
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Title Page

Copyright

Dedication

Credits

About the Authors

About the Technical Editor

Acknowledgments

Introduction

Who Should Read This Book
How This Book Is Organized
Minimum Requirements
Where to Go from Here

Part I: The Linux Command Line

Chapter 1: Starting with Linux Shells

What Is Linux?
Linux Distributions
Summary

Chapter 2: Getting to the Shell

Terminal Emulation
The terminfo Database
The Linux Console
The xterm Terminal
The Konsole Terminal
The GNOME Terminal
Summary

www.it-ebooks.info

9781118087770f01.xhtml
9781118087770f02.xhtml
9781118087770f03.xhtml
9781118087770f04.xhtml
9781118087770f05.xhtml
9781118087770f06.xhtml
9781118087770f07.xhtml
9781118087770f08.xhtml
9781118087770f08.xhtml#f06_level1_1
9781118087770f08.xhtml#f06_level1_2
9781118087770f08.xhtml#f06_level1_3
9781118087770f08.xhtml#f06_level1_4
9781118087770p01.xhtml
9781118087770c01.xhtml
9781118087770c01.xhtml#c01_level1_1
9781118087770c01.xhtml#c01_level1_2
9781118087770c01.xhtml#c01_level1_3
9781118087770c02.xhtml
9781118087770c02.xhtml#c02_level1_1
9781118087770c02.xhtml#c02_level1_2
9781118087770c02.xhtml#c02_level1_3
9781118087770c02.xhtml#c02_level1_4
9781118087770c02.xhtml#c02_level1_5
9781118087770c02.xhtml#c02_level1_6
9781118087770c02.xhtml#c02_level1_7
http://www.it-ebooks.info/

Chapter 3: Basic bash Shell Commands

Starting the Shell
The Shell Prompt
The bash Manual
Filesystem Navigation
File and Directory Listing
File Handling
Directory Handling
Viewing File Contents
Summary

Chapter 4: More bash Shell Commands

Monitoring Programs
Monitoring Disk Space
Working with Data Files
Summary

Chapter 5: Using Linux Environment Variables

What Are Environment Variables?
Setting Environment Variables
Removing Environment Variables
Default Shell Environment Variables
Setting the PATH Environment Variable
Locating System Environment Variables
Variable Arrays
Using Command Aliases
Summary

Chapter 6: Understanding Linux File Permissions

Linux Security
Using Linux Groups
Decoding File Permissions
Changing Security Settings
Sharing Files
Summary

Chapter 7: Managing Filesystems

Exploring Linux Filesystems
Working with Filesystems
Logical Volume Managers
Summary

www.it-ebooks.info

9781118087770c03.xhtml
9781118087770c03.xhtml#c03_level1_1
9781118087770c03.xhtml#c03_level1_2
9781118087770c03.xhtml#c03_level1_3
9781118087770c03.xhtml#c03_level1_4
9781118087770c03.xhtml#c03_level1_5
9781118087770c03.xhtml#c03_level1_6
9781118087770c03.xhtml#c03_level1_7
9781118087770c03.xhtml#c03_level1_8
9781118087770c03.xhtml#c03_level1_9
9781118087770c04.xhtml
9781118087770c04.xhtml#c04_level1_1
9781118087770c04.xhtml#c04_level1_2
9781118087770c04.xhtml#c04_level1_3
9781118087770c04.xhtml#c04_level1_4
9781118087770c05.xhtml
9781118087770c05.xhtml#c05_level1_1
9781118087770c05.xhtml#c05_level1_2
9781118087770c05.xhtml#c05_level1_3
9781118087770c05.xhtml#c05_level1_4
9781118087770c05.xhtml#c05_level1_5
9781118087770c05.xhtml#c05_level1_6
9781118087770c05.xhtml#c05_level1_7
9781118087770c05.xhtml#c05_level1_8
9781118087770c05.xhtml#c05_level1_9
9781118087770c06.xhtml
9781118087770c06.xhtml#c06_level1_1
9781118087770c06.xhtml#c06_level1_2
9781118087770c06.xhtml#c06_level1_3
9781118087770c06.xhtml#c06_level1_4
9781118087770c06.xhtml#c06_level1_5
9781118087770c06.xhtml#c06_level1_6
9781118087770c07.xhtml
9781118087770c07.xhtml#c07_level1_1
9781118087770c07.xhtml#c07_level1_2
9781118087770c07.xhtml#c07_level1_3
9781118087770c07.xhtml#c07_level1_4
http://www.it-ebooks.info/

Chapter 8: Installing Software

Package Management Primer
The Debian-Based Systems
The Red Hat–Based Systems
Installing from Source Code
Summary

Chapter 9: Working with Editors

The vim Editor
The emacs Editor
The KDE Family of Editors
The GNOME Editor
Summary

Part II: Shell Scripting Basics

Chapter 10: Basic Script Building

Using Multiple Commands
Creating a Script File
Displaying Messages
Using Variables
Redirecting Input and Output
Pipes
Performing Math
Exiting the Script
Summary

Chapter 11: Using Structured Commands

Working with the if-then Statement
The if-then-else Statement
Nesting ifs
The test Command
Compound Condition Testing
Advanced if-then Features
The case Command
Summary

Chapter 12: More Structured Commands

The for Command
The C-Style for Command

www.it-ebooks.info

9781118087770c08.xhtml
9781118087770c08.xhtml#c08_level1_1
9781118087770c08.xhtml#c08_level1_2
9781118087770c08.xhtml#c08_level1_3
9781118087770c08.xhtml#c08_level1_4
9781118087770c08.xhtml#c08_level1_5
9781118087770c09.xhtml
9781118087770c09.xhtml#c09_level1_1
9781118087770c09.xhtml#c09_level1_2
9781118087770c09.xhtml#c09_level1_3
9781118087770c09.xhtml#c09_level1_4
9781118087770c09.xhtml#c09_level1_5
9781118087770p02.xhtml
9781118087770c10.xhtml
9781118087770c10.xhtml#c10_level1_1
9781118087770c10.xhtml#c10_level1_2
9781118087770c10.xhtml#c10_level1_3
9781118087770c10.xhtml#c10_level1_4
9781118087770c10.xhtml#c10_level1_5
9781118087770c10.xhtml#c10_level1_6
9781118087770c10.xhtml#c10_level1_7
9781118087770c10.xhtml#c10_level1_8
9781118087770c10.xhtml#c10_level1_9
9781118087770c11.xhtml
9781118087770c11.xhtml#c11_level1_1
9781118087770c11.xhtml#c11_level1_2
9781118087770c11.xhtml#c11_level1_3
9781118087770c11.xhtml#c11_level1_4
9781118087770c11.xhtml#c11_level1_5
9781118087770c11.xhtml#c11_level1_6
9781118087770c11.xhtml#c11_level1_7
9781118087770c11.xhtml#c11_level1_8
9781118087770c12.xhtml
9781118087770c12.xhtml#c12_level1_1
9781118087770c12.xhtml#c12_level1_2
http://www.it-ebooks.info/

The while Command
The until Command
Nesting Loops
Looping on File Data
Controlling the Loop
Processing the Output of a Loop
Summary

Chapter 13: Handling User Input

Command Line Parameters
Special Parameter Variables
Being Shifty
Working with Options
Standardizing Options
Getting User Input
Summary

Chapter 14: Presenting Data

Understanding Input and Output
Redirecting Output in Scripts
Redirecting Input in Scripts
Creating Your Own Redirection
Listing Open File Descriptors
Suppressing Command Output
Using Temporary Files
Logging Messages
Summary

Chapter 15: Script Control

Handling Signals
Running Scripts in Background Mode
Running Scripts Without a Console
Job Control
Being Nice
Running Like Clockwork
Summary

Part III: Advanced Shell Scripting

Chapter 16: Creating Functions

Basic Script Functions

www.it-ebooks.info

9781118087770c12.xhtml#c12_level1_3
9781118087770c12.xhtml#c12_level1_4
9781118087770c12.xhtml#c12_level1_5
9781118087770c12.xhtml#c12_level1_6
9781118087770c12.xhtml#c12_level1_7
9781118087770c12.xhtml#c12_level1_8
9781118087770c12.xhtml#c12_level1_9
9781118087770c13.xhtml
9781118087770c13.xhtml#c13_level1_1
9781118087770c13.xhtml#c13_level1_2
9781118087770c13.xhtml#c13_level1_3
9781118087770c13.xhtml#c13_level1_4
9781118087770c13.xhtml#c13_level1_5
9781118087770c13.xhtml#c13_level1_6
9781118087770c13.xhtml#c13_level1_7
9781118087770c14.xhtml
9781118087770c14.xhtml#c14_level1_1
9781118087770c14.xhtml#c14_level1_2
9781118087770c14.xhtml#c14_level1_3
9781118087770c14.xhtml#c14_level1_4
9781118087770c14.xhtml#c14_level1_5
9781118087770c14.xhtml#c14_level1_6
9781118087770c14.xhtml#c14_level1_7
9781118087770c14.xhtml#c14_level1_8
9781118087770c14.xhtml#c14_level1_9
9781118087770c15.xhtml
9781118087770c15.xhtml#c15_level1_1
9781118087770c15.xhtml#c15_level1_2
9781118087770c15.xhtml#c15_level1_3
9781118087770c15.xhtml#c15_level1_4
9781118087770c15.xhtml#c15_level1_5
9781118087770c15.xhtml#c15_level1_6
9781118087770c15.xhtml#c15_level1_7
9781118087770p03.xhtml
9781118087770c16.xhtml
9781118087770c16.xhtml#c16_level1_1
http://www.it-ebooks.info/

Returning a Value
Using Variables in Functions
Array Variables and Functions
Function Recursion
Creating a Library
Using Functions on the Command Line
Summary

Chapter 17: Writing Scripts for Graphical Desktops

Creating Text Menus
Doing Windows
Getting Graphic
Summary

Chapter 18: Introducing sed and gawk

Text Manipulation
The sed Editor Basics
Summary

Chapter 19: Regular Expressions

What Are Regular Expressions?
Defining BRE Patterns
Extended Regular Expressions
Regular Expressions in Action
Summary

Chapter 20: Advanced sed

Multiline Commands
The Hold Space
Negating a Command
Changing the Flow
Pattern Replacement
Using sed in Scripts
Creating sed Utilities
Summary

Chapter 21: Advanced gawk

Using Variables
Working with Arrays
Using Patterns
Structured Commands

www.it-ebooks.info

9781118087770c16.xhtml#c16_level1_2
9781118087770c16.xhtml#c16_level1_3
9781118087770c16.xhtml#c16_level1_4
9781118087770c16.xhtml#c16_level1_5
9781118087770c16.xhtml#c16_level1_6
9781118087770c16.xhtml#c16_level1_7
9781118087770c16.xhtml#c16_level1_8
9781118087770c17.xhtml
9781118087770c17.xhtml#c17_level1_1
9781118087770c17.xhtml#c17_level1_2
9781118087770c17.xhtml#c17_level1_3
9781118087770c17.xhtml#c17_level1_4
9781118087770c18.xhtml
9781118087770c18.xhtml#c18_level1_1
9781118087770c18.xhtml#c18_level1_2
9781118087770c18.xhtml#c18_level1_3
9781118087770c19.xhtml
9781118087770c19.xhtml#c19_level1_1
9781118087770c19.xhtml#c19_level1_2
9781118087770c19.xhtml#c19_level1_3
9781118087770c19.xhtml#c19_level1_4
9781118087770c19.xhtml#c19_level1_5
9781118087770c20.xhtml
9781118087770c20.xhtml#c20_level1_1
9781118087770c20.xhtml#c20_level1_2
9781118087770c20.xhtml#c20_level1_3
9781118087770c20.xhtml#c20_level1_4
9781118087770c20.xhtml#c20_level1_5
9781118087770c20.xhtml#c20_level1_6
9781118087770c20.xhtml#c20_level1_7
9781118087770c20.xhtml#c20_level1_8
9781118087770c21.xhtml
9781118087770c21.xhtml#c21_level1_1
9781118087770c21.xhtml#c21_level1_2
9781118087770c21.xhtml#c21_level1_3
9781118087770c21.xhtml#c21_level1_4
http://www.it-ebooks.info/

Formatted Printing
Built-in Functions
User-Defined Functions
Summary

Chapter 22: Working with Alternative Shells

What Is the dash Shell?
The dash Shell Features
Scripting in dash
The zsh Shell
Parts of the zsh Shell
Scripting with zsh
Summary

Part IV: Advanced Shell Scripting Topics

Chapter 23: Using a Database

The MySQL Database
The PostgreSQL Database
Working with Tables
Using the Database in Your Scripts
Summary

Chapter 24: Using the Web

The Lynx Program
The cURL Program
Networking with zsh
Summary

Chapter 25: Using E-mail

The Basics of Linux E-Mail
Setting Up Your Server
Sending a Message with Mailx
The Mutt Program
Summary

Chapter 26: Writing Script Utilities

Monitoring Disk Space
Performing Backups
Managing User Accounts

www.it-ebooks.info

9781118087770c21.xhtml#c21_level1_5
9781118087770c21.xhtml#c21_level1_6
9781118087770c21.xhtml#c21_level1_7
9781118087770c21.xhtml#c21_level1_8
9781118087770c22.xhtml
9781118087770c22.xhtml#c22_level1_1
9781118087770c22.xhtml#c22_level1_2
9781118087770c22.xhtml#c22_level1_3
9781118087770c22.xhtml#c22_level1_4
9781118087770c22.xhtml#c22_level1_5
9781118087770c22.xhtml#c22_level1_6
9781118087770c22.xhtml#c22_level1_7
9781118087770p04.xhtml
9781118087770c23.xhtml
9781118087770c23.xhtml#c23_level1_1
9781118087770c23.xhtml#c23_level1_2
9781118087770c23.xhtml#c23_level1_3
9781118087770c23.xhtml#c23_level1_4
9781118087770c23.xhtml#c23_level1_5
9781118087770c24.xhtml
9781118087770c24.xhtml#c24_level1_1
9781118087770c24.xhtml#c24_level1_2
9781118087770c24.xhtml#c24_level1_3
9781118087770c24.xhtml#c24_level1_4
9781118087770c25.xhtml
9781118087770c25.xhtml#c25_level1_1
9781118087770c25.xhtml#c25_level1_2
9781118087770c25.xhtml#c25_level1_3
9781118087770c25.xhtml#c25_level1_4
9781118087770c25.xhtml#c25_level1_5
9781118087770c26.xhtml
9781118087770c26.xhtml#c26_level1_1
9781118087770c26.xhtml#c26_level1_2
9781118087770c26.xhtml#c26_level1_3
http://www.it-ebooks.info/

Summary

Chapter 27: Advanced Shell Scripts

Monitoring System Statistics
Problem-Tracking Database
Summary

Appendix A: Quick Guide to bash Commands

Built-in Commands
bash Commands
Environment Variables

Appendix B: Quick Guide to sed and gawk

The sed Editor
The gawk Program

Index

www.it-ebooks.info

9781118087770c26.xhtml#c26_level1_4
9781118087770c27.xhtml
9781118087770c27.xhtml#c27_level1_1
9781118087770c27.xhtml#c27_level1_2
9781118087770c27.xhtml#c27_level1_3
9781118087770b01.xhtml
9781118087770b01.xhtml#b01_level1_1
9781118087770b01.xhtml#b01_level1_2
9781118087770b01.xhtml#b01_level1_3
9781118087770b02.xhtml
9781118087770b02.xhtml#b02_level1_1
9781118087770b02.xhtml#b02_level1_2
9781118087770bindex.xhtml
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Linux® Command Line and Shell Scripting Bible, Second Edition

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-00442-5

ISBN: 978-1-118-08777-0 (ebk)

ISBN: 978-1-118-08778-7 (ebk)

ISBN: 978-1-118-08779-4 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the
1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at

http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If
professional assistance is required, the services of a competent professional person should be sought. Neither the publisher
nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers should be aware
that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is

read.

For general information on our other products and services please contact our Customer Care Department within the United

States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in

electronic books.

Library of Congress Control Number: 2011921770

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. Linux is a registered
trademark of Linus Torvalds. All other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not

associated with any product or vendor mentioned in this book.

www.it-ebooks.info

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.it-ebooks.info/

To the Lord God Almighty, “in whom are hidden all the treasures of wisdom and knowledge.”

—Colossians 2:3

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Acquisitions Editor
Mary James

Project Editor
Brian Herrmann

Technical Editor
Jack Cox

Production Editor
Daniel Scribner

Copy Editor
Nancy Rapoport

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Marketing Manager
Ashley Zurcher

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover

www.it-ebooks.info

http://www.it-ebooks.info/

Katherine Crocker

Proofreader
Publication Services, Inc.

Indexer
Robert Swanson

Cover Designer
Ryan Sneed

Cover Image
Joyce Haughey

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors
Richard Blum has worked in the IT industry for more than 20 years as both a systems and network administrator, and has
published numerous Linux and open source books. He has administered UNIX, Linux, Novell, and Microsoft servers, as well as
helped design and maintain a 3,500 user network utilizing Cisco switches and routers. He has used Linux servers and shell
scripts to perform automated network monitoring, and has written shell scripts in most of the common Linux shell
environments. Rich is an online instructor for an Introduction to Linux course that is used by colleges and universities across
the U.S. When he's not being a computer nerd, Rich plays electric bass in a couple of different church worship bands, and

enjoys spending time with his wife Barbara, and two daughters Katie Jane and Jessica.
Christine Bresnahan starting working with computers more than 25 years ago in the IT industry as a system

administrator. Christine is currently an Adjunct Professor at Ivy Tech Community College in Indianapolis, Indiana, teaching

Linux system administration, Linux security, and Windows security classes.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical Editor
Jack Cox is a Senior Manager with CapTech Ventures in Richmond, VA. He has more than 25 years of experience in IT, spanning
a broad range of disciplines including mobile computing, transaction processing, RFID, Java development, and
cryptography. Jack enjoys life in Richmond with his lovely wife and rambunctious children. Outside of technology, his

interests include church, his children, and extended family.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments
First, all glory and praise go to God, who through His Son, Jesus Christ, makes all things possible, and gives us the gift of

eternal life.
Many thanks go to the fantastic team of people at John Wiley & Sons for their outstanding work on this project. Thanks

to Mary James, the acquisitions editor, for offering us the opportunity to work on this book. Also thanks to Brian Herrmann,
the project editor, for keeping things on track and making this book more presentable. Thanks, Brian, for all your hard work
and diligence. The technical editor, Jack Cox, did a wonderful job of double checking all the work in the book, plus making
suggestions to improve the content. Thanks to Nancy Rapoport, the copy editor, for her endless patience and diligence to
make our work readable. We would also like to thank Carole McClendon at Waterside Productions, Inc., for arranging this

opportunity for us, and for helping us out in our writing careers.
Christine would like to thank her husband, Timothy, for his encouragement, patience, and willingness to listen, even when

he has no idea what she is talking about.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
Welcome to the second edition of Linux Command Line and Shell Scripting Bible. Like all books in the Bible series, you can expect
to find both hands-on tutorials and real-world information, as well as reference and background information that provides
a context for what you are learning. This book is a fairly comprehensive resource on the Linux command line and shell
commands. By the time you have completed Linux Command Line and Shell Scripting Bible you will be well prepared to write

your own shell scripts that can automate practically any task on your Linux system.

Who Should Read This Book
If you're a system administrator in a Linux environment, you'll benefit greatly by knowing how to write shell scripts. The
book doesn't walk you through the process of setting up a Linux system, but once you have it running you'll want to start
automating some of the routine administrative tasks. That's where shell scripting comes in, and that's where this book will help
you out. This book will demonstrate how to automate any administrative task using shell scripts, from monitoring system

statistics and data files to generating reports for your boss.
If you're a home Linux enthusiast, you'll also benefit from Linux Command Line and Shell Scripting Bible. Nowadays, it's easy

to get lost in the graphical world of pre-built widgets. Most desktop Linux distributions try their best to hide the Linux
system from the typical user. However, there are times when you have to know what's going on under the hood. This book
shows you how to access the Linux command line prompt and what to do once you get there. Often performing simple tasks,
such as file management, can be done more quickly from the command line than from a fancy graphical interface. There's a

wealth of commands you can use from the command line, and this book shows you how to use them.

