replaced by wxLog (p. 845) functionality.

wxDebugContext::SetStream

void SetStream(ostream* stream, streambuf* streamBuf = NULL)

Sets the stream and optionally, stream buffer associated with the debug context. This
operation flushes and deletes the existing stream (and stream buffer if any).

This is obsolete, replaced by wxLog (p. 845) functionality.
Parameters

Stream
Stream to associate with the debug context. Do not set this to NULL.

streamBuf
Stream buffer to associate with the debug context.

368

CHAPTER 6

See also

wxDebugContext::GetStream (p. 365), wxDebugContext::HasStream (p. 366)

wxDebugStreamBuf

This class allows you to treat debugging output in a similar (stream-based) fashion on
different platforms. Under Windows, an ostream constructed with this buffer outputs to
the debugger, or other program that intercepts debugging output. On other platforms, the
output goes to standard error (cerr).

This is soon to be obsolete, replaced by wxLog (p. 845) functionality.

Derived from

streambuf

Include files

<wx/memory.h>

Example

wxDebugStreamBuf streamBuf;
ostream stream(&streamBuf) ;

stream << "Hello world!" << endl;
See also

Overview (p. 1612)

wxDialog

A dialog box is a window with a title bar and sometimes a system menu, which can be
moved around the screen. It can contain controls and other windows and is usually used
to allow the user to make some choice or to answer a question.

Derived from

wxWindow (p. 1404)
wxEvtHandler (p. 445)
wxObject (p. 958)

369

CHAPTER 6

Include files
<wx/dialog.h>
Remarks

There are two kinds of dialog -- modal and modeless. A modal dialog blocks program
flow and user input on other windows until it is dismissed, whereas a modeless dialog
behaves more like a frame in that program flow continues, and input on other windows is
still possible. To show a modal dialog you should use ShowModal (p. 378) method while
to show dialog modelessly you simply use Show (p. 377), just as with the frames.

Note that the modal dialogs are one of the very few examples of wxWindow-derived
objects which may be created on the stack and not on the heap. In other words,

although this code snippet
void AskUser ()

{
MyAskDialog *dlg = new MyAskDialog(...);
if (dlg->ShowModal () == wxID_OK)

//else: dialog was cancelled or some another button pressed

dlg->Destroy () ;
}

works, you can also achieve the same result by using a simpler code fragment below:
void AskUser ()

{
MyAskDialog dlg(...);
if (dlg.ShowModal () == wxID_OK)

// no need to call Destroy () here
}

A dialog may be loaded from a wxWindows resource file (extension wxr), which may
itself be created by Dialog Editor. For details, see The wxWindows resource system (p.
1642), wxWindows resource functions (p. 1532) and the resource sample.

An application can define an wxCloseEvent (p. 134) handler for the dialog to respond to
system close events.

Window styles
wxCAPTION Puts a caption on the dialog box.

wxDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION and
wxSYSTEM_MENU (the latter is not used under Unix)

wxRESIZE_BORDER Display a resizeable frame around the window.

wxSYSTEM_MENU Display a system menu.

wxTHICK_FRAME Display a thick frame around the window.

wxSTAY_ON_TOP The dialog stays on top of all other windows (Windows
only).

wxNO_3D Under Windows, specifies that the child controls should not

have 3D borders unless specified in the control.

370

CHAPTER 6

wxDIALOG_NO_PARENT By default, the dialogs created with NULL parent window
will be given the applications top level window (p. 24) as
parent. Use this style to prevent this from happening and
create a really orphan dialog (note that this is not
recommended for modal dialogs).

wxDIALOG_EX_CONTEXTHELP Under Windows, puts a query button on the
caption. When pressed, Windows will go into a context-
sensitive help mode and wxWindows will send a
wxEVT_HELP event if the user clicked on an application
window. Note that this is an extended style and must be
set by calling SetExtraStyle (p. 1438) before Create is
called (two-step construction).