How This Book Is Organized
This book leads you through the basics of the Linux command line and into more complicated topics, such as creating your

own shell scripts. The book is divided into five parts, each one building on the previous parts.
Part I assumes that you either have a Linux system running, or are looking into getting a Linux system. Chapter 1,

“Starting with Linux Shells,” describes the parts of a total Linux system and shows how the shell fits in. After describing the

basics of the Linux system, this part continues with the following:
Using a terminal emulation package to access the shell (Chapter 2)
Introducing the basic shell commands (Chapter 3)
Using more advanced shell commands to peek at system information (Chapter 4)
Working with shell variables to manipulate data (Chapter 5)
Understanding the Linux filesystem and security (Chapter 6)
Working with Linux filesystems from the command line (Chapter 7)
Installing and updating software from the command line (Chapter 8)
Using the Linux editors to start writing shell scripts (Chapter 9)

In Part II, you begin writing shell scripts. As you go through the chapters you'll do the following:
Learn how to create and run shell scripts (Chapter 10)
Alter the program flow in a shell script (Chapter 11)
Iterate through code sections (Chapter 12)
Handle data from the user in your scripts (Chapter 13)
See different methods for storing and displaying data from your Script (Chapter 14)
Control how and when your shell scripts run on the system (Chapter 15)

Part III dives into more advanced areas of shell script programming, including:
Creating your own functions to use in all your scripts (Chapter 16)
Utilizing the Linux graphical desktop for interacting with your script users (Chapter 17)
Using advanced Linux commands to filter and parse data files (Chapter 18)
Using regular expressions to define data (Chapter 19)
Learning advanced methods of manipulating data in your scripts (Chapter 20)
Generating reports from raw data (Chapter 21)
Modifying your shell scripts to run in other Linux shells (Chapter 22)

The last section of the book, Part IV, demonstrates how to use shell scripts in real-world environments. In this part, you

www.it-ebooks.info

http://www.it-ebooks.info/

The last section of the book, Part IV, demonstrates how to use shell scripts in real-world environments. In this part, you

will:
See how to use popular open source databases in your shell scripts (Chapter 23)
Learn how to extract data from Websites, and send data between systems (Chapter 24)
Use e-mail to send notifications and reports to external users (Chapter 25)
Write shell scripts to automate your daily system administration functions (Chapter 26)
Utilize all of the features you've learned from the book to create professional-quality shell scripts (Chapter 27)

Conventions and Features
There are many different organizational and typographical features throughout this book designed to help you get the

most of the information.

Notes and Warnings

Whenever the authors want to bring something important to your attention the information will appear in a Warning.

Warning

This information is important and is set off in a separate paragraph with a special icon.
Warnings provide information about things to watch out for, whether simply inconvenient
or potentially hazardous to your data or systems.

For additional items of interest that relate to the chapter text, the authors will use Notes.

Note

Notes provide additional, ancillary information that is helpful, but somewhat
outside of the current presentation of information.

Minimum Requirements
Linux Command Line and Shell Scripting Bible doesn't focus on any specific Linux distribution, so you'll be able to follow along
in the book using any Linux system you have available. The bulk of the book references the bash shell, which is the default

shell for most Linux systems.

Where to Go from Here
Once you've completed Linux Command Line and Shell Scripting Bible, you'll be well on your way to incorporating Linux
commands in your daily Linux work. In the ever-changing world of Linux, it's always a good idea to stay in touch with new
developments. Often Linux distributions will change, adding new features and removing older ones. To keep you knowledge
of Linux fresh, always stay well-informed. Find a good Linux forum site and monitor what's happening in the Linux world.
There are many popular Linux news sites, such as Slashdot and Distrowatch, that provide up-to-the-minute information

about new advances in Linux.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I

The Linux Command Line

In This Part
Chapter 1: Starting with Linux Shells

Chapter 2: Getting to the Shell

Chapter 3: Basic bash Shell Commands

Chapter 4: More bash Shell Commands

Chapter 5: Using Linux Environment Variables

Chapter 6: Understanding Linux File Permissions

Chapter 7: Managing Filesystems

Chapter 8: Installing Software

Chapter 9: Working with Editors

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Starting with Linux Shells

In this Chapter

What is Linux?
Parts of the Linux kernel
Exploring the Linux desktop
Visiting Linux distributions

Before you can dive into working with the Linux command line and shells, it's a good idea to first understand what Linux is,
where it came from, and how it works. This chapter walks you through what Linux is, and explains where the shell and

command line fit in the overall Linux picture.

What Is Linux?
If you've never worked with Linux before, you may be confused as to why there are so many different versions of it available.
I'm sure that you have heard various terms such as distribution, LiveCD, and GNU when looking at Linux packages and been
confused. Wading through the world of Linux for the first time can be a tricky experience. This chapter takes some of the

mystery out of the Linux system before you start working on commands and scripts.
For starters, there are four main parts that make up a Linux system:

The Linux kernel
The GNU utilities
A graphical desktop environment
Application software

Each of these four parts has a specific job in the Linux system. Each of the parts by itself isn't very useful. Figure 1.1 shows a

basic diagram of how the parts fit together to create the overall Linux system.

Figure 1.1 The Linux system

www.it-ebooks.info

#c01_fig_0001
#c01_fig_anc_0001
http://www.it-ebooks.info/

Figure 1.1 The Linux system

This section describes these four main parts in detail, and gives you an overview of how they work together to create a

complete Linux system.

Looking into the Linux Kernel
The core of the Linux system is the kernel. The kernel controls all of the hardware and software on the computer system,

allocating hardware when necessary, and executing software when required.
If you've been following the Linux world at all, no doubt you've heard the name Linus Torvalds. Linus is the person

responsible for creating the first Linux kernel software while he was a student at the University of Helsinki. He intended it to

be a copy of the Unix system, at the time a popular operating system used at many universities.
After developing the Linux kernel, Linus released it to the Internet community and solicited suggestions for improving it.

This simple process started a revolution in the world of computer operating systems. Soon Linus was receiving suggestions

from students as well as professional programmers from around the world.
Allowing anyone to change programming code in the kernel would result in complete chaos. To simplify things, Linus

acted as a central point for all improvement suggestions. It was ultimately Linus's decision whether or not to incorporate
suggested code in the kernel. This same concept is still in place with the Linux kernel code, except that instead of just Linus

controlling the kernel code, a team of developers has taken on the task.
The kernel is primarily responsible for four main functions:

System memory management
Software program management
Hardware management
Filesystem management

www.it-ebooks.info

#c01_fig_anc_0001
http://www.it-ebooks.info/

The following sections explore each of these functions in more detail.

System Memory Management
One of the primary functions of the operating system kernel is memory management. Not only does the kernel manage the
physical memory available on the server, but it can also create and manage virtual memory, or memory that does not actually

exist.
It does this by using space on the hard disk, called the swap space. The kernel swaps the contents of virtual memory

locations back and forth from the swap space to the actual physical memory. This allows the system to think there is more

memory available than what physically exists (shown in Figure 1.2).

Figure 1.2 The Linux system memory map

The memory locations are grouped into blocks called pages. The kernel locates each page of memory either in the physical

memory or the swap space. The kernel then maintains a table of the memory pages that indicates which pages are in physical

memory and which pages are swapped out to disk.
The kernel keeps track of which memory pages are in use and automatically copies memory pages that have not been

accessed for a period of time to the swap space area (called swapping out), even if there's other memory available. When a
program wants to access a memory page that has been swapped out, the kernel must make room for it in physical memory by
swapping out a different memory page, and swap in the required page from the swap space. Obviously, this process takes
time, and can slow down a running process. The process of swapping out memory pages for running applications continues

for as long as the Linux system is running.
You can see the current status of the virtual memory on your Linux system by viewing the special /proc/meminfo file.

Here's an example of a sample /proc/meminfo entry:

rich@rich-desktop:∼$ cat /proc/meminfo
MemTotal: 1026084 kB

www.it-ebooks.info

#c01_fig_0002
#c01_fig_anc_0002
http://www.it-ebooks.info/

MemFree: 666356 kB
Buffers: 49900 kB
Cached: 152272 kB
SwapCached: 0 kB
Active: 171468 kB
Inactive: 154196 kB
Active(anon): 131056 kB
Inactive(anon): 32 kB
Active(file): 40412 kB
Inactive(file): 154164 kB
Unevictable: 12 kB
Mlocked: 12 kB
HighTotal: 139208 kB
HighFree: 252 kB
LowTotal: 886876 kB
LowFree: 666104 kB
SwapTotal: 2781176 kB
SwapFree: 2781176 kB
Dirty: 588 kB
Writeback: 0 kB
AnonPages: 123500 kB
Mapped: 52232 kB
Shmem: 7600 kB
Slab: 17676 kB
SReclaimable: 9788 kB
SUnreclaim: 7888 kB
KernelStack: 2656 kB
PageTables: 5072 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 3294216 kB
Committed_AS: 1234480 kB
VmallocTotal: 122880 kB
VmallocUsed: 7520 kB
VmallocChunk: 110672 kB
HardwareCorrupted: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 4096 kB
DirectMap4k: 12280 kB
DirectMap4M: 897024 kB

www.it-ebooks.info

http://www.it-ebooks.info/

rich@rich-desktop:∼$
The MemTotal: line shows that this Linux server has 1GB of physical memory. It also shows that about 660MB is not

currently being used (MemFree). The output also shows that there is about 2.5GB of swap space memory available on this

system (SwapTotal).
By default, each process running on the Linux system has its own private memory pages. One process cannot access

memory pages being used by another process. The kernel maintains its own memory areas. For security purposes, no

processes can access memory used by the kernel processes.
To facilitate data sharing, you can create shared memory pages. Multiple processes can read and write to and from a

common shared memory area. The kernel maintains and administers the shared memory areas and allows individual processes

access to the shared area.
The special ipcs command allows you to view the current shared memory pages on the system. Here's the output from a

sample ipcs command:

 # ipcs -m

 ------ Shared Memory Segments --------
 key shmid owner perms bytes nattch status
 0x00000000 0 rich 600 52228 6 dest
 0x395ec51c 1 oracle 640 5787648 6

 #
Each shared memory segment has an owner that created the segment. Each segment also has a standard Linux permissions

setting that sets the availability of the segment for other users. The key value is used to allow other users to gain access to the

shared memory segment.

Software Program Management
The Linux operating system calls a running program a process. A process can run in the foreground, displaying output on a
display, or it can run in background, behind the scenes. The kernel controls how the Linux system manages all the processes

running on the system.
The kernel creates the first process, called the init process, to start all other processes on the system. When the kernel

starts, it loads the init process into virtual memory. As the kernel starts each additional process, it gives it a unique area in

virtual memory to store the data and code that the process uses.
Some Linux implementations contain a table of processes to start automatically on bootup. On Linux systems, this table

is usually located in the special file /etc/inittabs.
Other systems (such as the popular Ubuntu Linux distribution) utilize the /etc/init.d folder, which contains scripts for

starting and stopping individual applications at boot time. The scripts are started via entries under the /etc/rcX.d folders,

where X is a run level.
The Linux operating system uses an init system that utilizes run levels. A run level can be used to direct the init process to

run only certain types of processes, as defined in the /etc/inittabs file or the /etc/rcX.d folders. There are five init

run levels in the Linux operating system.
At run level 1, only the basic system processes are started, along with one console terminal process. This is called single

user mode. Single user mode is most often used for emergency filesystem maintenance when something is broken. Obviously,

in this mode only one person (usually the administrator) can log in to the system to manipulate data.
The standard init run level is 3. At this run level, most application software such as network support software is started.

Another popular run level in Linux is run level 5. This is the run level where the system starts the graphical X Window

software, and allows you to log in using a graphical desktop window.
The Linux system can control the overall system functionality by controlling the init run level. By changing the run level

from 3 to 5, the system can change from a console-based system to an advanced, graphical X Window system.
In Chapter 4, you'll see how to use the ps command to view the processes currently running on the Linux system. Here's

an example of what you'll see using the ps command:

 $ ps ax
 PID TTY STAT TIME COMMAND
 1 ? S 0:03 init

www.it-ebooks.info

http://www.it-ebooks.info/

 2 ? SW 0:00 [kflushd]
 3 ? SW 0:00 [kupdate]
 4 ? SW 0:00 [kpiod]
 5 ? SW 0:00 [kswapd]
 243 ? SW 0:00 [portmap]
 295 ? S 0:00 syslogd
 305 ? S 0:00 klogd
 320 ? S 0:00 /usr/sbin/atd
 335 ? S 0:00 crond
 350 ? S 0:00 inetd
 365 ? SW 0:00 [lpd]
 403 ttyS0 S 0:00 gpm -t ms
 418 ? S 0:00 httpd
 423 ? S 0:00 httpd
 424 ? SW 0:00 [httpd]
 425 ? SW 0:00 [httpd]
 426 ? SW 0:00 [httpd]
 427 ? SW 0:00 [httpd]
 428 ? SW 0:00 [httpd]
 429 ? SW 0:00 [httpd]
 430 ? SW 0:00 [httpd]
 436 ? SW 0:00 [httpd]
 437 ? SW 0:00 [httpd]
 438 ? SW 0:00 [httpd]
 470 ? S 0:02 xfs -port -1
 485 ? SW 0:00 [smbd]
 495 ? S 0:00 nmbd -D
 533 ? SW 0:00 [postmaster]
 538 tty1 SW 0:00 [mingetty]
 539 tty2 SW 0:00 [mingetty]
 540 tty3 SW 0:00 [mingetty]
 541 tty4 SW 0:00 [mingetty]
 542 tty5 SW 0:00 [mingetty]
 543 tty6 SW 0:00 [mingetty]
 544 ? SW 0:00 [prefdm]
 549 ? SW 0:00 [prefdm]
 559 ? S 0:02 [kwm]
 585 ? S 0:06 kikbd
 594 ? S 0:00 kwmsound
 595 ? S 0:03 kpanel
 596 ? S 0:02 kfm
 597 ? S 0:00 krootwm
 598 ? S 0:01 kbgndwm
 611 ? S 0:00 kcmlaptop -daemon

www.it-ebooks.info

http://www.it-ebooks.info/

 666 ? S 0:00 /usr/libexec/postfix/master
 668 ? S 0:00 qmgr -l -t fifo -u
 787 ? S 0:00 pickup -l -t fifo
 790 ? S 0:00 telnetd: 192.168.1.2 [vt100]
 791 pts/0 S 0:00 login -- rich
 792 pts/0 S 0:00 -bash
 805 pts/0 R 0:00 ps ax
 $
The first column in the output shows the process ID (or PID) of the process. Notice that the first process is our friend the

init process, and assigned PID 1 by the Linux system. All other processes that start after the init process are assigned PIDs in
numerical order. No two processes can have the same PID (although old PID numbers can be reused by the system after the

original process terminates).
The third column shows the current status of the process (S for sleeping, SW for sleeping and waiting, and R for running).

The process name is shown in the last column. Processes that are in brackets are processes that have been swapped out of
memory to the disk swap space due to inactivity. You can see that some of the processes have been swapped out, but most of

the running processes have not.

Hardware Management
Still another responsibility for the kernel is hardware management. Any device that the Linux system must communicate with
needs driver code inserted inside the kernel code. The driver code allows the kernel to pass data back and forth to the device,
acting as a middle man between applications and the hardware. There are two methods used for inserting device driver code

in the Linux kernel:
Drivers compiled in the kernel
Driver modules added to the kernel

Previously, the only way to insert device driver code was to recompile the kernel. Each time you added a new device to the
system, you had to recompile the kernel code. This process became even more inefficient as Linux kernels supported more

hardware. Fortunately, Linux developers devised a better method to insert driver code into the running kernel.
Programmers developed the concept of kernel modules to allow you to insert driver code into a running kernel without

having to recompile the kernel. Also, a kernel module could be removed from the kernel when the device was finished being

used. This greatly simplified and expanded using hardware with Linux.
The Linux system identifies hardware devices as special files, called device files. There are three different classifications of

device files:
Character
Block
Network

Character device files are for devices that can only handle data one character at a time. Most types of modems and
terminals are created as character files. Block files are for devices that can handle data in large blocks at a time, such as disk

drives.
The network file types are used for devices that use packets to send and receive data. This includes network cards and a

special loopback device that allows the Linux system to communicate with itself using common network programming

protocols.
Linux creates special files, called nodes, for each device on the system. All communication with the device is performed

through the device node. Each node has a unique number pair that identifies it to the Linux kernel. The number pair includes a
major and a minor device number. Similar devices are grouped into the same major device number. The minor device number is
used to identify a specific device within the major device group. The following is an example of a few device files on a Linux

server:

rich@rich-desktop: ∼$ cd /dev
rich@rich-desktop:/dev$ ls -al sda* ttyS*
brw-rw---- 1 root disk 8, 0 2010-09-18 17:25 sda
brw-rw---- 1 root disk 8, 1 2010-09-18 17:25 sda1
brw-rw---- 1 root disk 8, 2 2010-09-18 17:25 sda2

www.it-ebooks.info

http://www.it-ebooks.info/

brw-rw---- 1 root disk 8, 5 2010-09-18 17:25 sda5
crw-rw---- 1 root dialout 4, 64 2010-09-18 17:25 ttyS0
crw-rw---- 1 root dialout 4, 65 2010-09-18 17:25 ttyS1
crw-rw---- 1 root dialout 4, 66 2010-09-18 17:25 ttyS2
crw-rw---- 1 root dialout 4, 67 2010-09-18 17:25 ttyS3
rich@rich-desktop:/dev$
Different Linux distributions handle devices using different device names. In this distribution, the sda device is the first

ATA hard drive, and the ttyS devices are the standard IBM PC COM ports. The listing shows all of the sda devices that were
created on the sample Linux system. Not all are actually used, but they are created in case the administrator needs them.

Similarly, the listing shows all of the ttyS devices created.
The fifth column is the major device node number. Notice that all of the sda devices have the same major device node, 8,

while all of the ttyS devices use 4. The sixth column is the minor device node number. Each device within a major number has

its own unique minor device node number.
The first column indicates the permissions for the device file. The first character of the permissions indicates the type of

file. Notice that the ATA hard drive files are all marked as block (b) device, while the COM port device files are marked as

character (c) devices.

Filesystem Management
Unlike some other operating systems, the Linux kernel can support different types of filesystems to read and write data to
and from hard drives. Besides having over a dozen filesystems of its own, Linux can read and write to and from filesystems
used by other operating systems, such as Microsoft Windows. The kernel must be compiled with support for all types of

filesystems that the system will use. Table 1.1 lists the standard filesystems that a Linux system can use to read and write data.

Table 1.1 Linux Filesystems

Filesystem Description

ext Linux Extended filesystem—the original Linux filesystem

ext2 Second extended filesystem, provided advanced features over ext

ext3 Third extended filesystem, supports journaling

ext4 Fourth extended filesystem, supports advanced journaling

hpfs OS/2 high-performance filesystem

jfs IBM's journaling file system

iso9660 ISO 9660 filesystem (CD-ROMs)

minix MINIX filesystem

msdos Microsoft FAT16

ncp Netware filesystem

nfs Network File System

ntfs Support for Microsoft NT filesystem

proc Access to system information

ReiserFS Advanced Linux file system for better performance and disk recovery

smb Samba SMB filesystem for network access

www.it-ebooks.info

#c01_tbl_0001
#c01_tbl_anc_0001
http://www.it-ebooks.info/

sysv Older Unix filesystem

ufs BSD filesystem

umsdos Unix-like filesystem that resides on top of msdos

vfat Windows 95 filesystem (FAT32)

XFS High-performance 64-bit journaling filesystem

Any hard drive that a Linux server accesses must be formatted using one of the filesystem types listed in Table 1.1.
The Linux kernel interfaces with each filesystem using the Virtual File System (VFS). This provides a standard interface for

the kernel to communicate with any type of filesystem. VFS caches information in memory as each filesystem is mounted and

used.

The GNU Utilities
Besides having a kernel to control hardware devices, a computer operating system needs utilities to perform standard
functions, such as controlling files and programs. While Linus created the Linux system kernel, he had no system utilities to
run on it. Fortunately for him, at the same time he was working, a group of people were working together on the Internet

trying to develop a standard set of computer system utilities that mimicked the popular Unix operating system.
The GNU organization (GNU stands for GNU's Not Unix) developed a complete set of Unix utilities, but had no kernel

system to run them on. These utilities were developed under a software philosophy called open source software (OSS).
The concept of OSS allows programmers to develop software and then release it to the world with no licensing fees

attached. Anyone can use the software, modify it, or incorporate it into his or her own system without having to pay a license
fee. Uniting Linus's Linux kernel with the GNU operating system utilities created a complete, functional, free operating

system.
While the bundling of the Linux kernel and GNU utilities is often just called Linux, you will see some Linux purists on the

Internet refer to it as the GNU/Linux system to give credit to the GNU organization for its contributions to the cause.

The Core GNU Utilities
The GNU project was mainly designed for Unix system administrators to have a Unix-like environment available. This focus
resulted in the project porting many common Unix system command line utilities. The core bundle of utilities supplied for

Linux systems is called the coreutils package.
The GNU coreutils package consists of three parts:

Utilities for handling files
Utilities for manipulating text
Utilities for managing processes

Each of these three main groups of utilities contains several utility programs that are invaluable to the Linux system

administrator and programmer. This book covers each of the utilities contained in the GNU coreutils package in detail.

The Shell
The GNU/Linux shell is a special interactive utility. It provides a way for users to start programs, manage files on the
filesystem, and manage processes running on the Linux system. The core of the shell is the command prompt. The command
prompt is the interactive part of the shell. It allows you to enter text commands, and then it interprets the commands and

then executes them in the kernel.
The shell contains a set of internal commands that you use to control things such as copying files, moving files, renaming

files, displaying the programs currently running on the system, and stopping programs running on the system. Besides the
internal commands, the shell also allows you to enter the name of a program at the command prompt. The shell passes the

program name off to the kernel to start it.
You can also group shell commands into files to execute as a program. Those files are called shell scripts. Any command

that you can execute from the command line can be placed in a shell script and run as a group of commands. This provides
great flexibility in creating utilities for commonly run commands, or processes that require several commands grouped

together.

www.it-ebooks.info

#c01_tbl_0001
http://www.it-ebooks.info/

There are quite a few Linux shells available to use on a Linux system. Different shells have different characteristics, some
being more useful for creating scripts and some being more useful for managing processes. The default shell used in all
Linux distributions is the bash shell. The bash shell was developed by the GNU project as a replacement for the standard Unix
shell, called the Bourne shell (after its creator). The bash shell name is a play on this wording, referred to as the “Bourne again

shell.”
In addition to the bash shell, we will cover several other popular shells in this book. Table 1.2 lists the different shells we

will examine.

Table 1.2 Linux Shells

Shell Description

ash A simple, lightweight shell that runs in low-memory environments but has full
compatibility with the bash shell

korn A programming shell compatible with the Bourne shell but supporting advanced
programming features like associative arrays and floating-point arithmetic

tcsh A shell that incorporates elements from the C programming language into shell scripts

zsh An advanced shell that incorporates features from bash, tcsh, and korn, providing
advanced programming features, shared history files, and themed prompts

Most Linux distributions include more than one shell, although usually they pick one of them to be the default. If your

Linux distribution includes multiple shells, feel free to experiment with different shells and see which one fits your needs.

The Linux Desktop Environment
In the early days of Linux (the early 1990s) all that was available was a simple text interface to the Linux operating system. This

text interface allowed administrators to start programs, control program operations, and move files around on the system.
With the popularity of Microsoft Windows, computer users expected more than the old text interface to work with. This

spurred more development in the OSS community, and the Linux graphical desktops emerged.
Linux is famous for being able to do things in more than one way, and no place is this more relevant than in graphical

desktops. There are a plethora of graphical desktops you can choose from in Linux. The following sections describe a few of

the more popular ones.

The X Windows System
There are two basic elements that control your video environment—the video card in your PC and your monitor. To display
fancy graphics on your computer, the Linux software needs to know how to talk to both of them. The X Windows software is

the core element in presenting graphics.
The X Windows software is a low-level program that works directly with the video card and monitor in the PC, and

controls how Linux applications can present fancy windows and graphics on your computer.
Linux isn't the only operating system that uses X Windows; there are versions written for many different operating

systems. In the Linux world, there are only two software packages that can implement it.
The XFree86 software package is the older of the two, and for a long time was the only X Windows package available for

Linux. As its name implies, it's a free open source version of the X Windows software.
The newer of the two packages, X.org, has made great inroads in the Linux world and is now the more popular of the two.

It, too, provides an open source software implementation of the X Windows system, but has support for more of the newer

video cards used today.
Both packages work the same way, controlling how Linux uses your video card to display content on your monitor. To do

that, they have to be configured for your specific system. That is supposed to happen automatically when you install Linux.
When you first install a Linux distribution, it attempts to detect your video card and monitor, and then creates an X

Windows configuration file that contains the required information. During installation you may notice a time when the
installation program scans your monitor for supported video modes. Sometimes this causes your monitor to go blank for a
few seconds. Because there are lots of different types of video cards and monitors out there, this process can take a little

while to complete.

www.it-ebooks.info

#c01_tbl_0002
#c01_tbl_anc_0002
http://www.it-ebooks.info/

The core X Windows software produces a graphical display environment, but nothing else. While this is fine for running
individual applications, it is not too useful for day-to-day computer use. There is no desktop environment allowing users to
manipulate files or launch programs. To do that, you need a desktop environment on top of the X Windows system software.

The KDE Desktop
The K Desktop Environment (KDE) was first released in 1996 as an open source project to produce a graphical desktop similar
to the Microsoft Windows environment. The KDE desktop incorporates all of the features you are probably familiar with if

you are a Windows user. Figure 1.3 shows a sample KDE 4 desktop running in the openSuSE Linux distribution.

Figure 1.3 The KDE 4 desktop on an openSuSE Linux system

The KDE desktop allows you to place both application and file icons in a special area on the desktop. If you single-click an

application icon, the Linux system starts the application. If you single-click on a file icon, the KDE desktop attempts to

determine what application to start to handle the file.

www.it-ebooks.info

#c01_fig_0003
#c01_fig_anc_0003
http://www.it-ebooks.info/

The bar at the bottom of the desktop is called the Panel. The Panel consists of four parts:
The K menu: Much like the Windows Start menu, the K menu contains links to start installed applications.
Program shortcuts: These are quick links to start applications directly from the Panel.
The taskbar: The taskbar shows icons for applications currently running on the desktop.
Applets: These are small applications that have an icon in the Panel that often can change depending on

information from the application.
All of the Panel features are similar to what you would find in Windows. In addition to the desktop features, the KDE

project has produced a wide assortment of applications that run in the KDE environment. These applications are shown in

Table 1.3. (You may notice the trend of using a capital K in KDE application names.)

Table 1.3 KDE Applications

Application Description

amaroK Audio file player

digiKam Digital camera software

dolphin File manager

K3b CD-burning software

Kaffeine Video player

Kmail E-mail client

Koffice Office applications suite

Konqueror File and Web browser

Kontact Personal information manager

Kopete Instant messaging client

This is only a partial list of applications produced by the KDE project. There are lots more applications that are included

with the KDE desktop.

The GNOME Desktop
The GNU Network Object Model Environment (GNOME) is another popular Linux desktop environment. First released in 1999,

GNOME has become the default desktop environment for many Linux distributions (the most popular being Red Hat Linux).
While GNOME chose to depart from the standard Microsoft Windows look-and-feel, it incorporates many features that

most Windows users are comfortable with:
A desktop area for icons
Two panel areas
Drag-and-drop capabilities

Figure 1.4 shows the standard GNOME desktop used in the Ubuntu Linux distribution.

Figure 1.4 A GNOME desktop on an Ubuntu Linux system

www.it-ebooks.info

#c01_tbl_0003
#c01_tbl_anc_0003
#c01_fig_0004
#c01_fig_anc_0004
http://www.it-ebooks.info/

Figure 1.4 A GNOME desktop on an Ubuntu Linux system

Not to be outdone by KDE, the GNOME developers have also produced a host of graphical applications that integrate

with the GNOME desktop. These are shown in Table 1.4.
As you can see, there are also quite a few applications available for the GNOME desktop. Besides all of these applications,

most Linux distributions that use the GNOME desktop also incorporate the KDE libraries, allowing you to run KDE

applications on your GNOME desktop.

Table 1.4 GNOME Applications

Application Description

epiphany Web browser

evince Document viewer

www.it-ebooks.info

#c01_fig_anc_0004
#c01_tbl_0004
#c01_tbl_anc_0004
http://www.it-ebooks.info/

gcalc-tool Calculator

gedit GNOME text editor

gnome-panel Desktop panel for launching applications

gnome-nettool Network diagnostics tool

gnome-terminal Terminal emulator

nautilus Graphical file manager

nautilus-cd-burner CD-burning tool

sound juicer Audio CD–ripping tool

tomboy Note-taking software

totem Multimedia player

Other Desktops
The downside to a graphical desktop environment is that they require a fair amount of system resources to operate properly.
In the early days of Linux, a hallmark and selling feature of Linux was its ability to operate on older, less powerful PCs that
the newer Microsoft desktop products couldn't run on. However, with the popularity of KDE and GNOME desktops, this has

changed, as it takes just as much memory to run a KDE or GNOME desktop as the latest Microsoft desktop environment.
If you have an older PC, don't be discouraged. The Linux developers have banded together to take Linux back to its

roots. They've created several low-memory–oriented graphical desktop applications that provide basic features that run

perfectly fine on older PCs.
While these graphical desktops don't have a plethora of applications designed around them, they still run many basic

graphical applications that support features such as word processing, spreadsheets, databases, drawing, and, of course,

multimedia support.
Table 1.5 shows some of the smaller Linux graphical desktop environments that can be used on lower-powered PCs and

laptops.

Table 1.5 Other Linux Graphical Desktops

Desktop Description

fluxbox A bare-bones desktop that doesn't include a Panel, only a pop-up menu to launch
applications

xfce A desktop that's similar to the KDE desktop, but with less graphics for low-memory
environments

JWM Joe's Window Manager, a very lightweight desktop ideal for low-memory and low-disk
space environments

fvwm Supports some advanced desktop features such as virtual desktops and Panels, but
runs in low-memory environments

fvwm95 Derived from fvwm, but made to look like a Windows 95 desktop

These graphical desktop environments are not as fancy as the KDE and GNOME desktops, but they provide basic graphical

functionality just fine. Figure 1.5 shows what the fluxbox desktop used in the Puppy Linux antiX distribution looks like.

Figure 1.5 The JWM desktop as seen in the Puppy Linux distribution

www.it-ebooks.info

#c01_tbl_0005
#c01_tbl_anc_0005
#c01_fig_0005
#c01_fig_anc_0005
http://www.it-ebooks.info/

Figure 1.5 The JWM desktop as seen in the Puppy Linux distribution

If you are using an older PC, try a Linux distribution that uses one of these desktops and see what happens. You may be

pleasantly surprised.

Linux Distributions
Now that you have seen the four main components required for a complete Linux system, you may be wondering how you
are going to get them all put together to make a Linux system. Fortunately, there are people who have already done that for

you.
A complete Linux system package is called a distribution. There are lots of different Linux distributions available to meet

just about any computing requirement you could have. Most distributions are customized for a specific user group, such as
business users, multimedia enthusiasts, software developers, or average home users. Each customized distribution includes
the software packages required to support specialized functions, such as audio- and video-editing software for multimedia

enthusiasts, or compilers and integrated development environments (IDEs) for software developers.
The different Linux distributions are often divided into three categories:

Full core Linux distributions

www.it-ebooks.info

#c01_fig_anc_0005
http://www.it-ebooks.info/

Specialized distributions
LiveCD test distributions

The following sections describe these different types of Linux distributions, and show some examples of Linux

distributions in each category.

Core Linux Distributions
A core Linux distribution contains a kernel, one or more graphical desktop environments, and just about every Linux
application that is available, precompiled for the kernel. It provides one-stop shopping for a complete Linux installation.

Table 1.6 shows some of the more popular core Linux distributions.

Table 1.6 Core Linux Distributions

Distribution Description

Slackware One of the original Linux distribution sets, popular with Linux geeks

Red Hat A commercial business distribution used mainly for Internet servers

Fedora A spin-off from Red Hat but designed for home use

Gentoo A distribution designed for advanced Linux users, containing only Linux source
code

Mandriva Designed mainly for home use (previously called Mandrake)

openSuSe Different distributions for business and home use

Debian Popular with Linux experts and commercial Linux products

In the early days of Linux, a distribution was released as a set of floppy disks. You had to download groups of files and
then copy them onto disks. It would usually take 20 or more disks to make an entire distribution! Needless to say, this was a

painful experience.
Nowadays, with home computers commonly having CD and DVD players built in, Linux distributions are released as either

a CD set or a single DVD. This makes installing Linux much easier.
However, beginners still often run into problems when they install one of the core Linux distributions. To cover just

about any situation in which someone might want to use Linux, a single distribution has to include lots of application
software. They include everything from high-end Internet database servers to common games. Because of the quantity of

applications available for Linux, a complete distribution often takes four or more CDs.
While having lots of options available in a distribution is great for Linux geeks, it can become a nightmare for beginning

Linux users. Most distributions ask a series of questions during the installation process to determine which applications to
load by default, what hardware is connected to the PC, and how to configure the hardware. Beginners often find these
questions confusing. As a result, they often either load way too many programs on their computer or don't load enough and

later discover that their computer won't do what they want it to.
Fortunately for beginners, there's a much simpler way to install Linux.

Specialized Linux Distributions
A new subgroup of Linux distributions has started to appear. These are typically based on one of the main distributions but

contain only a subset of applications that would make sense for a specific area of use.
In addition to providing specialized software (such as only office products for business users), customized Linux

distributions also attempt to help beginning Linux users by autodetecting and autoconfiguring common hardware devices.

This makes installing Linux a much more enjoyable process.
Table 1.7 shows some of the specialized Linux distributions available and what they specialize in.

Table 1.7 Specialized Linux Distributions

www.it-ebooks.info

#c01_tbl_0006
#c01_tbl_anc_0006
#c01_tbl_0007
#c01_tbl_anc_0007
http://www.it-ebooks.info/

Distribution Description

Xandros A commercial Linux package configured for beginners

SimplyMEPIS A free distribution for home use

Ubuntu A free distribution for school and home use

PCLinuxOS A free distribution for home and office use

Mint A free distribution for home entertainment use

dyne:bolic A free distribution designed for audio and MIDI applications

Puppy Linux A free small distribution that runs well on older PCs

That's just a small sampling of specialized Linux distributions. There are literally hundreds of specialized Linux
distributions, and more are popping up all the time on the Internet. No matter what your specialty, you'll probably find a

Linux distribution made for you.
Many of the specialized Linux distributions are based on the Debian Linux distribution. They use the same installation files

as Debian but package only a small fraction of a full-blown Debian system.

The Linux LiveCD
A relatively new phenomenon in the Linux world is the bootable Linux CD distribution. This lets you see what a Linux system is
like without actually installing it. Most modern PCs can boot from a CD instead of the standard hard drive. To take advantage
of this, some Linux distributions create a bootable CD that contains a sample Linux system (called a Linux LiveCD). Because of
the limitations of the single CD size, the sample can't contain a complete Linux system, but you'd be surprised at all the
software they can cram in there. The result is that you can boot your PC from the CD and run a Linux distribution without

having to install anything on your hard drive!
This is an excellent way to test various Linux distributions without having to mess with your PC. Just pop in a CD and

boot! All of the Linux software will run directly off the CD. There are lots of Linux LiveCDs that you can download from the

Internet and burn onto a CD to test drive.
Table 1.8 shows some popular Linux LiveCDs that are available.

Table 1.8 Linux LiveCD Distributions

Distribution Description

Knoppix A German Linux, the first Linux LiveCD developed

SimplyMEPIS Designed for beginning home Linux users

PCLinuxOS Full-blown Linux distribution on a LiveCD

Ubuntu A worldwide Linux project, designed for many languages

Slax A live Linux CD based on Slackware Linux

Puppy Linux A full-featured Linux designed for older PCs

You may notice a familiarity in this table. Many specialized Linux distributions also have a Linux LiveCD version. Some
Linux LiveCD distributions, such as Ubuntu, allow you to install the Linux distribution directly from the LiveCD. This enables
you to boot with the CD, test drive the Linux distribution, and then if you like it, install it on your hard drive. This feature is

extremely handy and user-friendly.
As with all good things, Linux LiveCDs have a few drawbacks. Because you access everything from the CD, applications run

more slowly, especially if you're using older, slower computers and CD drives. Also, because you can't write to the CD, any

changes you make to the Linux system will be gone the next time you reboot.

www.it-ebooks.info

#c01_tbl_0008
#c01_tbl_anc_0008
http://www.it-ebooks.info/

But there are advances being made in the Linux LiveCD world that help to solve some of these problems. These advances

include the ability to:
Copy Linux system files from the CD to memory
Copy system files to a file on the hard drive
Store system settings on a USB memory stick
Store user settings on a USB memory stick

Some Linux LiveCDs, such as Puppy Linux, are designed with a minimum number of Linux system files. The LiveCD boot
scripts copies them directly into memory when the CD boots. This allows you to remove the CD from the computer as soon as
Linux boots. Not only does this make your applications run much faster (because applications run faster from memory), but
it also gives you a free CD tray to use for ripping audio CDs or playing video DVDs from the software included in Puppy

Linux.
Other Linux LiveCDs use an alternative method that allows you to remove the CD from the tray after booting. It involves

copying the core Linux files onto the Windows hard drive as a single file. After the CD boots, it looks for that file and reads
the system files from it. The dyne:bolic Linux LiveCD uses this technique, which is called docking. Of course, you must copy the

system file to your hard drive before you can boot from the CD.
A very popular technique for storing data from a live Linux CD session is to use a common USB memory stick (also called a

flash drive or a thumb drive). Just about every Linux LiveCD can recognize a plugged-in USB memory stick (even if the stick is
formatted for Windows) and read and write files to and from it. This allows you to boot a Linux LiveCD, use the Linux
applications to create files, store those files on your memory stick, and then access them from your Windows applications

later (or from a different computer). How cool is that?

Summary
This chapter discussed the Linux system, and the basics of how it works. The Linux kernel is the core of the system, controlling
how memory, programs, and hardware all interact with one another. The GNU utilities are also an important piece in the Linux
system. The Linux shell, which is the main focus of this book, is part of the GNU core utilities. The chapter also discussed the
final piece of a Linux system, the Linux desktop environment. Things have changed over the years, and Linux now supports

several graphical desktop environments.
The chapter also discussed the various Linux distributions. A Linux distribution bundles the various parts of a Linux

system into a simple package that you can easily install on your PC. The Linux distribution world consists of full-blown Linux
distributions that include just about every application imaginable, as well as specialized Linux distributions that only include
applications focused on a special function. The Linux LiveCD craze has created another group of Linux distributions that

allow you to easily test drive Linux without even having to install it on your hard drive.
In the next chapter, you look at what you need to start your command line and shell scripting experience. You'll see what

you need to do to get to the Linux shell utility from your fancy graphical desktop environment. These days that's not always

an easy thing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Getting to the Shell

In This Chapter

Terminal emulation
The terminfo database
The Linux console
The xterm terminal
The Konsole terminal
The GNOME terminal

In the old days of Linux, all that was available to work with was the shell. System administrators, programmers, and system
users all sat at the Linux console terminal entering text commands and viewing text output. These days, with our fancy
graphical desktop environments, it's getting harder just to find a shell prompt on the system to work from. This chapter
discusses what is required to provide a command line environment, and then walks you through the terminal emulation

packages you may run into in the various Linux distributions.

Terminal Emulation
Back before the days of graphical desktops, the only way to interact with a Unix system was through a text command line
interface (CLI) provided by the shell. The CLI allowed text input only, and could only display text and rudimentary graphics

output.
Because of this restriction, output devices did not have to be very fancy. Often a simple dumb terminal was all that was

required to interact with the Unix system. A dumb terminal was usually nothing more than a monitor and keyboard
(although later on in life they started getting fancier by utilizing a mouse) connected to the Unix system via a communication
cable (usually a multi-wire serial cable). This simple combination provided an easy way to enter text data into the Unix system

and view text results.
As you well know, things are significantly different in today's Linux environment. Just about every Linux distribution

uses some type of graphical desktop environment. However, to access the shell you still need a text display to interact with a
CLI. The problem now is getting to one. With all of the new graphical Linux desktop features, sometimes finding a way to get

a CLI in a Linux distribution is not an easy task.
One way to get to a CLI is to take the Linux system out of graphical desktop mode and place it in text mode. This provides

nothing more than a simple shell CLI on the monitor, just like the days before graphical desktops. This mode is called the Linux

console because it emulates the old days of a hard-wired console terminal and is a direct interface to the Linux system.
The alternative to being in the Linux console is to use a terminal emulation package from within the graphical Linux

desktop environment. A terminal emulation package simulates working on a dumb terminal, all within a graphical window on

the desktop. Figure 2.1 shows an example of a terminal emulator running in a graphical Linux desktop environment.

Figure 2.1 A simple terminal emulator running on a Linux desktop

www.it-ebooks.info

#c02_fig_0001
#c02_fig_anc_0001
http://www.it-ebooks.info/

Figure 2.1 A simple terminal emulator running on a Linux desktop

Each terminal emulation package has the ability to emulate one or more specific types of dumb terminals. If you're going

to work with the shell in Linux, unfortunately you'll need to know a little bit about terminal emulation.
Knowing the core features of the old dumb terminals will help you decide which emulation type to select when you're

using a graphical terminal emulator, and use all of the available features to their full capabilities. The main features used in
the dumb terminal can be broken down into two areas: the graphics capabilities and the keyboard. This section describes these

features and discusses how they relate to the different types of terminal emulators.