Under Unix or Linux, MWM (the Motif Window Manager) or other window managers
recognizing the MHM hints should be running for any of these styles to have an effect.
See also Generic window styles (p. 1626).

See also

wxDialog overview (p. 1629), wxFrame (p. 543), Resources (p. 7), Validator overview (p.
1629)

wxDialog::wxDialog

wxDialog()

Default constructor.

wxDialog(wxWindow* parent, wxWindowlID id, const wxString& fitle, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Constructor.

Parameters

parent
Can be NULL, a frame or another dialog box.

id
An identifier for the dialog. A value of -1 is taken to mean a default.

title
The title of the dialog.

pos

371

CHAPTER 6

The dialog position. A value of (-1, -1) indicates a default position, chosen by either
the windowing system or wxWindows, depending on platform.

size
The dialog size. A value of (-1, -1) indicates a default size, chosen by either the
windowing system or wxWindows, depending on platform.

style
The window style. See wxDialog (p. 369).

name
Used to associate a name with the window, allowing the application user to set
Motif resource values for individual dialog boxes.

See also

wxDialog::Create (p. 372)

wxDialog::~wxDialog

~wxDialog()

Destructor. Deletes any child windows before deleting the physical window.

wxDialog::Centre

void Centre(int direction = wxBOTH)
Centres the dialog box on the display.
Parameters

direction

May be wxHORIZONTAL, wxVERTICAL Of wxBOTH.

wxDialog::Create

bool Create(wxWindow* parent, wxWindowlID id, const wxString& title, const
wxPoint& pos = wxDefaultPosition, const wxSize& size = wxDefaultSize, long style =
wxDEFAULT_DIALOG_STYLE, const wxString& name = "dialogBox")

Used for two-step dialog box construction. See wxDialog::wxDialog (p. 371) for details.

wxDialog::EndModal

void EndModal(int retCode)

372

CHAPTER 6

Ends a modal dialog, passing a value to be returned from the wxDialog::ShowModal (p.
378) invocation.

Parameters

retCode
The value that should be returned by ShowModal.

See also
wxDialog::ShowModal (p. 378), wxDialog::GetReturnCode (p. 373),
wxDialog::SetReturnCode (p. 377)

wxDialog::GetReturnCode

int GetReturnCode()
Gets the return code for this window.
Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p. 378) returns a code to the application.

See also
wxDialog::SetReturnCode (p. 377), wxDialog::ShowModal (p. 378), wxDialog::EndModal
(p. 372)

wxDialog::GetTitle

wxString GetTitle() const

Returns the title of the dialog box.

wxDialog::Iconize

void Iconize(const bool iconize)
Iconizes or restores the dialog. Windows only.
Parameters

iconize
If TRUE, iconizes the dialog box; if FALSE, shows and restores it.

373

CHAPTER 6

Remarks

Note that in Windows, iconization has no effect since dialog boxes cannot be iconized.
However, applications may need to explicitly restore dialog boxes under Motif which
have user-iconizable frames, and under Windows calling Iconize (FALSE) will bring
the window to the front, as does Show (TRUE) .

wxDialog::Islconized

bool Islconized() const
Returns TRUE if the dialog box is iconized. Windows only.
Remarks

Always returns FALSE under Windows since dialogs cannot be iconized.

wxDialog::IsModal

bool IsModal() const

Returns TRUE if the dialog box is modal, FALSE otherwise.

wxDialog::OnCharHook

void OnCharHook(wxKeyEvent& event)

This member is called to allow the window to intercept keyboard events before they are
processed by child windows.

Remarks

wxDialog implements this handler to fake a cancel command if the escape key has been
pressed. This will dismiss the dialog.

wxDialog::OnApply

void OnApply(wxCommandEvent& even)
The default handler for the wxID_APPLY identifier.
Remarks

This function calls wxWindow::Validate (p. 1449) and
wxWindow::TransferDataToWindow (p. 1449).