Graphics Capabilities
The most important part of terminal emulation is how it displays information on the monitor. When you hear the phrase “text
mode,” the last thing you'd think to worry about is graphics. However, even the most rudimentary dumb terminals supported

some method of screen manipulation (such as clearing the screen and displaying text at a specific location on the screen).
This section describes the graphics features that make each of the different terminal types unique, and what to look for in

the terminal emulation packages.

www.it-ebooks.info

#c02_fig_anc_0001
http://www.it-ebooks.info/

Character Sets
All terminals must display characters on the screen (otherwise, text mode would be pretty useless). The trick is in what
characters to display, and what codes the Linux system needs to send to display them. A character set is a set of binary
commands that the Linux system sends to a monitor to display characters. There are several character sets that are supported

by various terminal emulation packages:
ASCII: The American Standard Code for Information Interchange. This character set contains the English characters
stored using a 7-bit code, and consists of 128 English letters (both upper and lower case), numbers, and special
symbols. This character set was adopted by the American National Standards Institute (ANSI) as US-ASCII. You will

often see it referred to in terminal emulators as the ANSI character set.
ISO-8859-1 (commonly called Latin-1): An extension of the ASCII character set developed by the International
Organization for Standardization (ISO). It uses an 8-bit code to support the standard ASCII characters as well as
special foreign language characters for most Western European languages. The Latin-1 character set is popular in

multinational terminal emulation packages.
ISO-8859-2: ISO character set that supports Eastern European language characters.
ISO-8859-6: ISO character set that supports Arabic language characters.
ISO-8859-7: ISO character set that supports Greek language characters.
ISO-8859-8: ISO character set that supports Hebrew language characters.
ISO-10646 (commonly called Unicode): ISO 2-byte character set that contains codes for most English and non-
English languages. This single character set contains all of the codes defined in all of the ISO-8859-x series of

character sets. The Unicode character set is quickly becoming popular among open source applications.
By far the most common character set in use today in English-speaking countries is the Latin-1 character set. The Unicode

character set is becoming more popular, and may very well one day become the new standard in character sets. Most popular

terminal emulators allow you to select which character set to use in the terminal emulation.

Control Codes
In addition to being able to display characters, terminals must have the ability to control special features on the monitor and
keyboard, such as the cursor location on the screen. They accomplish this using a system of control codes. A control code is a

special code not used in the character set, which signals the terminal to perform a special, nonprintable operation.
Common control code functions are the carriage return (return the cursor to the beginning of the line), line feed (put the

cursor on the next horizontal row), horizontal tab (shift the cursor over a preset number of spaces), arrow keys (up, down,
left, and right), and the page up/page down keys. While these codes mainly emulate features that control where the cursor is
placed on the monitor, there are also several other codes, such as clearing the entire screen, and even a bell ring (emulating

the old typewriter end-of-carriage bell).
Control codes were also used in controlling the communication features of dumb terminals. Dumb terminals were

connected to the computer system via some type of communication channel, often a serial communication cable. Sometimes
data needed to be controlled on the communication channel, so developers devised special control codes just for data
communication purposes. While these codes aren't necessarily required in modern terminal emulators, most support these
codes to maintain compatibility. The most common codes in this category are the XON and XOFF codes, which start and stop

data transmission to the terminal, respectively.

Block Mode Graphics
As dumb terminals became more popular, manufacturers started experimenting with rudimentary graphics capabilities. By
far the most popular type of “graphical” dumb terminal used in the Unix world was the Digital Equipment Corporation (DEC)
VT series of terminals. The turning point for dumb terminals came with the release of the DEC VT100 in 1978. The DEC VT100

terminal was the first terminal to support the complete ANSI character set, including block mode graphic characters.
The ANSI character set contains codes that not only allowed monitors to display text but also rudimentary graphics

symbols, such as boxes, lines, and blocks. By far one of the most popular dumb terminals used in Unix operations during the
1980s was the DEC VT102, an upgraded version of the VT100. Most modern terminal emulation programs still emulate the

operation of the VT102 display, supporting all of the ANSI codes for creating block mode graphics.

Vector Graphics
The Tektronix company produced a popular series of terminals that used a display method called vector graphics. Vector
graphics deviated from the DEC method of block mode graphics by making all screen images (including characters) a series of
line segments (vectors). The Tektronix 4010 terminal was the most popular graphical dumb terminal produced. Many terminal

emulation packages still emulate its capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

The 4010 terminal displays images by drawing a series of vectors using an electron beam, much like drawing with a pencil.
Because vector graphics doesn't use dots to create lines, it has the ability to draw geometric shapes using higher precision than

most dot-oriented graphics terminals. This was a popular feature among mathematicians and scientists.
Modern terminal emulators use software to emulate the vector graphics drawing capabilities of the Tektronix 4010

terminals. This is still a popular feature for people who need precise graphical drawings, or those who still run applications

that used the vector graphics routines to draw complicated charts and diagrams.

Display Buffering
A key to graphics displays is the ability of the terminal to buffer data. Buffering data requires having additional internal

memory within the terminal itself to store characters not currently being displayed on the monitor.
The DEC VT series of terminals utilized two types of data buffering:

Buffering data as it scrolled off of the main display window (called a history)
Buffering a completely separate display window (called an alternate screen)

The first type of buffering is known as a scroll region. The scroll region is the amount of memory the terminal has that
enables it to “remember” data as it scrolls off of the screen. A standard DEC VT102 terminal contained a viewing area for 25
lines of characters. As the terminal displays a new line of characters, the previous line is scrolled upward. When the terminal

reaches the bottom line of the display, the next line causes the top line to scroll off the display.
The internal memory in the VT102 terminal allowed it to save the last 64 lines that had scrolled off of the display. Users had

the ability to lock the current screen display and use arrow keys to scroll backward through the previous lines that had
“scrolled off” of the display. Terminal emulation packages allow you to use either a side scrollbar or a mouse scroll button to
scroll through the saved data without having to lock the display. Of course, for full emulation compatibility, most terminal
emulation packages also allow you to lock the display and use arrow and page up/page down to scroll through the saved

data.
The second type of buffering is known as an alternative screen. Normally, the terminal writes data directly to the normal

display area on the monitor. A method was developed to crudely implement animation by using two screen areas to store
data. Control codes were used to signal the terminal to write data to the alternative screen instead of the current display
screen. That data was held in memory. Another control code would signal the terminal to switch the monitor display between
the normal screen data and the data contained in the alternative screen almost instantaneously. By storing successive data

pages in the alternative screen area, then displaying it, you could crudely simulate moving graphics.
Terminals that emulate the VT series of terminals have the ability to support both the scroll region and the alternative

screen buffering methods.

Color
Even back in the black-and-white (or green) dumb terminal days, programmers were experimenting with different ways to

present data. Most terminals supported special control codes to produce the following types of special text:
Bold characters
Underline characters
Reverse video (black characters on white background)
Blinking
Combinations of all of the above features

Back in the old days, if you wanted to get someone's attention, you used bold, blinking, reverse video text. Now there's

something that could hurt your eyes!
As color terminals became available, programmers added special control codes to display text in various colors and

shades. The ANSI character set includes control codes for specifying specific colors for both foreground text and the

background color displayed on the monitor. Most terminal emulators support the ANSI color control codes.

The Keyboard
There is more to a terminal than just how the monitor operates. If you have ever worked with different types of dumb
terminals, you have seen that they often contain different keys on the keyboard. Trying to emulate specific keys on a specific

dumb terminal has proven to be a difficult task for terminal emulation packages.
It was impossible for the creators of the PC keyboard to include keys for every possible type of special key found in

dumb terminals. Some PC manufacturers experimented with including special keys for special functions, but eventually the

PC keyboard keys became somewhat standardized.

www.it-ebooks.info

http://www.it-ebooks.info/

For a terminal emulation package to completely emulate a specific type of dumb terminal, it must remap any dumb
terminal keys that don't appear on the PC keyboard. This remapping feature can often become confusing, especially when

different systems use different control codes for the same key.
Some common special keys you'll see in terminal emulation packages are:

Break: Sends a stream of zeroes to the host. This is often used to interrupt the currently executing program in the

shell.
Scroll Lock: Also called “no scroll,” this stops the output on the display. Some terminals included memory to hold
the contents of the display so the user could scroll backward through previously viewed information while the scroll

lock was enabled.
Repeat: When held down with another key, this caused the terminal to repeatedly send the other key's value to the

host.
Return: Commonly used to send a carriage return character to the host. Most often used to signify the end of a

command for the host to process (now called Enter on PC keyboards).
Delete: While basically a simple feature, the Delete key causes grief for terminal emulation packages. Some
terminals delete the character at the current cursor location, while others delete the preceding character. To resolve

this dilemma, PC keyboards include two delete keys, Backspace and Delete.
Arrow keys: Commonly used to position the cursor at a specific place—for example, when scrolling through a

listing.
Function keys: A combination of specialty keys that can be assigned unique values in programs similar to the PC F1
through F12 keys. The DEC VT series of terminals actually had two sets of function keys, F1 through F20, and PF1

through PF4.
Keyboard emulation is a crucial element in a terminal emulation package. Unfortunately, often applications are written

requiring users to hit specific keys for specific functions. I've seen many a communications package that used the old DEC PF1

through PF4 keys, which are often hard to find on a terminal emulation keyboard.

The terminfo Database
Now that you know about terminal emulation packages that can emulate different types of terminals, you need a way for
the Linux system to know exactly what terminal you're emulating. The Linux system needs to know what control codes to use
when communicating with the terminal emulator. This is done by using an environment variable (see Chapter 5) and a special

set of files collectively called the terminfo database.
The terminfo database is a set of files that identify the characteristics of various terminals that can be used on the Linux

system. The Linux system stores the terminfo data for each terminal type as a separate file in the terminfo database directory.
The location of this directory often varies from distribution to distribution. Some common locations are

/usr/share/terminfo, /etc/terminfo, and /lib/terminfo.
To help with organization (often there are lots of different terminfo files), you will see that the terminfo database

directory contains directories for different letters of the alphabet. The individual files for specific terminals are stored under
the appropriate letter directory for their terminal name. For example, under /usr/share/terminfo/v are the VT

terminal emulators.
An individual terminfo file is a binary file that is the result of compiling a text file. This text file contains code words that

define screen functions, associated with the control code required to implement the function on the terminal.
Since the terminfo database files are binary, you cannot see the codes within these files. However, you can use the

infocmp command to convert the binary entries into text. An example of using this command is:

 $ infocmp vt100
 # Reconstructed via infocmp from file: /lib/terminfo/v/vt100
 vt100|vt100-am|dec vt100 (w/advanced video),
 am, msgr, xenl, xon,
 cols#80, it#8, lines#24, vt#3,
 acsc=“aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}∼∼,
 bel=ˆG, blink=\E[5m$<2>, bold=\E[1m$<2>,
 clear=\E[H\E[J$<50>, cr=ˆM, csr=\E[%i%p1%d;%p2%dr,
 cub=\E[%p1%dD, cub1=ˆH, cud=\E[%p1%dB, cud1=ˆJ,
 cuf=\E[%p1%dC, cuf1=\E[C$<2>,
 cup=\E[%i%p1%d;%p2%dH$<5>, cuu=\E[%p1%dA,
 cuu1=\E[A$<2>, ed=\E[J$<50>, el=\E[K$<3>, el1=\E[1K$<3>,

www.it-ebooks.info

http://www.it-ebooks.info/

 enacs=\E(B\E)0, home=\E[H, ht=ˆI, hts=\EH, ind=ˆJ, ka1=\EOq,
 ka3=\EOs, kb2=\EOr, kbs=ˆH, kc1=\EOp, kc3=\EOn, kcub1=\EOD,
 kcud1=\EOB, kcuf1=\EOC, kcuu1=\EOA, kent=\EOM, kf0=\EOy,
 kf1=\EOP, kf10=\EOx, kf2=\EOQ, kf3=\EOR, kf4=\EOS, kf5=\EOt,
 kf6=\EOu, kf7=\EOv, kf8=\EOl, kf9=\EOw, rc=\E8,
 rev=\E[7m$<2>, ri=\EM$<5>, rmacs=ˆO, rmam=\E[?7l,
 rmkx=\E[?1l\E>, rmso=\E[m$<2>, rmul=\E[m$<2>,
 rs2=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h,
 sc=\E7,
 sgr0=\E[m\017$<2>, smacs=ˆN, smam=\E[?7h, smkx=\E[?1h\E=,
 smso=\E[7m$<2>, smul=\E[4m$<2>, tbc=\E[3g,
 $
The terminfo entry defines the terminal name (in this case vt100), along with any alias names that can be associated with

the terminal name. Notice that the first line shows the location of the terminfo file the values were extracted from.
Following that, the infocmp command lists the capabilities of the terminal definition, along with the control codes used

to emulate the individual capabilities. Some capabilities are either enabled or disabled. If the capability appears in the list, it's
enabled by the terminal definition (such as the am, auto-right-margin, feature). Other capabilities must define a specific
control code sequence to perform the task (such as clearing the monitor display). Table 2.1 shows a list of some of the

capabilities you see in the vt100 terminfo definition file listed.

Table 2.1 Terminfo Capability Codes

Code Description

am Set right-side auto-margin

msgr Safe to move cursor in standout mode

xenl Newline characters ignored after 80 columns

xon Terminal uses XON/XOFF characters for flow control

cols#80 80 columns in a line

it#8 Tab character set to eight spaces

lines#24 24 lines on a screen

vt#3 Virtual terminal number 3

bel Control code to use to emulate the bell

blink Control code used to produce blinking text

bold Control code used to produce bold text

clear Control code used to clear the screen

cr Control code used to enter a carriage return

csr Control code used to change scroll region

cub Move one character to the left without erasing

cub1 Move cursor back one space

www.it-ebooks.info

#c02_tbl_0001
#c02_tbl_anc_0001
http://www.it-ebooks.info/

cud Move cursor down one line

cud1 Control code to move cursor down one line

cuf Move one character to the right without erasing

cuf1 Control code to move the cursor right one space without erasing

cup Control code to move to row one, column two on the display

cuu Move cursor up one line

cuu1 Control code to move cursor up one line

ed Clear to the end of the screen

el Clear to the end of the line

el1 Clear to the beginning of the line.

enacs Enable the alternate character set

home Control code to move cursor to the home position—row one, column two (same as
cup)

ht Tab character

hts Set tab in every row at current column

ind Scroll text up

ka1 Upper-left key in keypad

ka3 Upper-right key in keypad

kb2 Center key in keypad

kbs Backspace key

kc1 Lower-left key in keypad

kc3 Lower-right key in keypad

kcub1 The left arrow key

kcud1 Control code for down arrow key

kcuf1 The right arrow key

kcuu1 The up arrow key

kent The Enter key

kf0 The F0 function key

kf1 The F1 function key

kf10 The F10 function key

www.it-ebooks.info

http://www.it-ebooks.info/

rc Restore cursor to last saved position

rev Reverse video mode

ri Scroll text down

rmacs End alternate character set

rmam Turn off automatic margins

rmkx Exit keyboard transmit mode

rmso Exit standout mode

rmul Exit underline mode

rs2 Reset

sc Save current cursor position

sgr Define video attributes

sgr0 Turn off all attributes

smacs Start alternate character set

smam Turn on automatic margins

smkx Start keyboard transmit mode

smso Begin standout mode

smul Begin underline mode

tbc Clear all tab stops

The Linux shell uses the TERM environment variable to define which terminal emulation setting in the terminfo database
to use for a specific session. When the TERM environment variable is set to vt100, the shell knows to use the control codes
associated with the vt100 terminfo database entry for sending control codes to the terminal emulator. To see the TERM

environment variable, you can just echo it from the CLI:

$ echo $TERM
xterm
$
This example shows that the current terminal type is set to the xterm entry in the terminfo database.

The Linux Console
In the early days of Linux, when you booted up your system you would see a login prompt on your monitor, and that's all. As

mentioned earlier, this is called the Linux console. It was the only place you could enter commands for the system.
With modern Linux systems, when the Linux system starts it automatically creates several virtual consoles. A virtual

console is a terminal session that runs in memory on the Linux system. Instead of having several dumb terminals connected
to the PC, most Linux distributions start seven (or sometimes even more) virtual consoles that you can access from the single

PC keyboard and monitor.
In most Linux distributions, you can access the virtual consoles using a simple keystroke combination. Usually you must

hold down the Ctl+Alt key combination, and then press a function key (F1 through F8) for the virtual console you want to

use. Function key F1 produces virtual console 1, key F2 produces virtual console 2, and so on.
Six of the virtual consoles use a full-screen text terminal emulator to display a text login screen, as shown in Figure 2.2.

www.it-ebooks.info

#c02_fig_0002
http://www.it-ebooks.info/

Figure 2.2 The Linux console login screen

After logging in with your user ID and password, you are taken to the Linux bash shell CLI. In the Linux console, you do

not have the ability to run any graphical programs. You can only use text programs to display on the Linux text consoles.
After logging in to a virtual console, you can keep it active and switch to another virtual console without losing your

active session. You can switch between all of the virtual consoles, with multiple active sessions running.
The first or the last two virtual consoles are normally reserved for X Window graphical desktops. Some distributions only

assign one so you may have to test all three Ctl+Alt+F1, Ctl+Alt+F7, and Ctl+Alt+F8 to see which one your particular
distribution uses. Most distributions automatically switch to one of the graphical virtual consoles after the boot sequence

completes, providing a complete graphical login and desktop experience.
Logging in to a text virtual terminal session and then switching over to a graphical one can get tedious. Fortunately,

there's a better way to jump between graphical and text mode on the Linux system: terminal emulation packages are a
popular way to access the shell CLI from within a graphical desktop session. The following sections describe the most common

software packages that provide terminal emulation in a graphical window.

www.it-ebooks.info

#c02_fig_anc_0002
http://www.it-ebooks.info/

The xterm Terminal
The oldest and most basic of X Window terminal emulation packages is xterm. The xterm package has been around since the

original days of X Window, and is included by default in most X Window packages.
The xterm package provides both a basic VT102/220 terminal emulation CLI and a graphical Tektronix 4014 environment

(similar to the 4010 environment). While xterm is a full terminal emulation package, it doesn't require many resources (such as
memory) to operate. Because of this, the xterm package is still popular in Linux distributions designed to run on older

hardware. Some graphical desktop environments, such as fluxbox, use it as the default terminal emulation package.
While not offering many fancy features, the xterm package does one thing extremely well, and that is emulate a VT220

terminal. The newer versions of xterm even emulate the VT series of color control codes, allowing you to use color in your

scripts.
Figure 2.3 shows what the basic xterm display looks like running on a graphical Linux desktop.

Figure 2.3 The basic xterm display

The xterm package allows you to set individual features using both command line parameters and a series of four simple

www.it-ebooks.info

#c02_fig_0003
#c02_fig_anc_0003
http://www.it-ebooks.info/

The xterm package allows you to set individual features using both command line parameters and a series of four simple

graphical menus. The following sections discuss these features and how to change them.

Command Line Parameters
The list of xterm command line parameters is extensive. There are lots of features you can control to customize the terminal

emulation features, such as enabling or disabling individual VT emulations.
The xterm command line parameters use the plus (+) and minus (-) signs to signify how a feature is set. A plus sign

indicates that the feature should be returned to the default setting. A minus sign indicates that you are setting the feature to

a non-default value. Table 2.2 lists some of the more common features that you can set using the command line parameters.

Table 2.2 xterm Command Line Parameters

Parameter Description

132 By default, xterm does not allow 132 characters per line mode.

ah Always highlight the text cursor.

aw Auto-line-wrap is enabled.

bc Enables text cursor blinking.

bg color Specify the color to use for the background.

cm Disables recognition of ANSI color change control codes.

fb font Specify the font to use for bold text.

fg color Specify the color to use for the foreground text.

fn font Specify the font to use for text.

fw font Specify the font to use for wide text.

hc color Specify the color to use for highlighted text.

j Use jump scrolling, scrolling multiple lines at a time.

l Enable logging screen data to a log file.

lf filename Specify the file name to use for screen logging.

mb Ring a margin bell when the cursor reaches the end of a line.

ms color Specify the color used for the text cursor.

name name Specify the name of the application that appears in the title bar.

rv Enable reverse video by swapping the background and foreground colors.

sb Use a side scrollbar to allow scrolling of saved scroll data.

t Start xterm in Tektronix mode.

tb Specify that xterm should display a toolbar at the top.

It is important to note that not all implementations of xterm support all of these command line parameters. You can

determine which parameters your xterm implements by using the -help parameter when you start xterm on your system.

www.it-ebooks.info

#c02_tbl_0002
#c02_tbl_anc_0002
http://www.it-ebooks.info/

The xterm Main Menu
The main xterm menu contains configuration items that apply to both the VT102 and Tektronix windows. You can access the
main menu by holding down the Ctrl key and clicking the mouse button once (the left button on a right-hand mouse, the

right button on a left-hand mouse) while in an xterm session window. Figure 2.4 shows what the xterm main menu looks like.

Figure 2.4 The xterm main menu

There are four sections in the xterm main menu, as described in the following sections.

X Event Commands

The X event commands section contains features that allow you to manage how xterm interacts with the X Window display.
Toolbar: If the xterm installation supports the toolbar, this entry enables or disables displaying the toolbar in the

xterm window (the same as the tb command line parameter).

www.it-ebooks.info

#c02_fig_0004
#c02_fig_anc_0004
http://www.it-ebooks.info/

Secure Keyboard: Restricts the keyboard keystrokes to a specific xterm window. This is useful when typing

passwords to ensure they don't get hijacked by another window.
Allow SendEvents: Allows X Window events generated by other X Window applications to be accepted by the

xterm window.
Redraw Window: Instructs X Window to refresh the xterm window.

Again, all of these features may not be supported by your particular xterm implementation. If they're not supported,

they'll appear grayed-out in the menu.

Output Capturing
The xterm package allows you to capture data displayed in the window and either log it to a file or send it to a default

printer defined in X Window. The features that appear in this section are:
Log to file: Sends all data displayed in the xterm window to a text file.
Print window: Sends all data displayed in the current window to the default X Window printer.
Redirect to printer: Sends all data displayed in the xterm window to the default X Window printer as well. This

feature must be turned off to stop printing data.
The capturing feature can get messy if you are using graphics characters or control characters (such as colored text) in

your display area. All characters sent to the display, including control characters, are stored in the log file or sent to the

printer.
The xterm print feature assumes that you define a default printer in the X Window system. If you have no printer defined,

the feature will appear grayed out in the menu.

Keyboard Settings
The keyboard settings section contains features that allow you to customize how xterm sends keyboard characters to the

host system.
8-bit controls: Sends 8-bit control codes, used in VT220 terminals, rather than 7-bit ASCII control codes.
Back arrow key: Toggles the back arrow key between sending a backspace character or a delete character.
Alt/Numlock Modifiers: Controls whether the Alt or Numlock keys change the PC number pad behavior.
Alt Sends Escape: The Alt key sends an escape control code along with the other key pressed.
Meta sends Escape: Controls whether the function keys send a two-character control code, including the escape

control code.
Delete is DEL: The PC Delete key sends a delete character instead of a backspace character.
Old Function keys: The PC functions keys emulate the DEC VT100 function keys.
Termcap Function keys: The PC function keys emulate the Berkley Unix Termcap function keys.
Sun Function keys: The PC function keys emulate the Sun Workstation function keys.
VT220 keyboard: The PC function keys emulate the DEC VT220 function keys.

As you can see, setting keyboard preferences often depends on the specific application and/or environment you're
working in. There's also a fair amount of personal preference involved as well. Often it's just a matter of what works best for

you as to which keyboard settings to make.

The VT Options Menu
The VT options menu sets features xterm uses in the VT102 emulation. You access the VT options menu by holding down the
Control key and clicking the second mouse button. Typically, the second mouse button is the middle mouse button. If you're
using a two-button mouse, most Linux X Window configurations emulate the middle mouse button when you click both the

left and right mouse buttons together. Figure 2.5 shows what the VT options menu looks like.

Figure 2.5 The xterm VT options menu

www.it-ebooks.info

#c02_fig_0005
#c02_fig_anc_0005
http://www.it-ebooks.info/

Figure 2.5 The xterm VT options menu

As you can see from Figure 2.5, many of the VT features that you can set from the command line parameters can also be

set from the VT options menu. This produces quite a large list of available options. The VT options are divided into three sets

of commands, described in the following sections.

VT Features

The VT features commands to change the features of how xterm implements the VT102/220 emulation. They include:
Enable Scrollbar
Enable Jump Scrollbar
Enable Reverse Video
Enable Auto Wraparound
Enable Reverse Wraparound

www.it-ebooks.info

#c02_fig_anc_0005
#c02_fig_0005
http://www.it-ebooks.info/

Enable Auto Linefeed
Enable Application Cursor Keys
Enable Application Keypad
Scroll to Bottom on Keypress
Scroll to Bottom on TTY Output
Allow 80/132 Column Switching
Select to Clipboard
Enable Visual Bell
Enable Bell Urgency
Enable Pop on Bell
Enable Blinking Cursor
Enable Alternate Screen Switching
Enable Active Icon

You can enable or disable each of these features by clicking on the feature in the menu. An enabled feature will have a

checkmark next to it.

VT Commands

The VT commands section sends a specific reset command to the xterm emulation window. They include:
Do Soft Reset
Do Full Reset
Reset and Clear Saved Lines

The soft reset sends a control code to reset the screen area. This is convenient if a program sets the scroll region
incorrectly. The full reset clears the screen, resets any set tab positions, and resets any terminal mode feature set during the
session to the initial state. The Reset and Clear Saved Lines command performs a full reset and also clears out the scroll area

history file.

Current Screen Commands
The current screen commands section sends commands to the xterm emulator that affect which screen is the currently active

screen.
Show Tek Window: Display the Tektronix terminal window along with the VT100 terminal window.
Switch to Tek Window: Hide the VT100 terminal window and display the Tektronix terminal window.
Hide VT Window: Hide the VT100 terminal window while displaying the Tektronix terminal window.
Show Alternate Screen: Display the data currently stored in the VT100 alternate screen area.

The xterm terminal emulator provides the ability to start in either VT100 terminal mode (by default) or in the Tektronix
terminal mode (by using the t command line parameter). After you start in either mode, you can use this menu area to switch

to the other mode during your session.

The VT Fonts Menu
The VT fonts menu sets the font style used in the VT100/220 emulation window. You can access this menu by holding the
Control key and clicking on mouse button three (the right button on a right-handed mouse, or the left button on a left-

handed mouse). Figure 2.6 shows what the VT fonts menu looks like.

Figure 2.6 The xterm VT fonts menu

www.it-ebooks.info

#c02_fig_0006
#c02_fig_anc_0006
http://www.it-ebooks.info/

Figure 2.6 The xterm VT fonts menu

The VT fonts menu, covered in the following sections, contains three sections of selections.

Set the Font

These menu options set the size of the font used in the xterm window. The available sizes are:
Default
Unreadable
Tiny
Small
Medium
Large

www.it-ebooks.info

#c02_fig_anc_0006
http://www.it-ebooks.info/

Huge
Escape Sequence
Selection

The default font is the standard-sized font used to display text in the current X Window frame. The unreadable font is
pretty much what it says. It shrinks the xterm window down to a size that is not really usable. This is handy, however, when you
want to minimize the window on your desktop without completely minimizing it on the system. The large and huge font

options produce extremely large font sizes for visually impaired users.
The Escape the Sequence option sets the font to the last font set by the VT100 set font control code. The Selection option

allows you to save the current font with a special font name.

Display the Font

This section of menu options defines the type of characters used to create the text. There are three options available:
Line Drawing Characters: Tells the Linux system to produce ANSI graphical lines instead of using line characters

from the chosen font.
Packed Font: Tells the Linux system to use a packed font.
Doublesized characters: Tells the Linux system to scale the set font to double the normal size.

The line drawing characters allow you to determine which types of graphical features to use when drawing in text mode.

You can use either characters provided by the selected font source or characters provided by the DEC VT100 control codes.

Specify the Font

This section of the menu provides options for what type of fonts are used to create the characters:
TrueType Fonts
UTF-8 Fonts
UTF-8 Titles

The TrueType fonts are popular in graphical environments. Instead of each character taking the same amount of space in
the line, characters are proportioned by their natural sizes. Thus, the letter i takes up less space on the line than the letter m.
The UTF-8 font allows you to temporarily switch to use the Unicode character set for applications that don't support foreign

characters. The Titles option allows the xterm window title to be encoded using UTF-8.

The Konsole Terminal
The KDE Desktop Project has created its own terminal emulation package called Konsole. The Konsole package incorporates
the basic xterm features, along with more advanced features that we now expect from a Windows application. This section

describes the features of the Konsole terminal, and shows how to use them.

Command Line Parameters
Often a Linux distribution provides a method for starting applications directly from the graphical desktop menu system. If

your distribution doesn't provide this feature, you can manually start Konsole by using the format:

 konsole parameters
Just like xterm, the Konsole package uses command line parameters to set features in the new sessions. Table 2.3 shows

the available Konsole command line parameters.

Table 2.3 The Konsole Command Line Parameters

Parameter Description

-e command Execute command instead of a shell.

--keytab file Use the specified key file to define key mappings.

--keytabs List all of the available keytabs.

www.it-ebooks.info

#c02_tbl_0003
#c02_tbl_anc_0003
http://www.it-ebooks.info/

--ls Start the Konsole session with a login screen.

--name name Set the name that appears in the Konsole title bar.

--noclose Prevent the Konsole window from closing when the last session has been
closed.

--noframe Start Konsole without a frame.

--nohist Prevent Konsole from saving scroll history in sessions.

--nomenubar Start Konsole without the standard menu bar options.

--noresize Prevent changing the size of the Konsole window area.

--notabbar Start Konsole without the standard tab area for sessions.

--noxft Start Konsole without support for aliasing smaller fonts.

--profile file Start Konsole with settings saved in the specified file.

--profiles List all of the available Konsole profiles.

--schema name Start Konsole using the specified schema name or file.

--schemata List the schemes available in Konsole.

-T title Set the Konsole window title.

--type type Start a Konsole session using the specified type.

--types List all of the available Konsole session types.

--vt_sz CxL Specify the terminal columns (C) and rows (L).

--workdir dir Specify the working directory for Konsole to store temporary files.

Tabbed Window Sessions
When you start Konsole, you'll notice that it has a tabbed window, with one tab open to a terminal emulation session. This is
the default tabbed window session, and it is normally a standard bash shell CLI. Konsole allows you to have multiple tabs
active at the same time. The tabs, placed at either the top or bottom of the window area, allow you to easily switch between
sessions. This is a great feature for programmers who need to edit code in one tab, while testing the code in another tabbed
window. It's easy to flip back and forth between different active tabs in Konsole. Figure 2.7 shows a Konsole window with

three active tabs.

Figure 2.7 The Konsole terminal emulator with three active sessions

www.it-ebooks.info

#c02_fig_0007
#c02_fig_anc_0007
http://www.it-ebooks.info/

Figure 2.7 The Konsole terminal emulator with three active sessions

Similar to the xterm terminal emulator, Konsole provides a simple menu by right-clicking in the active tab area. If you

right-click in the tab area, a menu appears with the following options:
Copy: Copy the selected text to the clipboard.
Paste: Paste the contents of the clipboard to the selected area.
Clear Scrollback & Reset: Clears all the text out of the current tab and resets the terminal.
Open File Manager: Opens the KDE default file manager, Dolphin, at the present working directory.
Change Profile: Changes the profile for the current tab.
Edit Current Profile: Edits the current tab's profile.
Show Menu Bar: Toggles on/off the menu bar display.
Character Encoding: Selects the character set used to send and display characters.
Close Tab: Terminate the tabbed window session. If it is the last tab in the Konsole window, Konsole will close.

www.it-ebooks.info

#c02_fig_anc_0007
http://www.it-ebooks.info/

Konsole also provides another quick way to access the new tab menu—by holding down the Ctrl key and right-clicking in

the tab area.
After a tabbed window has been modified, you can keep the modifications to use in the future using a profile.

Profiles
Konsole delivers a powerful method, called profiles, for saving and reusing a tabbed session's settings. When you start
Konsole for the first time, the tab session's settings are pulled from the default profile, Shell. These settings include items
such as what shell to use, color schemes, and so on. Once you have modified your current tab session, you can save those
modifications as a new profile. This feature allows multiple tab setups, such as a tab session that uses a different shell than

bash.
Profiles can also be used to automate mundane tasks, such as logging into another system. You can define many profiles

and use different ones in each open tab session. To create a new profile, use the Edit Current Profile setting, described
previously in the simple Konsole menu. To switch the current profile to a different profile, use the simple menu option

Change Profile. These options are also provided on the menu bar.
By default, Konsole uses a menu bar to provide additional functionality so that you can modify and save your Konsole

tabs and profiles.

The Menu Bar
The default Konsole setup uses a menu bar for you to easily view and change options and features in your tabs. The menu

bar consists of six items, as described in the following sections.

File
The File menu bar item provides a location for starting a new tab in the current window or in a new window. It contains the

following entries:
New Tab: Start a new Konsole tab within the current terminal window using the default profile, Shell.
New Window: Start a new terminal window to hold a new Konsole tab.
List of defined profiles: Switch to a new profile in the current tab session.
Open File Manager: Open the file manager at the present working directory.
Close Tab: Close the current tab.
Quit: Quit the Konsole application.

When you first start Konsole, the only profile listed in the List-of-Defined-Profiles will be Shell. As more profiles are

created and saved, their names will appear in the list.

Edit

The Edit menu bar provides options for handling text in the session as well as a few additional options:
Copy: Copies selected text (which was highlighted with the mouse) to the system clipboard.
Paste: Pastes text currently in the system clipboard to the current cursor location. If the text contains newline

characters, they will be processed by the shell.
Rename Tab: Changes the current tab name. The following tokens can be used in addition to text:

%#—Session number
%D—Current directory (absolute name)
%d—Current directory (relative name)
%n—Program name
%u—User name
%w—Shell set window title

Copy Input To: Sends typed text in the current tab to one or more tabs in the current terminal windows.
ZModem Upload: Uploads a file to the system using the ZModem protocol.
Clear and Reset: Sends the control code to reset the terminal emulator, and clears the current session window.

Konsole provides an excellent method for tracking a tab's function. Using the Rename Tab menu option, you can name a

www.it-ebooks.info

http://www.it-ebooks.info/

Konsole provides an excellent method for tracking a tab's function. Using the Rename Tab menu option, you can name a

tab to match its profile. This helps in tracking which open tab is performing what function.

View
The View menu bar item contains items for controlling the individual sessions in the Konsole window. These selections include:

Split View: Controls the display within the current terminal emulation window. Views can be modified by:
Split View Left/Right: Splits the current display into two identical screens, side by side
Split View Top/Bottom: Splits the current display into two identical screens, one on top of the other
Close Active: Merges the current split terminal window back into a single window
Close Others: Merges non-current split terminal windows back into a single window
Expand View: Adjusts the active split of a terminal window to take up more of the display window
Shrink View: Adjusts the active split of a terminal window to take up less display window

Detach View: Remove the current tab from the Konsole window, and start a new Konsole window using the

current tab. This is available only when more than one active tab is open.
Show Menu Bar: Toggles on/off the display of the menu bar.
Full Screen Mode: Toggles on/off the terminal window filling the entire monitor display area.
Monitor for Silence: Toggles on/off a special icon appearance when no new text appears in the tab for 10 seconds.
This allows you to switch to another tab while waiting for output from an application to stop, such as when

compiling a large application.
Monitor for Activity: Toggles on/off a special icon appearance when new text appears in the tab. This allows you to

switch to another tab while waiting for output from an application.
Character Encoding: Selects the character set used to send and display characters.
Increase Text Size: Increases the size of the text font.
Decrease Text Size: Decreases the size of the text font.

The Split View option in Konsole will maintain the current number of open tabs in the split view. For example, if you have

three tabs in the terminal window and split the view, each view will have three tabs.

Scrollback
Konsole retains a history area, formally called a scrollback buffer, for each tab. The history area contains the output text for
lines that scroll out of the viewing area of the terminal emulator. By default, the last 1,000 lines of output in the scrollback

buffer are retained. The Scrollback menu offers various options for reviewing this buffer.
Search Output: Opens a dialog box at the bottom of the current tab. The Find dialog box enables Konsole to

search for specific text in the scroll buffer. It has options for case, regular expressions, and search direction.
Find Next: Finds the next text match in more recent history of the scrollback buffer.
Find Previous: Finds the next text match in more ancient history of the scrollback buffer.
Save Output: Saves the contents of the scrollback buffer to a text or HTML file.
Scrollback Options: Controls the activity of the scrollback buffer. The modifications available are:

No Scrollback: Disable the scrollback buffer.
Fixed Scrollback: Set the size (number of lines) of the scrollback buffer. The default is 1,000 lines.
Unlimited Scrollback: Allows an infinite number of lines to be stored in the scrollback buffer.
Save to Current Profile: Save the scrollback buffer options to the current profile settings.

Clear Scrollback & Reset: Removes the contents of the scrollback buffer and resets the terminal window.
You can scroll through the scrollback buffer by using the scrollbar in the viewing area, or by pressing the Shift key and the

Up Arrow key to scroll line by line, or the Page Up key to scroll page (24 lines) by page.

Bookmarks
The Bookmarks menu items provide a way to manage bookmarks set in the Konsole window. A bookmark enables you to save
your directory location in an active session and then easily return there in either the same session or a new session. Have you
ever drilled down several directories deep to find something on the Linux system, exited, and then forgotten how you got
there? Bookmarks will solve that problem. When you get to your desired directory location, just add a new bookmark. When
you want to return, look at the Bookmarks for your new bookmark, and it will automatically perform the directory change

to the desired location for you. The bookmark entries include:

www.it-ebooks.info

http://www.it-ebooks.info/

Add Bookmark: Create a new bookmark at the current directory location.
Bookmark Tabs as Folder: Create a bookmark for all the current terminal window tabs.
New Bookmark Folder: Create a new storage folder for bookmarks.
Edit Bookmarks: Edit existing bookmarks.
A list of your bookmarks: Any bookmarks you have created.

There is no limit to how many bookmarks you can store in Konsole, but having lots of bookmarks can get confusing. By
default, they all appear at the same level in the Bookmark area. You can organize them by creating new bookmark folders

and moving individual bookmarks to the new folders using the Edit Bookmarks item.

Settings
The Settings menu bar area allows you to customize and manage your profiles as well as add a little more functionality to

the current tab session. This area includes:
Change Profile: Applies a selected profile for the current tab.
Edit Current Profile: Opens a dialog box where a large variety of profile settings can be changed.
Manage Profiles: Allows a particular profile to be the default profile and enables you to create and delete

profiles. Also manages the order in which your profiles appear in the File menu.
Configure Shortcuts: Creates keyboard shortcuts for Konsole commands.
Configure Notifications: Sets actions for specific session events.
Configure Konsole: Create custom Konsole schemas and sessions.

The Configure Notifications area is pretty cool. It allows you to associate five specific events that can occur within a session

with six different actions. When one of the events occurs, the defined action (or actions) are taken.
The Edit Current Profile settings is a powerful tool that provides advanced control over profile features This dialog box

provides a way to create and save a variety of profiles for later use. Figure 2.8 shows the main Edit Current Profile dialog box.

Figure 2.8 The Konsole edit current profile dialog box

www.it-ebooks.info

#c02_fig_0008
#c02_fig_anc_0008
http://www.it-ebooks.info/

Figure 2.8 The Konsole edit current profile dialog box

Within the Edit Current Profile dialog box are six tabbed areas:

General: Allows you to set the profile's name, the icon, the initial filesystem directory, and so on. You can also
designate the command to be executed upon the tab opening. This typically points to the bash shell, /bin/bash,

but can also be regularly used shell commands, such as top.
Tabs: Defines the tab's title format and the position of the tab bars.
Appearance: Items such as a tab's color scheme and font settings are in this window.
Scrolling: Settings included are the size of the scrollback buffer and the scroll bar's location on the window.
Input: Keybindings, what characters are sent to the terminal emulation when certain keyboard combinations are

pressed, can be set here.
Advanced: Allows you to configure several settings in this window. They include terminal features, character

encoding, mouse interaction, and cursor features.

www.it-ebooks.info

#c02_fig_anc_0008
http://www.it-ebooks.info/

Help
The Help menu item provides the full Konsole handbook (if KDE handbooks were installed in your Linux distribution), a “tip
of the day” feature that shows interesting little-known shortcuts and tips each time you start Konsole, and the standard

About Konsole dialog box.

The GNOME Terminal
As you would expect, the GNOME desktop project has its own terminal emulation program. The GNOME Terminal software
package has many of the same features as Konsole and xterm. This section walks you through the various parts of configuring

and using GNOME Terminal.

The Command Line Parameters
The GNOME Terminal application also provides a wealth of command line parameters that allow you to control GNOME's

behavior when starting it. Table 2.4 lists the parameters available.

Table 2.4 The GNOME Terminal Command Line Parameters

Parameter Description

-e command Execute the argument inside a default terminal window.

-x Execute the entire contents of the command line after this
parameter inside a default terminal window.

--window Open a new window with a default terminal window. You may add
multiple --window parameters to start multiple windows.

--window-with-profile= Open a new window with a specified profile. You may also add this
parameter multiple times to the command line.

--tab Open a new tabbed terminal inside the last opened terminal
window.

--tab-with-profile= Open a new tabbed terminal inside the last opened terminal
window using the specified profile.

--role= Set the role for the last specified window.

--show-menubar Enable the menu bar at the top of the terminal window.

--hide-menubar Disable the menu bar at the top of the terminal window.

--full-screen Display the terminal window fully maximized.

--geometry= Specify the X Window geometry parameter.

--disable-factory Don't register with the activation nameserver.

--use-factory Register with the activation nameserver.

--startup-id= Set the ID for the Linux startup notification protocol.

-t, --title= Set the window title for the terminal window.

--working-directory= Set the default working directory for the terminal window.

--zoom= Set the terminal's zoom factor.

www.it-ebooks.info

#c02_tbl_0004
#c02_tbl_anc_0004
http://www.it-ebooks.info/

--active Set the last specified terminal tab as the active tab.

The GNOME Terminal command line parameters allow you to set lots of features automatically as GNOME Terminal starts.

However, you can also set most of these features from within the GNOME Terminal window after it starts.

Tabs
Similar to Konsole, the GNOME Terminal calls each session a tab, and it also uses tabs to keep track of multiple sessions

running within the window. Figure 2.9 shows a GNOME Terminal window with three session tabs active.