374

CHAPTER 6

See also

wxDialog::OnOK (p. 375), wxDialog::OnCancel (p. 375)

wxDialog::OnCancel

void OnCancel(wxCommandEvent& event)
The default handler for the wxID_CANCEL identifier.
Remarks

The function either calls EndModal(wxID_CANCEL) if the dialog is modal, or sets the
return value to wxID_CANCEL and calls Show(FALSE) if the dialog is modeless.

See also

wxDialog::OnOK (p. 375), wxDialog::OnApply (p. 374)

wxDialog::OnOK

void OnOK(wxCommandEvent& even)

The default handler for the wxID_OK identifier.

Remarks

The function calls wxWindow::Validate (p. 1449), then
wxWindow::TransferDataFromWindow (p. 1448). If this returns TRUE, the function either
calls EndModal(wxID_OK) if the dialog is modal, or sets the return value to wxID_OK
and calls Show(FALSE) if the dialog is modeless.

See also

wxDialog::OnCancel (p. 375), wxDialog::OnApply (p. 374)

wxDialog::OnSysColourChanged

void OnSysColourChanged(wxSysColourChangedEvent& event)
The default handler for wxEVT_SYS_COLOUR_CHANGED.
Parameters

event
The colour change event.

375

CHAPTER 6

Remarks

Changes the dialog's colour to conform to the current settings (Windows only). Add an
event table entry for your dialog class if you wish the behaviour to be different (such as
keeping a user-defined background colour). If you do override this function, call
wxEvent::Skip to propagate the notification to child windows and controls.

See also

wxSysColourChangedEvent (p. 1248)

wxDialog::Setlcon

void Setlcon(const wxilcon& icon)
Sets the icon for this dialog.
Parameters

icon
The icon to associate with this dialog.

See also wxlcon (p. 722).

wxDialog::Setlcons

void Setlcons(const wxlconBundle& icons)
Sets the icons for this dialog.
Parameters

icons
The icons to associate with this dialog.

See also wxlconBundle (p. 730).

wxDialog::SetModal

void SetModal(const bool flag)

NB: This function is deprecated and doesn't work for all ports, just use ShowModal (p.
378) to show a modal dialog instead.

Allows the programmer to specify whether the dialog box is modal (wxDialog::Show
blocks control until the dialog is hidden) or modeless (control returns immediately).

376

CHAPTER 6

Parameters

flag
If TRUE, the dialog will be modal, otherwise it will be modeless.

wxDialog::SetReturnCode

void SetReturnCode(int retCode)
Sets the return code for this window.
Parameters

retCode
The integer return code, usually a control identifier.

Remarks

A return code is normally associated with a modal dialog, where wxDialog::ShowModal
(p- 378) returns a code to the application. The function wxDialog::EndModal (p. 372)
calls SetReturnCode.

See also

wxDialog::GetReturnCode (p. 373), wxDialog::ShowModal (p. 378), wxDialog::EndModal
(p. 372)

wxDialog::SetTitle

void SetTitle(const wxString& title)
Sets the title of the dialog box.
Parameters
title

The dialog box title.

wxDialog::Show

bool Show(const bool show)
Hides or shows the dialog.
Parameters

show

377

CHAPTER 6

If TRUE, the dialog box is shown and brought to the front; otherwise the box is
hidden. If FALSE and the dialog is modal, control is returned to the calling
program.

Remarks

The preferred way of dismissing a modal dialog is to use wxDialog::EndModal (p. 372).

wxDialog::ShowModal

int ShowModal()

Shows a modal dialog. Program flow does not return until the dialog has been dismissed
with wxDialog::EndModal (p. 372).

Return value
The return value is the value set with wxDialog::SetReturnCode (p. 377).

See also

wxDialog::EndModal (p. 372), wxDialog:GetReturnCode (p. 373),
wxDialog::SetReturnCode (p. 377)

wxDialUpEvent

This is the event class for