Figure 2.9 The GNOME Terminal with three active sessions

You can right-click in the tab window to see the quick menu. This quick menu provides a few actions for your use in the tab

session:

www.it-ebooks.info

#c02_fig_0009
#c02_fig_anc_0009
http://www.it-ebooks.info/

Open Terminal: Open a new GNOME Terminal window with a default tab session.
Open Tab: Open a new session tab in the existing GNOME Terminal window.
Close Tab or Close Window: If multiple tabs are open, the menu option Close Tab is shown and it closes the current
session tab. If only one tab is open, the menu option Close Window is displayed and it closes the GNOME Terminal

window.
Copy: Copy highlighted text in the current session tab to the clipboard.
Paste: Paste data in the clipboard into the current session tab at the current cursor location.
Profiles: Change the profile for the current session tab or edit the current tab profile.
Show Menubar: Toggles on/off the menu bar display.
Input Methods: Allows you to change the current Input Method to another character translation or turn it off

completely.
The quick menu provides easy access to commonly used actions that are available from the standard menu bar in the

terminal window.

The Menu Bar
The main operation of GNOME Terminal happens in the menu bar. The menu bar contains all of the configuration and
customization options you'll need to make your GNOME Terminal just the way you want it. The following sections describe

the different items in the menu bar.

File

The File menu item contains items to create and manage the terminal tabs:
Open Terminal: Start a new shell session in a new GNOME Terminal window.
Open Tab: Start a new shell session on a new tab in the existing GNOME Terminal window.
New Profile: Allows you to customize the tab session and save it as a profile, which you can recall for use later.
Save Contents: Saves the contents of the scrollback buffer to a text file.
Close Tab: Close the current tab in the window.
Close Window: Close the current GNOME Terminal session, closing all active tabs.

Most of the items in the File menu are also available by right-clicking in the session tab area. The New Profile entry allows

you to customize your session tab settings and save them for future use.
The New Profile first requests that you provide a name for the new profile; then it produces the Editing Profile dialog

box, shown in Figure 2.10.

Figure 2.10 The GNOME Terminal Editing Profile dialog box

www.it-ebooks.info

#c02_fig_0010
#c02_fig_anc_0010
http://www.it-ebooks.info/

Figure 2.10 The GNOME Terminal Editing Profile dialog box

This is the area where you can set the terminal emulation features for the session. It consists of six areas:

General: Provides general settings such as font, the bell, and the menu bar.
Title and Command: Allows you to set the title for the session tab (displayed on the tab) and determine if the

session starts with a special command rather than a shell.
Colors: Sets the foreground and background colors used in the session tab.
Background: Allows you to set a background image for the session tab, or make it transparent so you can see the

desktop through the session tab.
Scrolling: Controls whether a scroll region is created, and how large.
Compatibility: Allows you to set which control codes the Backspace and Delete keys send to the system.

Once you configure a profile, you can specify it when opening new session tabs.

www.it-ebooks.info

#c02_fig_anc_0010
http://www.it-ebooks.info/

Edit
The Edit menu item contains items for handling text within the tabs. You can use your mouse to copy and paste texts
anywhere within the tab window. This allows you to easily copy text from the command line output to a clipboard and import

it into an editor. You can also paste text from another GNOME application into the tab session.
Copy: Copy selected text to the GNOME clipboard.
Paste: Paste text from the GNOME clipboard into the tab session.
Select All: Selects output in the entire scrollback buffer.
Profiles: Add, delete, or modify profiles in the GNOME Terminal.
Keyboard Shortcuts: Create key combinations to quickly access GNOME Terminal features.
Profile Preferences: Provides a quick way to edit the profile used for the current session tab.

The profile-editing feature is an extremely powerful tool for customizing several profiles, and then changing profiles as

you change sessions.

View

The View menu item contains items for controlling how the session tab windows appear. They include:
Show Menubar: Toggles on/off the menu bar display.
Full Screen: Enlarges the GNOME Terminal window to the entire desktop.
Zoom In: Makes the font in the tab window larger.
Zoom Out: Makes the font in the tab window smaller.
Normal Size: Returns the tab font to the default size.

If you hide the menu bar, you can easily get it back by right-clicking in any session tab and toggling the Show Menubar

item.

Terminal

The Terminal menu item contains items for controlling the terminal emulation features of the tab session. They include:
Change Profile: Allows you to switch to another configured profile in the session tab.
Set Title: Sets the title on the session tab to easily identify it.
Set Character Encoding: Selects the character set used to send and display characters.
Reset: Sends the reset control code to the Linux system.
Reset and Clear: Sends the reset control code to the Linux system and clears any text currently showing in the tab

area.
Window Size List: Lists different sizes to which the current GNOME terminal window can be adjusted. Select a size

and the window automatically adjusts its size.
The character encoding offers a large list of available character sets to choose from. This is especially handy if you must

work in a language other than English.

Tabs
The Tabs menu item provides items for controlling the location of the tabs and selecting which tab is active. This menu only

displays when you have more than one tab session open.
Next Tab: Make the next tab in the list active.
Previous Tab: Make the previous tab in the list active.
Move Tab to the Left: Shuffle the current tab in front of the previous tab.
Move Tab to the Right: Shuffle the current tab in front of the next tab.
Detach Tab: Remove the tab and start a new GNOME Terminal window using this tab session.
The Tab list: Lists the currently running session tabs in the terminal window. Select a tab to quickly jump to that

session.

www.it-ebooks.info

http://www.it-ebooks.info/

This section allows you to manage your tabs, which can come in handy if you have several tabs open at once.

Help
The Help menu item provides a full GNOME Terminal manual so that you can research individual items and features used in

the GNOME Terminal.

Summary
To start learning Linux command line commands, you need access to a command line. In a world of graphical interfaces, this
can sometimes be challenging. This chapter discussed different things you should consider when trying to get to the Linux
command line from within a graphical desktop environment. First, the chapter covered terminal emulation and showed what
features you should know about to ensure that the Linux system can properly communicate with your terminal emulation

package, and display text and graphics properly.
In particular, the chapter covered three different types of terminal emulators. The xterm terminal emulator package was

the first available for Linux. It emulates both the VT102 and Tektronix 4014 terminals. The KDE desktop project created the
Konsole terminal emulation package. It provides several fancy features, such as the ability to have multiple sessions in the

same window, using both console and xterm sessions, with full control of terminal emulation parameters.
Finally, the chapter discussed the GNOME desktop project's GNOME Terminal emulation package. GNOME Terminal also

allows multiple terminal sessions from within a single window; plus it provides a convenient way to set many terminal

features.
In the next chapter, you'll start looking at the Linux command line commands. I'll walk you through the commands

necessary to navigate around the Linux filesystem, and create, delete, and manipulate files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Basic bash Shell Commands

In This Chapter

Starting the shell
The shell prompt
The bash manual
Filesystem navigation
File and directory listing
File handling
Directory handling
Viewing file contents

The default shell used in all Linux distributions is the GNU bash shell. This chapter describes the basic features available in the
bash shell, and walks you through how to work with Linux files and directories using the basic commands provided by the
bash shell. If you're already comfortable working with files and directories in the Linux environment, feel free to skip this

chapter and continue with Chapter 4 to see more advanced commands.

Starting the Shell
The GNU bash shell is a program that provides interactive access to the Linux system. It runs as a regular program, normally

started whenever a user logs in to a terminal. The shell that the system starts depends on your user ID configuration.
The /etc/passwd file contains a list of all the system user accounts, along with some basic configuration information

about each user. Here's a sample entry from a /etc/passwd file:

 rich:x:501:501:Rich Blum:/home/rich:/bin/bash
Each entry has seven data fields, with each field separated by a colon. The system uses the data in these fields to assign

specific features for the user. These fields are:
The username
The user's password (or a placeholder if the password is stored in another file)
The user's system user ID number
The user's system group ID number
The user's full name
The user's default home directory
The user's default shell program

Most of these entries will be discussed in more detail in Chapter 6. For now, just pay attention to the shell program

specified.
Most Linux systems use the default bash shell program when starting a command line interface (CLI) environment for the

user. The bash program also uses command line parameters to modify the type of shell you can start. Table 3.1 lists the

command line parameters available in bash that define what type of shell to use.

Table 3.1 The bash Command Line Parameters

Parameter Description

-c string Read commands from string and process them.

-r Start a restricted shell, limiting the user to the default directory.

www.it-ebooks.info

#c03_tbl_0001
#c03_tbl_anc_0001
http://www.it-ebooks.info/

-i Start an interactive shell, allowing input from the user.

-s Read commands from the standard input.

By default, when the bash shell starts, it automatically processes commands in the .bashrc file in the user's home
directory. Many Linux distributions use this file to also load a common file that contains commands and settings for
everyone on the system. This common file is normally located in the file /etc/bashrc. This file often sets environment

variables (see Chapter 5) used in various applications.

The Shell Prompt
Once you start a terminal emulation package or log in from the Linux console, you get access to the shell CLI prompt. The

prompt is your gateway to the shell. This is the place where you enter shell commands.
The default prompt symbol for the bash shell is the dollar sign ($). This symbol indicates that the shell is waiting for you to

enter text. However, you can change the format of the prompt used by your shell. The different Linux distributions use

different formats for the prompt. On this Ubuntu Linux system, the bash shell prompt looks like this:

rich@user-desktop:∼$
On this Fedora Linux system, it looks like this:

[rich@testbox∼]$
You can configure the prompt to provide basic information about your environment. The first example shows three

pieces of information in the prompt:
The username that started the shell
The current virtual console number
The current directory (the tilde sign is shorthand for the home directory)

The second example provides similar information, except that it uses the hostname instead of the virtual console number.

There are two environment variables that control the format of the command line prompt:
PS1: Controls the format of the default command line prompt
PS2: Controls the format of the second-tier command line prompt

The shell uses the default PS1 prompt for initial data entry into the shell. If you enter a command that requires

additional information, the shell displays the second-tier prompt specified by the PS2 environment variable.
To display the current settings for your prompts, use the echo command:

rich@ user-desktop:∼$ echo $PS1
${debian_chroot:+($debian_chroot)}\u@\h:\w\$
rich@ user-desktop:∼$ echo $PS2
>
rich@ user-desktop:∼$
The format of the prompt environment variables can look pretty odd. The shell uses special characters to signify elements

within the command line prompt. Table 3.2 shows the special characters that you can use in the prompt string.

Table 3.2 Bash Shell Prompt Characters

Character Description

\a Bell character

\d Date in the format “Day Month Date”

\e ASCII escape character

\h Local hostname

\H Fully qualified domain hostname

www.it-ebooks.info

#c03_tbl_0002
#c03_tbl_anc_0002
http://www.it-ebooks.info/

\j Number of jobs currently managed by the shell

\l Basename of the shell's terminal device name

\n ASCII newline character

\r ASCII carriage return

\s Name of the shell

\t Current time in 24-hour HH:MM:SS format

\T Current time in 12-hour HH:MM:SS format

\@ Current time in 12-hour am/pm format

\u Username of the current user

\v Version of the bash shell

\V Release level of the bash shell

\w Current working directory

\W Basename of the current working directory

\! Bash shell history number of this command

\# Command number of this command

\$ A dollar sign if a normal user, or a pound sign if the root user

\nnn Character corresponding to the octal value nnn

\\ Backslash

\[Begins a control code sequence

\] Ends a control code sequence

Notice that all of the special prompt characters begin with a backslash (\). This is what delineates a prompt character from
normal text in the prompt. In the earlier example, the prompt contained both prompt characters and a normal character (the
“at” sign, and the square brackets). You can create any combination of prompt characters in your prompt. To create a new

prompt, just assign a new string to the PS1 variable:

[rich@testbox∼]$ PS1=“[\t][\u]\$ ”
[14:40:32][rich]$
This new shell prompt now shows the current time, along with the username. The new PS1 definition only lasts for the

duration of the shell session. When you start a new shell, the default shell prompt definition is reloaded. In Chapter 5 you'll

see how you can change the default shell prompt for all shell sessions.

The bash Manual
Most Linux distributions include an online manual for looking up information on shell commands, as well as lots of other
GNU utilities included in the distribution. It is a good idea to become familiar with the manual, as it's invaluable for working

with utilities, especially when you're trying to figure out various command line parameters.
The man command provides access to the manual pages stored on the Linux system. Entering the man command followed

by a specific utility name provides the manual entry for that utility. Figure 3.1 shows an example of looking up the manual

pages for the date command.

www.it-ebooks.info

#c03_fig_0001
http://www.it-ebooks.info/

Figure 3.1 Displaying the manual pages for the Linux date command

The manual page divides information about the command into separate sections, shown in Table 3.3.

Table 3.3 The Linux man Page Format

Section Description

Name Displays the command name and a short description

Synopsis Shows the format of the command

Description Describes each command option

Author Provides information on the person who developed the command

Reporting bugs Provides information on where to report any bugs found

Copyright Provides information on the copyright status of the command code

See Also Refers you to any similar commands available

You can step through the man pages by pressing the spacebar or using the arrow keys to scroll forward and backward
through the man page text (assuming that your terminal emulation package supports the arrow key functions). When you

www.it-ebooks.info

#c03_fig_anc_0001
#c03_tbl_0003
#c03_tbl_anc_0003
http://www.it-ebooks.info/

through the man page text (assuming that your terminal emulation package supports the arrow key functions). When you

are done with the man pages, press the q key to quit.
To see information about the bash shell, look at the man pages for it using the following command:

$ man bash
This allows you to step through all of the man pages for the bash shell. This is extremely handy when building scripts, as

you don't have to refer back to books or Internet sites to look up specific formats for commands. The manual is always there

for you in your session.

Filesystem Navigation
As you can see from the shell prompt, when you start a shell session, you are usually placed in your home directory. Most
often, you will want to break out of your home directory and explore other areas in the Linux system. This section describes
how to do that using shell commands. Before we do that, however, let's take a tour of just what the Linux filesystem looks like

so we know where we're going.

The Linux Filesystem
If you're new to the Linux system, you may be confused by how it references files and directories, especially if you're used to
the way that the Microsoft Windows operating system does that. Before exploring the Linux system, it helps to have an

understanding of how it's laid out.
The first difference you'll notice is that Linux does not use drive letters in pathnames. In the Windows world, the physical

drives installed on the PC determine the pathname of the file. Windows assigns a letter to each physical disk drive, and each

drive contains its own directory structure for accessing files stored on it.
For example, in Windows you may be used to seeing the filepaths such as:

c:\Users\Rich\Documents\test.doc.
This indicates that the file test.doc is located in the directory Documents, which itself is located in the directory Rich. The

Rich directory is contained under the directory Users, which is located on the hard disk partition assigned the letter C (usually

the first hard drive on the PC).
The Windows filepath tells you exactly which physical disk partition contains the file named test.doc. If you wanted to save

a file on a flash drive, it could be, for example, designated by the J drive. You would click the icon for the J drive, which would
automatically use the filepath J:\test.doc. This path indicates that the file is located at the root of the drive assigned the letter

J.
This is not the method used by Linux. Linux stores files within a single directory structure, called a virtual directory. The

virtual directory contains filepaths from all the storage devices installed on the PC, merged into a single directory structure.
The Linux virtual directory structure contains a single base directory, called the root. Directories and files beneath the

root directory are listed based on the directory path used to get to them, similar to the way Windows does it.

Tip

You'll notice that Linux uses a forward slash (/) instead of a backward slash (\) to denote
directories in filepaths. The backslash character in Linux denotes an escape character and
causes all sorts of problems when you use it in a filepath. This may take some getting used
to if you're coming from a Windows environment.

For example, the Linux filepath /home/rich/Documents/test.doc indicates only that the file test.doc is in the
directory Documents, under the directory rich, which is contained in the directory home. It doesn't provide any information as

to which physical disk on the PC the file is stored on.
The tricky part about the Linux virtual directory is how it incorporates each storage device. The first hard drive installed in

a Linux PC is called the root drive. The root drive contains the core of the virtual directory. Everything else builds from there.
On the root drive, Linux creates special directories called mount points. Mount points are directories in the virtual

directory where you assign additional storage devices.
The virtual directory causes files and directories to appear within these mount point directories, even though they are

physically stored on a different drive.
Often the system files are physically stored on the root drive, while user files are stored on a different drive, as shown in

Figure 3.2.

Figure 3.2 The Linux file structure

www.it-ebooks.info

#c03_fig_0002
#c03_fig_anc_0002
http://www.it-ebooks.info/

Figure 3.2 The Linux file structure

In Figure 3.2, there are two hard drives on the PC. One hard drive is associated with the root of the virtual directory

(indicated by a single forward slash). Other hard drives can be mounted anywhere in the virtual directory structure. In this

example, the second hard drive is mounted at the location /home, which is where the user directories are located.
The Linux filesystem structure has evolved from the Unix file structure. Unfortunately, the Unix file structure has been

somewhat convoluted over the years by different flavors of Unix. Nowadays it seems that no two Unix or Linux systems
follow the same filesystem structure. However, there are a few common directory names that are used for common functions.

Table 3.4 lists some of the more common Linux virtual directory names.

Table 3.4 Common Linux Directory Names

Directory Usage

/ root of the virtual directory. Normally, no files are placed here.

/bin binary directory, where many GNU user-level utilities are stored.

/boot boot directory, where boot files are stored.

/dev device directory, where Linux creates device nodes.

/etc system configuration files directory.

/home home directory, where Linux creates user directories.

/lib library directory, where system and application library files are stored.

/media media directory, a common place for mount points used for removable media.

/mnt mount directory, another common place for mount points used for removable
media.

/opt optional directory, often used to store optional software packages.

/root root home directory.

/sbin system binary directory, where many GNU admin-level utilities are stored.

www.it-ebooks.info

#c03_fig_anc_0002
#c03_fig_0002
#c03_tbl_0004
#c03_tbl_anc_0004
http://www.it-ebooks.info/

/tmp temporary directory, where temporary work files can be created and destroyed.

/usr user-installed software directory.

/var variable directory, for files that change frequently, such as log files.

When you start a new shell prompt, your session starts in your home directory, which is a unique directory assigned to
your user account. When you create a user account, the system normally assigns a unique directory for the account (see

Chapter 6).
In the Windows world, you're probably used to moving around the directory structure using a graphical interface. To

move around the virtual directory from a CLI prompt, you'll need to learn to use the cd command.

Traversing Directories
You use the change directory command (cd) to move your shell session to another directory in the Linux filesystem. The

format of the cd command is pretty simplistic:

cd destination
The cd command may take a single parameter, destination, which specifies the directory name you want to go to. If

you don't specify a destination on the cd command, it will take you to your home directory.
The destination parameter, however, can be expressed using two different methods:

An absolute filepath
A relative filepath

The following sections describe the differences between these two methods.

Absolute Filepaths
You can reference a directory name within the virtual directory using an absolute filepath. The absolute filepath defines
exactly where the directory is in the virtual directory structure, starting at the root of the virtual directory, sort of like a full

name for a directory.
Thus, to reference the apache directory, which is contained within the lib directory, which in turn is contained within the usr

directory, you would use the absolute filepath:

/usr/lib/NetworkManager
With the absolute filepath, there's no doubt as to exactly where you want to go. To move to a specific location in the

filesystem using the absolute filepath, you just specify the full pathname in the cd command:

rich@testbox[∼]$cd /etc
rich@testbox[etc]$
The prompt shows that the new directory for the shell after the cd command is now /etc. You can move to any level

within the entire Linux virtual directory structure using the absolute filepath:

rich@testbox[∼]$ cd /usr/lib/NetworkManager
rich@testbox[NetworkManager]$
However, if you're just working within your own home directory structure, often using absolute filepaths can get tedious.

For example, if you're already in the directory /home/rich, it seems somewhat cumbersome to have to type the command

cd /home/rich/Documents
just to get to your Documents directory. Fortunately, there's a simpler solution.

Relative Filepaths
Relative filepaths allow you to specify a destination filepath relative to your current location, without having to start at the

root. A relative filepath doesn't start with a forward slash, indicating the root directory.
Instead, a relative filepath starts with either a directory name (if you're traversing to a directory under your current

www.it-ebooks.info

http://www.it-ebooks.info/

Instead, a relative filepath starts with either a directory name (if you're traversing to a directory under your current

directory), or a special character indicating a relative location to your current directory location. The two special characters

used for this are:
The dot (.) to represent the current directory
The double dot (..) to represent the parent directory

The double dot character is extremely handy when trying to traverse a directory hierarchy. For example, if you are in the
Documents directory under your home directory and need to go to your Desktop directory, also under your home directory,

you can do this:

rich@testbox[Documents]$ cd ../Desktop
rich@testbox[Desktop]$
The double dot character takes you back up one level to your home directory; then the /Desktop portion then takes you

back down into the Desktop directory. You can use as many double dot characters as necessary to move around. For
example, if you are in your home directory (/home/rich) and want to go to the /etc directory, you could type the

following:

rich@testbox[∼]$ cd ../../etc
rich@testbox[etc]$
Of course, in a case like this, you actually have to do more typing to use the relative filepath rather than just typing the

absolute filepath, /etc!

File and Directory Listing
The most basic feature of the shell is the ability to see what files are available on the system. The list command (ls) is the tool
that helps do that. This section describes the ls command and all of the options available to format the information it can

provide.

Basic Listing

The ls command at its most basic form displays the files and directories located in your current directory:

$ ls
4rich Desktop Download Music Pictures store store.zip test
backup Documents Drivers myprog Public store.sql Templates Videos
Notice that the ls command produces the listing in alphabetical order (in columns rather than rows). If you're using a

terminal emulator that supports color, the ls command may also show different types of entries in different colors. The
LS_COLORS environment variable controls this feature. Different Linux distributions set this environment variable

depending on the capabilities of the terminal emulator.
If you don't have a color terminal emulator, you can use the -F parameter with the ls command to easily distinguish files

from directories. Using the -F parameter produces the following output:

$ ls -F
4rich/ Documents/ Music/ Public/ store.zip Videos/
backup.zip Download/ myprog* store/ Templates/
Desktop/ Drivers/ Pictures/ store.sql test
$
The -F parameter now flags the directories with a forward slash, to help identify them in the listing. Similarly, it flags

executable files (like the myprog file above) with an asterisk, to help you more easily find the files that can be run on the

system.
The basic ls command can be somewhat misleading. It shows the files and directories contained in the current directory,

but not necessarily all of them. Linux often uses hidden files to store configuration information. In Linux, hidden files are files

with file names that start with a period. These files don't appear in the default ls listing (thus, they are called hidden).
To display hidden files along with normal files and directories, use the -a parameter. Figure 3.3 shows an example of using

the -a parameter with the ls command.

Figure 3.3 Using the -a parameter with the ls command

www.it-ebooks.info

#c03_fig_0003
#c03_fig_anc_0003
http://www.it-ebooks.info/

Figure 3.3 Using the -a parameter with the ls command

Wow, that's quite a difference. In a home directory for a user who has logged in to the system from a graphical desktop,

you'll see lots of hidden configuration files. This particular example is from a user logged in to a GNOME desktop session.
Also notice that there are three files that begin with .bash. These files are hidden files that are used by the bash shell

environment. These features are covered in detail in Chapter 5.
The -R parameter is another option the ls command can use. It shows files that are contained within directories in the

current directory. If you have lots of directories, this can be quite a long listing. Here's a simple example of what the -R

parameter produces:

$ ls -F -R
.:
file1 test1/ test2/

./test1:
myprog1* myprog2*
./test2:
$
Notice that first, the -R parameter shows the contents of the current directory, which is a file (file1) and two directories

(test1 and test2). Following that, -R traverses each of the two directories, showing if any files are contained within each
directory. The test1 directory shows two files (myprog1 and myprog2), while the test2 directory doesn't contain any files.
If there had been further subdirectories within the test1 or test2 directories, the -R parameter would have continued to

traverse those as well. As you can see, for large directory structures this can become quite a large output listing.

www.it-ebooks.info

#c03_fig_anc_0003
http://www.it-ebooks.info/

Modifying the Information Presented
As you can see in the basic listings, the ls command doesn't produce a whole lot of information about each file. For listing
additional information, another popular parameter is -l. The -l parameter produces a long listing format, providing more

information about each file in the directory:

$ ls -l
total 2064
drwxrwxr-x 2 rich rich 4096 2010-08-24 22:04 4rich
-rw-r--r-- 1 rich rich 1766205 2010-08-24 15:34 backup.zip
drwxr-xr-x 3 rich rich 4096 2010-08-31 22:24 Desktop
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Documents
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Download
drwxrwxr-x 2 rich rich 4096 2010-07-26 18:25 Drivers
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Music
-rwxr--r-- 1 rich rich 30 2010-08-23 21:42 myprog
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Pictures
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Public
drwxrwxr-x 5 rich rich 4096 2010-08-24 22:04 store
-rw-rw-r-- 1 rich rich 98772 2010-08-24 15:30 store.sql
-rw-r--r-- 1 rich rich 107507 2010-08-13 15:45 store.zip
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Templates
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Videos
[rich@testbox∼]$
The long listing format lists each file and directory contained in the directory on a single line. In addition to the file name,

the listing shows additional useful information. The first line in the output shows the total number of blocks contained within

the directory. Following that, each line contains the following information about each file (or directory):
The file type—such as directory (d), file (-), character device (c), or block device (b)
The permissions for the file (see Chapter 6)
The number of hard links to the file (see the section “Linking Files” in this chapter)
The username of the owner of the file
The group name of the group the file belongs to
The size of the file in bytes
The time the file was modified last
The file or directory name

The -l parameter is a powerful tool to have. Armed with this information, you can see just about any information you

need to for any file or directory on the system.

The Complete Parameter List
There are lots of parameters for the ls command that can come in handy as you do file management. If you use the man

command for ls, you'll see several pages of available parameters for you to use to modify the output of the ls command.
The ls command uses two types of command line parameters:

Single-letter parameters
Full-word (long) parameters

The single-letter parameters are always preceded by a single dash. Full-word parameters are more descriptive and are
preceded by a double dash. Many parameters have both a single-letter and full-word version, while some have only one type.

Table 3.5 lists some of the more popular parameters that will help you out with using the bash ls command.

www.it-ebooks.info

#c03_tbl_0005
http://www.it-ebooks.info/

Table 3.5 Some Popular ls Command Parameters

Single Letter Full Word Description

-a --all Don't ignore entries starting with a period.

-A --almost-all Don't list the . and .. files.

--author Print the author of each file.

-b --escape Print octal values for nonprintable characters.

--block-size=size Calculate the block sizes using size-byte
blocks.

-B --ignore-backups Don't list entries with the tilde (∼) symbol
(used to denote backup copies).

-c Sort by time of last modification.

-C List entries by columns.

--color=when When to use colors (always, never, or auto).

-d --directory List directory entries instead of contents, and
don't dereference symbolic links.

-F --classify Append file-type indicator to entries.

--file-type Only append file-type indicators to some
filetypes (not executable files).

--format=word Format output as either across, commas,
horizontal, long, single-column, verbose, or
vertical.

-g List full file information except for the file's
owner.

--group-directories-first List all directories before files.

-G --no-group In long listing don't display group names.

-h --human-readable Print sizes using K for kilobytes, M for
megabytes, and G for gigabytes.

--si Same as -h, but use powers of 1000 instead of
1024.

-i --inode Display the index number (inode) of each file.

-l Display the long listing format.

-L --dereference Show information for the original file for a
linked file.

-n --numeric-uid-gid Show numeric userid and groupid instead of
names.

www.it-ebooks.info

#c03_tbl_anc_0005
http://www.it-ebooks.info/

-o In long listing don't display owner names.

-r --reverse Reverse the sorting order when displaying
files and directories.

-R --recursive List subdirectory contents recursively.

-s --size Print the block size of each file.

-S --sort=size Sort the output by file size.

-t --sort=time Sort the output by file modification time.

-u Display file last access time instead of last
modification time.

-U --sort=none Don't sort the output listing.

-v --sort=version Sort the output by file version.

-x List entries by line instead of columns.

-X --sort=extension Sort the output by file extension.

You can use more than one parameter at a time if you want to. The double dash parameters must be listed separately,
but the single dash parameters can be combined together into a string behind the dash. A common combination to use is the
-a parameter to list all files, the -i parameter to list the inode for each file, the -l parameter to produce a long listing, and
the -s parameter to list the block size of the files. The inode of a file or directory is a unique identification number the kernel

assigns to each object in the filesystem. Combining all of these parameters creates the easy-to-remember -sail parameter:

$ ls -sail
total 2360
301860 8 drwx------ 36 rich rich 4096 2010-09-03 15:12 .
 65473 8 drwxr-xr-x 6 root root 4096 2010-07-29 14:20 ..
360621 8 drwxrwxr-x 2 rich rich 4096 2010-08-24 22:04 4rich
301862 8 -rw-r--r-- 1 rich rich 124 2010-02-12 10:18 .bashrc
361443 8 drwxrwxr-x 4 rich rich 4096 2010-07-26 20:31 .ccache
301879 8 drwxr-xr-x 3 rich rich 4096 2010-07-26 18:25 .config
301871 8 drwxr-xr-x 3 rich rich 4096 2010-08-31 22:24 Desktop
301870 8 -rw------- 1 rich rich 26 2009-11-01 04:06 .dmrc
301872 8 drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Download
360207 8 drwxrwxr-x 2 rich rich 4096 2010-07-26 18:25 Drivers
301882 8 drwx------ 5 rich rich 4096 2010-09-02 23:40 .gconf
301883 8 drwx------ 2 rich rich 4096 2010-09-02 23:43 .gconfd
360338 8 drwx------ 3 rich rich 4096 2010-08-06 23:06 .gftp
In addition to the normal -l parameter output information, you'll see two additional numbers added to each line. The

first number in the listing is the file or directory inode number. The second number is the block size of the file. The third entry

is a diagram of the type of file, along with the file's permissions. We dive into that in more detail in Chapter 6.
Following that, the next number is the number of hard links to the file (discussed later in the “Linking Files” section), the

owner of the file, the group the file belongs to, the size of the file (in bytes), a timestamp showing the last modification time

by default, and finally, the actual file name.

Filtering Listing Output

www.it-ebooks.info

http://www.it-ebooks.info/

As you've seen in the examples, by default the ls command lists all of the files in a directory. Sometimes this can be overkill,

especially when you're just looking for information on a single file.
Fortunately, the ls command also provides a way for you to define a filter on the command line. It uses the filter to

determine which files or directories it should display in the output.
The filter works as a simple text-matching string. Include the filter after any command line parameters you want to use:

$ ls -l myprog
-rwxr--r-- 1 rich rich 30 2007-08-23 21:42 myprog
$
When you specify the name of specific file as the filter, the ls command only shows the information for that one file.

Sometimes you might not know the exact name of the file you're looking for. The ls command also recognizes standard

wildcard characters and uses them to match patterns within the filter:
A question mark to represent one character
An asterisk to represent zero or more characters

The question mark can be used to replace exactly one character anywhere in the filter string. For example:

$ ls -l mypro?
-rw-rw-r-- 1 rich rich 0 2010-09-03 16:38 myprob
-rwxr--r-- 1 rich rich 30 2010-08-23 21:42 myprog
$
The filter mypro? matched two files in the directory. Similarly, the asterisk can be used to match zero or more characters:

$ ls -l myprob*
-rw-rw-r-- 1 rich rich 0 2010-09-03 16:38 myprob
-rw-rw-r-- 1 rich rich 0 2010-09-03 16:40 myproblem
$
The asterisk matches zero characters in the myprob file, but it matches three characters in the myproblem file.
This is a powerful feature to use when searching for files when you're not quite sure of the file names.

File Handling
The bash shell provides lots of commands for manipulating files on the Linux filesystem. This section walks you through the

basic commands you will need to work with files from the CLI for all your file-handling needs.

Creating Files
Every once in a while you will run into a situation where you need to create an empty file. Sometimes applications expect a log
file to be present before they can write to it. In these situations, you can use the touch command to easily create an empty

file:

$ touch test1
$ ls -il test1
1954793 -rw-r--r-- 1 rich rich 0 Sep 1 09:35 test1
$
The touch command creates the new file you specify and assigns your username as the file owner. Because the -il

parameter was used for the ls command, the first entry in the listing shows the inode number assigned to the file. Every file

on a Linux filesystem has a unique inode number.
Notice that the file size is zero because the touch command just created an empty file. The touch command can also be

used to change the access and modification times on an existing file without changing the file contents:

$ touch test1
$ ls -l test1
-rw-r--r-- 1 rich rich 0 Sep 1 09:37 test1

www.it-ebooks.info

http://www.it-ebooks.info/

$
The modification time of test1 is now updated from the original time. If you want to change only the access time, use the

-a parameter. To change only the modification time, use the -m parameter. By default, touch uses the current time. You can

specify the time by using the -t parameter with a specific timestamp:

$ touch -t 201112251200 test1
$ ls -l test1
-rw-r--r-- 1 rich rich 0 Dec 25 2011 test1
$
Now the modification time for the file is set to a date significantly in the future from the current time.

Copying Files
Copying files and directories from one location in the filesystem to another is a common practice for system administrators.

The cp command provides this feature.
In its most basic form, the cp command uses two parameters, the source object and the destination object:

cp source destination
When both the source and destination parameters are file names, the cp command copies the source file to a new

file with the file name specified as the destination. The new file acts like a brand new file, with an updated file creation and last

modified times:

$ cp test1 test2
$ ls -il
total 0
1954793 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
$
The new file test2 shows a different inode number, indicating that it's a completely new file. You'll also notice that the

modification time for the test2 file shows the time that it was created. If the destination file already exists, the cp command

will prompt you to answer whether or not you want to overwrite it:

$ cp test1 test2
cp: overwrite ‘test2’? y
$
If you don't answer y, the file copy will not proceed. You can also copy a file to an existing directory:

$ cp test1 dir1
$ ls -il dir1
total 0
1954887 -rw-r--r-- 1 rich rich 0 Sep 6 09:42 test1
$
The new file is now under the dir1 directory, using the same file name as the original. These examples all used relative

pathnames, but you can just as easily use the absolute pathname for both the source and destination objects.
To copy a file to the current directory you're in, you can use the dot symbol:

$ cp /home/rich/dir1/test1 .
cp: overwrite ‘./test1’?
As with most commands, the cp command has a few command line parameters to help you out. These are shown in Table

3.6.

Table 3.6 The cp Command Parameters

www.it-ebooks.info

#c03_tbl_0006
#c03_tbl_anc_0006
http://www.it-ebooks.info/

Parameter Description

-a Archive files by preserving their attributes.

-b Create a backup of each existing destination file instead of overwriting it.

-d Preserve.

-f Force the overwriting of existing destination files without prompting.

-i Prompt before overwriting destination files.

-l Create a file link instead of copying the files.

-p Preserve file attributes if possible.

-r Copy files recursively.

-R Copy directories recursively.

-s Create a symbolic link instead of copying the file.

-S Override the backup feature.

-u Copy the source file only if it has a newer date and time than the destination
(update).

-v Verbose mode, explaining what's happening.

-x Restrict the copy to the current filesystem.

Use the -p parameter to preserve the file access or modification times of the original file for the copied file.

$ cp -p test1 test3
$ ls -il
total 4
1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
1954793 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
$
Now, even though the test3 file is a completely new file, it has the same timestamps as the original test1 file.
The -R parameter is extremely powerful. It allows you to recursively copy the contents of an entire directory in one

command:

$ cp -R dir1 dir2
$ ls -l
total 8
drwxr-xr-x 2 rich rich 4096 Sep 6 09:42 dir1/
drwxr-xr-x 2 rich rich 4096 Sep 6 09:45 dir2/
-rw-r--r-- 1 rich rich 0 Dec 25 2011 test1
-rw-r--r-- 1 rich rich 0 Sep 6 09:39 test2
-rw-r--r-- 1 rich rich 0 Dec 25 2011 test3

www.it-ebooks.info

http://www.it-ebooks.info/

$
Now dir2 is a complete copy of dir1. You can also use wildcard characters in your cp commands:

$ cp -f test* dir2
$ ls -al dir2
total 12
drwxr-xr-x 2 rich rich 4096 Sep 6 10:55 ./
drwxr-xr-x 4 rich rich 4096 Sep 6 10:46 ../
-rw-r--r-- 1 rich rich 0 Dec 25 2011 test1
-rw-r--r-- 1 rich rich 0 Sep 6 10:55 test2
-rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
$
This command copied all of the files that started with test to dir2. The -f parameter was included to force the

overwrite of the test1 file that was already in the directory without asking.

Linking Files
You may have noticed a couple of the parameters for the cp command referred to linking files. This is a pretty cool option
available in the Linux filesystems. If you need to maintain two (or more) copies of the same file on the system, instead of
having separate physical copies, you can use one physical copy and multiple virtual copies, called links. A link is a placeholder

in a directory that points to the real location of the file. There are two different types of file links in Linux:
A symbolic, or soft link
A hard link

The hard link creates a separate file that contains information about the original file and where to locate it. When you

reference the hard link file, it's just as if you're referencing the original file:

$ cp -l test1 test4
$ ls -il
total 16
1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
1954889 drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
1954793 -rw-r--r-- 2 rich rich 0 Sep 1 09:51 test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 2 rich rich 0 Sep 1 09:51 test4
$
The -l parameter created a hard link for the test1 file called test4. In the file listing, you can see that the inode

number of both the test1 and test4 files is the same, indicating that, in reality, they are both the same file. Also notice that

the link count (the third item in the listing) now shows that both files have two links.

Note

You can only create a hard link between files on the same physical medium. You
can't create a hard link between files under separate mount points. In that case,
you'll have to use a soft link.

On the other hand, the -s parameter creates a symbolic, or soft link:

$ cp -s test1 test5
$ ls -il test*
total 16
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test1

www.it-ebooks.info

http://www.it-ebooks.info/

1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4
1954891 lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1
$
There are a couple of things to notice in the file listing, First, you'll notice that the new test5 file has a different inode

number than the test1 file, indicating that the Linux system treats it as a separate file. Second, the file size is smaller. A linked
file needs to store only information about the source file, not the actual data in the file. The file name area of the listing

shows the relationship between the two files.

Tip

Instead of using the cp command, if you want to link files you can also use the ln
command. By default, the ln command creates hard links. If you want to create a soft link,
you'll still need to use the -s parameter.

Be careful when copying linked files. If you use the cp command to copy a file that's linked to another source file, all
you're doing is making another copy of the source file. This can quickly get confusing. Instead of copying the linked file, you
can create another link to the original file. You can have many links to the same file with no problems. However, you also
don't want to create soft links to other soft-linked files. This creates a chain of links that can not only be confusing but also

be easily broken, causing all sorts of problems.

Renaming Files
In the Linux world, renaming files is called moving. The mv command is available to move both files and directories to another

location:

$ mv test2 test6
$ ls -il test*
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test1
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4
1954891 lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test6
$
Notice that moving the file changed the file name but kept the same inode number and the timestamp value. Moving a file

with soft links is a problem:

$ mv test1 test8
$ ls -il test*
total 16
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4
1954891 lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test6
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test8
[rich@test2 clsc]$ mv test8 test1
The test4 file that uses a hard link still uses the same inode number, which is perfectly fine. However, the test5 file now

points to an invalid file, and it is no longer a valid link.
You can also use the mv command to move directories:

$ mv dir2 dir4
The entire contents of the directory are unchanged. The only thing that changes is the name of the directory. Thus, the mv

www.it-ebooks.info

http://www.it-ebooks.info/

The entire contents of the directory are unchanged. The only thing that changes is the name of the directory. Thus, the mv

command operates much faster than the cp command.

Deleting Files
Most likely at some point in your Linux career, you'll want to be able to delete existing files. Whether it's to clean up a

filesystem or to remove a software package, there are always opportunities to delete files.
In the Linux world, deleting is called removing. The command to remove files in the bash shell is rm. The basic form of the

rm command is pretty simple:

$ rm -i test2
rm: remove ‘test2’? y
$ ls -l
total 16
drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
-rw-r--r-- 2 rich rich 6 Sep 1 09:51 test1
-rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
-rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4
lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1
$
Notice that the command prompts you to make sure that you're serious about removing the file. There's no recycle bin or

trashcan in the bash shell. Once you remove a file, it's gone forever.
Now, here's an interesting tidbit about deleting a file that has links to it:

$ rm test1
$ ls -l
total 12
drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
-rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
-rw-r--r-- 1 rich rich 6 Sep 1 09:51 test4
lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1
$ cat test4
hello
$ cat test5
cat: test5: No such file or directory
$
The test1 file was removed, which had both a hard link with the test4 file and a soft link with the test5 file. Notice what

happened. Both of the linked files still appear, even though the test1 file is now gone (although on my color terminal the
test5 file name now appears in red). When you look at the contents of the test4 file that was a hard link, it still shows the
contents of the file. When you look at the contents of the test5 file that was a soft link, bash indicates that it doesn't exist

anymore.
Remember that the hard link file uses the same inode number as the original file. The hard link file maintains that inode

number until you remove the last file hard-linked to it, preserving the data! All the soft link file knows is that the underlying

file is now gone, so it has nothing to point to. This is an important feature to remember when working with linked files.
One other feature of the rm command, if you're removing lots of files and don't want to be bothered with the prompt, is

to use the -f parameter to force the removal. Just be careful!

Tip

As with copying files, you can use wildcard characters with the rm command. Again, use

www.it-ebooks.info

http://www.it-ebooks.info/

As with copying files, you can use wildcard characters with the rm command. Again, use

caution when doing this, as anything your remove, even by accident, is gone forever!

Directory Handling
In Linux there are a few commands that work for both files and directories (such as the cp command), and some that only
work for directories. To create a new directory, you'll need to use a specific command, which is covered in this section.

Removing directories can get interesting, so that is covered in this section as well.

Creating Directories

There's not much to creating a new directory in Linux—just use the mkdir command:

$ mkdir dir3
$ ls -il
total 16
1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
1954889 drwxr-xr-x 2 rich rich 4096 Sep 1 10:55 dir2/
1954893 drwxr-xr-x 2 rich rich 4096 Sep 1 11:01 dir3/
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 1 rich rich 6 Sep 1 09:51 test4
$
The system creates a new directory and assigns it a new inode number.

Deleting Directories
Removing directories can be tricky, but there's a reason for that. There are lots of opportunities for bad things to happen
when you start deleting directories. The bash shell tries to protect us from accidental catastrophes as much as possible. The

basic command for removing a directory is rmdir:

$ rmdir dir3
$ rmdir dir1
rmdir: dir1: Directory not empty
$
By default, the rmdir command only works for removing empty directories. Because there is a file in the dir1 directory,

the rmdir command refuses to remove it. You can remove nonempty directories using the --ignore-fail-on-non-
empty parameter.

Our friend the rm command can also help us out some when handling directories.
If you try using it with no parameters, as with files, you'll be somewhat disappointed:

$ rm dir1
rm: dir1: is a directory
$
However, if you really want to remove a directory, you can use the -r parameter to recursively remove the files in the

directory, then the directory itself:

$ rm -r dir2
rm: descend into directory ‘dir2’? y
rm: remove ‘dir2/test1’? y
rm: remove ‘dir2/test3’? y
rm: remove ‘dir2/test4’? y
rm: remove directory ‘dir2’? y
$

www.it-ebooks.info

http://www.it-ebooks.info/

While this works, it's somewhat awkward. Notice that you still must verify every file that gets removed. For a directory with

lots of files and subdirectories, this can become tedious.
The ultimate solution for throwing caution to the wind and removing an entire directory, contents and all, is the rm

command with both the -r and -f parameters:

$ rm -rf dir2
$
That's it. No warnings, no fanfare, just another shell prompt. This, of course, is an extremely dangerous tool to have,

especially if you're logged in as the root user account. Use it sparingly, and only after triple checking to make sure that

you're doing exactly what you want to do.

Note

You may have noticed in the last example that the two command line parameters
were combined using one dash. This is a feature in the bash shell that allows you to
combine command line parameters to help cut down on typing.

Viewing File Contents
So far we've covered everything there is to know about files, except for how to peek inside of them. There are several
commands available for taking a look inside files without having to pull out an editor (see Chapter 11). This section

demonstrates a few of the commands you have available to help you examine files.

Viewing File Statistics
You've already seen that the ls command can be used to provide lots of useful information about files. However, there's still

more information that you can't see in the ls command (or at least not all at once).
The stat command provides a complete rundown of the status of a file on the filesystem:

$ stat test10
 File: “test10”
 Size: 6 Blocks: 8 Regular File
Device: 306h/774d Inode: 1954891 Links: 2
Access: (0644/-rw-r--r--) Uid: (501/ rich) Gid: (501/ rich)
Access: Sat Sep 1 12:10:25 2010
Modify: Sat Sep 1 12:11:17 2010
Change: Sat Sep 1 12:16:42 2010
$
The results from the stat command show just about everything you'd want to know about the file being examined, even

down to the major and minor device numbers of the device where the file is being stored.

Viewing the File Type
Despite all of the information the stat command produces, there's still one piece of information missing—the file type.
Before you go charging off trying to list out a 1000-byte file, it's usually a good idea to get a handle on what type of file it is.

If you try listing a binary file, you'll get lots of gibberish on your monitor and possibly even lock up your terminal emulator.
The file command is a handy little utility to have around. It has the ability to peek inside of a file and determine just

what kind of file it is:

$ file test1
test1: ASCII text
$ file myscript
myscript: Bourne shell script text executable
$ file myprog

www.it-ebooks.info

http://www.it-ebooks.info/

myprog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped
$
The file command classifies files into three categories:

Text files: Files that contain printable characters
Executable files: Files that you can run on the system
Data files: Files that contain nonprintable binary characters, but that you can't run on the system

The first example shows a text file. The file command determined not only that the file contains text but also the
character code format of the text. The second example shows a text script file. While the file is text, because it's a script file,
you can execute (run) it on the system. The final example is a binary executable program. The file command determines the
platform that the program was compiled for and what types of libraries it requires. This is an especially handy feature if you

have a binary executable program from an unknown source.

Viewing the Whole File
If you have a large text file on your hands, you may want to be able to see what's inside of it. There are three different

commands in Linux that can help you out here.

The cat Command

The cat command is a handy tool for displaying all of the data inside a text file:

$ cat test1
hello

This is a test file.

That we'll use to test the cat command.
$
Nothing too exciting, just the contents of the text file. There are a few parameters you can use with the cat command,

however, that can help you out.
The -n parameter numbers all of the lines for you:

$ cat -n test1
 1 hello
 2
 3 This is a test file.
 4
 5
 6 That we'll use to test the cat command.
$
That feature will come in handy when you're examining scripts. If you just want to number the lines that have text in them,

the -b parameter is for you:

$ cat -b test1
 1 hello

 2 This is a test file.

 3 That we'll use to test the cat command.

www.it-ebooks.info

http://www.it-ebooks.info/

$
If you need to compress multiple blank lines into a single blank line, use the -s parameter:

$ cat -s test1
hello

This is a test file.

That we'll use to test the cat command.
$
Finally, if you don't want tab characters to appear, use the -T parameter:

$ cat -T test1
hello

This is a test file.

That we'll use toˆItest the cat command.
$
The -T parameter replaces any tabs in the text with the ˆI character combination.
For large files, the cat command can be somewhat annoying. The text in the file will just quickly scroll off of the monitor

without stopping. Fortunately, there's a simple way to solve this problem.

The more Command
The main drawback of the cat command is that you can't control what's happening once you start it. To solve that problem,
developers created the more command. The more command displays a text file, but stops after it displays each page of data.

A sample more screen is shown in Figure 3.4.

Figure 3.4 Using the more command to display a text file

www.it-ebooks.info

#c03_fig_0004
#c03_fig_anc_0004
http://www.it-ebooks.info/

Figure 3.4 Using the more command to display a text file

Notice that at the bottom of the screen in Figure 3.4, the more command displays a tag showing that you're still in the

more application and how far along in the text file you are. This is the prompt for the more command. At this point, you can

enter one of several options, shown in Table 3.7.

Table 3.7 The more Command Options

Option Description

H Display a help menu.

spacebar Display the next screen of text from the file.

z Display the next screen of text from the file.

ENTER Display one more line of text from the file.

d Display a half-screen (11 lines) of text from the file.

q Exit the program.

s Skip forward one line of text.

f Skip forward one screen of text.

b Skip backward one screen of text.

/expression Search for the text expression in the file.

www.it-ebooks.info

#c03_fig_anc_0004
#c03_fig_0004
#c03_tbl_0007
#c03_tbl_anc_0007
http://www.it-ebooks.info/

n Search for the next occurrence of the last specified expression.

’ Go to the first occurrence of the specified expression.

!cmd Execute a shell command.

v Start up the vi editor at the current line.

CTRL-L Redraw the screen at the current location in the file.

= Display the current line number in the file.

. Repeat the previous command.

The more command allows some rudimentary movement through the text file. For more advanced features, try the less

command.

The less Command
Although from its name it sounds like it shouldn't be as advanced as the more command, the less command is actually a
play on words and is an advanced version of the more command (the less command name comes from the phrase “less is
more”). It provides several very handy features for scrolling both forward and backward through a text file, as well as some

pretty advanced searching capabilities.
The less command can also display the contents of a file before it finishes reading the entire file. This is a serious

drawback for both the cat and more commands when viewing extremely large files.
The less command operates much the same as the more command, displaying one screen of text from a file at a time.

Figure 3.5 shows the less command in action.

Figure 3.5 Viewing a file using the less command

www.it-ebooks.info

#c03_fig_0005
#c03_fig_anc_0005
http://www.it-ebooks.info/

Figure 3.5 Viewing a file using the less command

Notice that the less command provides additional information in its prompt, showing the total number of lines in the

file and the range of lines currently displayed. The less command supports the same command set as the more command
plus lots more options. To see all of the options available, look at the man pages for the less command. One set of features
is that the less command recognizes the up and down arrow keys as well as the page up and page down keys (assuming that

you're using a properly defined terminal). This gives you full control when viewing a file.

Viewing Parts of a File
Often the data you want to view is located either right at the top or buried at the bottom of a text file. If the information is at
the top of a large file, you still need to wait for the cat or more commands to load the entire file before you can view it. If
the information is located at the bottom of a file (such as a log file), you need to wade through thousands of lines of text just

to get to the last few entries. Fortunately, Linux has specialized commands to solve both of these problems.

The tail Command
The tail command displays the last group of lines in a file. By default, it will show the last 10 lines in the file, but you can

change that with command line parameters, shown in Table 3.8.

Table 3.8 The tail Command Line Parameters

Parameter Description

-c bytes Display the last byte's number of bytes in the file.

-n lines Display the last line's number of lines in the file.

-f Keeps the tail program active and continues to display new lines as they're added

www.it-ebooks.info

#c03_fig_anc_0005
#c03_tbl_0008
#c03_tbl_anc_0008
http://www.it-ebooks.info/

Keeps the tail program active and continues to display new lines as they're added

to the file.

--pid=PID Along with -f, follows a file until the process with ID PID terminates.

-s sec Along with -f, sleeps for sec seconds between iterations.

-v Always displays output headers giving the file name.

-q Never displays output headers giving the file name.

The -f parameter is a pretty cool feature of the tail command. It allows you to peek inside a file as it's being used by
other processes. The tail command stays active and continues to display new lines as they appear in the text file. This is a great

way to monitor the system log file in real-time mode.

The head Command
While not as exotic as the tail command, the head command does what you'd expect; it displays the first group of lines at
the start of a file. By default, it will display the first 10 lines of text. Similar to the tail command, it supports the -c and -n

parameters so that you can alter what's displayed.
Usually the beginning of a file doesn't change, so the head command doesn't support the -f parameter feature. The

head command is a handy way to just peek at the beginning of a file if you're not sure what's inside, without having to go

through the hassle of displaying the entire file.

Summary
This chapter covered the basics of working with the Linux filesystem from a shell prompt. We began with a discussion of the
bash shell and showed you how to interact with the shell. The command line interface (CLI) uses a prompt string to indicate
when it's ready for you to enter commands. You can customize the prompt string to display useful information about your

system, your logon ID, and even dates and times.
The bash shell provides a wealth of utilities you can use to create and manipulate files. Before you start playing with files,

it's a good idea to understand how Linux stores them. This chapter discussed the basics of the Linux virtual directory and
showed you how Linux references store media devices. After describing the Linux filesystem, the chapter walked you through

using the cd command to move around the virtual directory.
After showing you how to get to a directory, the chapter demonstrated how to use the ls command to list the files and

subdirectories. There are lots of parameters that customize the output of the ls command. You can obtain information on

files and directories just by using the ls command.
The touch command is useful for creating empty files and for changing the access or modification times on an existing

file. The chapter also discussed using the cp command to copy existing files from one location to another. It walked you
through the process of linking files instead of copying them, providing an easy way to have the same file in two locations

without making a separate copy. The cp command does this, as does the ln command.
Next, you learned how to rename files (called moving) in Linux using the mv command, and saw how to delete files (called

removing) using the rm command. It also showed you how to perform the same tasks with directories, using the mkdir and

rmdir commands.
Finally, the chapter closed with a discussion on viewing the contents of files. The cat, more, and less commands provide

easy methods for viewing the entire contents of a file, while the tail and head commands are great for peeking inside a file

to just see a small portion of it.
The next chapter continues the discussion on bash shell commands. We'll take a look at more advanced administrator

commands that will come in handy as you administer your Linux system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

More bash Shell Commands

In This Chapter

Managing processes
Getting disk statistics
Mounting new disks
Sorting data
Archiving data

Chapter 3 covered the basics of rummaging through the Linux filesystem and working with the files and directories. File and
directory management is a major feature of the Linux shell; however, there are some more things we should look at before we
start our script programming. This chapter digs into the Linux system management commands, showing you how to peek
inside your Linux system using command line commands. After that, it shows you a few handy commands that you can use to

work with data files on the system.

Monitoring Programs
One of the toughest jobs of being a Linux system administrator is keeping track of what's running on the system—especially
now, when graphical desktops take a handful of programs just to produce a single desktop. There are always a lot of

programs running on the system.
Fortunately, there are a few command line tools that can help make life easier for you. This section covers a few of the

basic tools you'll need to know how to use to manage programs on your Linux system.

Peeking at the Processes
When a program runs on the system, it's referred to as a process. To examine these processes, you'll need to become familiar
with the ps command, the Swiss Army knife of utilities. It can produce lots of information about all the programs running on

your system.
Unfortunately, with this robustness comes complexity—in the form of numerous parameters— making the ps command

probably one of the most difficult commands to master. Most system administrators find a subset of these parameters that

provide the information they want, and then stick with using only those.
That said, however, the basic ps command doesn't really provide all that much information:

 $ ps
 PID TTY TIME CMD
 3081 pts/0 00:00:00 bash
 3209 pts/0 00:00:00 ps
 $
Not too exciting. By default the ps command shows only the processes that belong to the current user and that are

running on the current terminal. In this case, we only had our bash shell running (remember, the shell is just another program

running on the system) and, of course, the ps command itself.
The basic output shows the process ID (PID) of the programs, the terminal (TTY) that they are running from, and the CPU

time the process has used.

Note

The tricky feature of the ps command (and the part that makes it so complicated)
is that at one time there were two versions of it. Each version had its own set of
command line parameters controlling what information it displayed, and how.
Recently, Linux developers have combined the two ps command formats into a

www.it-ebooks.info

http://www.it-ebooks.info/

Recently, Linux developers have combined the two ps command formats into a

single ps program (and of course added their own touches).

The GNU ps command that's used in Linux systems supports three different types of command line parameters:
Unix-style parameters, which are preceded by a dash
BSD-style parameters, which are not preceded by a dash
GNU long parameters, which are preceded by a double dash

The following sections examine the three different parameter types and show examples of how they work.

Unix-Style Parameters
The Unix-style parameters originated with the original ps command that ran on the AT&T Unix systems invented by Bell Labs.

These parameters are shown in Table 4.1.

Table 4.1 The ps Command Unix Parameters

Parameter Description

-A Show all processes.

-N Show the opposite of the specified parameters.

-a Show all processes except session headers and processes without a terminal.

-d Show all processes except session headers.

-e Show all processes.

-C cmslist Show processes contained in the list cmdlist.

-G grplist Show processes with a group ID listed in grplist.

-U userlist Show processes owned by a userid listed in userlist.

-g grplist Show processes by session or by groupid contained in grplist.

-p pidlist Show processes with PIDs in the list pidlist.

-s sesslist Show processes with session ID in the list sesslist.

-t ttylist Show processes with terminal ID in the list ttylist.

-u userlist Show processes by effective userid in the list userlist.

-F Use extra full output.

-O format Display specific columns in the list format, along with the default columns.

-M Display security information about the process.

-c Show additional scheduler information about the process.

-f Display a full format listing.

-j Show job information.

-l Display a long listing.

-o format Display only specific columns listed in format.

www.it-ebooks.info

#c04_tbl_0001
#c04_tbl_anc_0001
http://www.it-ebooks.info/

-y Don't show process flags.

-Z Display the security context information.

-H Display processes in a hierarchical format (showing parent processes).

-n namelist Define the values to display in the WCHAN column.

-w Use wide output format, for unlimited width displays.

-L Show process threads.

-V Display the version of ps.

That's a lot of parameters, and remember, there are still more! The key to using the ps command is not to memorize all of
the available parameters, only those you find most useful. Most Linux system administrators have their own sets of
commonly used parameters that they remember for extracting pertinent information. For example, if you need to see
everything running on the system, use the -ef parameter combination (the ps command lets you combine parameters

together like this):

 $ ps -ef
 UID PID PPID C STIME TTY TIME CMD
 root 1 0 0 11:29 ? 00:00:01 init [5]
 root 2 0 0 11:29 ? 00:00:00 [kthreadd]
 root 3 2 0 11:29 ? 00:00:00 [migration/0]
 root 4 2 0 11:29 ? 00:00:00 [ksoftirqd/0]
 root 5 2 0 11:29 ? 00:00:00 [watchdog/0]
 root 6 2 0 11:29 ? 00:00:00 [events/0]
 root 7 2 0 11:29 ? 00:00:00 [khelper]
 root 47 2 0 11:29 ? 00:00:00 [kblockd/0]
 root 48 2 0 11:29 ? 00:00:00 [kacpid]
 68 2349 1 0 11:30 ? 00:00:00 hald
 root 2489 1 0 11:30 tty1 00:00:00 /sbin/mingetty tty1
 root 2490 1 0 11:30 tty2 00:00:00 /sbin/mingetty tty2
 root 2491 1 0 11:30 tty3 00:00:00 /sbin/mingetty tty3
 root 2492 1 0 11:30 tty4 00:00:00 /sbin/mingetty tty4
 root 2493 1 0 11:30 tty5 00:00:00 /sbin/mingetty tty5
 root 2494 1 0 11:30 tty6 00:00:00 /sbin/mingetty tty6
 root 2956 1 0 11:42 ? 00:00:00 /usr/sbin/httpd
 apache 2958 2956 0 11:42 ? 00:00:00 /usr/sbin/httpd
 apache 2959 2956 0 11:42 ? 00:00:00 /usr/sbin/httpd
 root 2995 1 0 11:43 ? 00:00:00 auditd
 root 2997 2995 0 11:43 ? 00:00:00 /sbin/audispd
 root 3078 1981 0 12:00 ? 00:00:00 sshd: rich [priv]
 rich 3080 3078 0 12:00 ? 00:00:00 sshd: rich@pts/0
 rich 3081 3080 0 12:00 pts/0 00:00:00 -bash
 rich 4445 3081 3 13:48 pts/0 00:00:00 ps -ef
 $
Quite a few lines have been cut from the output to save space, but as you can see, there are lots of processes running on

a Linux system. This example uses two parameters, the -e parameter, which shows all of the processes running on the system,

www.it-ebooks.info

http://www.it-ebooks.info/

a Linux system. This example uses two parameters, the -e parameter, which shows all of the processes running on the system,

and the -f parameter, which expands the output to show a few useful columns of information:
UID: The user responsible for launching the process
PID: The process ID of the process
PPID: The PID of the parent process (if a process is started by another process)
C: Processor utilization over the lifetime of the process
STIME: The system time when the process started
TTY: The terminal device from which the process was launched
TIME: The cumulative CPU time required to run the process
CMD: The name of the program that was started

This produces a reasonable amount of information, which is what many system administrators would like to see. For even

more information, you can use the -l parameter, which produces the long format output:

 $ ps -l
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 0 S 500 3081 3080 0 80 0 - 1173 wait pts/0 00:00:00 bash
 0 R 500 4463 3081 1 80 0 - 1116 - pts/0 00:00:00 ps
 $
Notice the extra columns that appear when you use the -l parameter:

F: System flags assigned to the process by the kernel
S: The state of the process (O = running on processor; S = sleeping; R = runnable, waiting to run; Z = zombie, process

terminated but parent not available; T = process stopped)
PRI: The priority of the process (higher numbers mean lower priority)
NI: The nice value, which is used for determining priorities
ADDR: The memory address of the process
SZ: Approximate amount of swap space required if the process was swapped out
WCHAN: Address of the kernel function where the process is sleeping

Before moving on, there's one more extremely handy parameter to remember, -H. The -H parameter organizes the
processes in a hierarchical format, showing which processes started which other processes. Here's an extraction from an -efH-

formatted listing:

 $ ps -efH
 UID PID PPID C STIME TTY TIME CMD
 root 3078 1981 0 12:00 ? 00:00:00 sshd: rich [priv]
 rich 3080 3078 0 12:00 ? 00:00:00 sshd: rich@pts/0
 rich 3081 3080 0 12:00 pts/0 00:00:00 -bash
 rich 4803 3081 1 14:31 pts/0 00:00:00 ps -efH
Notice the shifting in the CMD column output. This shows the hierarchy of the processes that are running—first, the sshd

process started by the root user (this is the Secure Shell, SSH, server session, which listens for remote SSH connections). Next,
because this session was connected from a remote terminal to the system, the main SSH process spawned a terminal process

(pts/0), which in turn spawned a bash shell.
From there, the ps command was run, which appears as a child process from the bash process. On a multi-user system, this

is a very useful tool when trying to troubleshoot runaway processes, or when trying to track down which userid or terminal

they belong to.

BSD-Style Parameters
Now that you've seen the Unix parameters, let's take a look at the BSD-style parameters. The Berkeley Software Distribution
(BSD) was a version of Unix developed at (of course) the University of California, Berkeley. It had many subtle differences
from the AT&T Unix system, thus sparking many Unix wars over the years. The BSD version of the ps command parameters are

shown in Table 4.2.

www.it-ebooks.info

#c04_tbl_0002
http://www.it-ebooks.info/

Table 4.2 The ps Command BSD Parameters

Parameter Description

T Show all processes associated with this terminal.

a Show all processes associated with any terminal.

g Show all processes including session headers.

r Show only running processes.

x Show all processes, even those without a terminal device assigned.

U userlist Show processes owned by a userid listed in userlist.

p pidlist Show processes with a PID listed in pidlist.

t ttylist Show processes associated with a terminal listed in ttylist.

O format List specific columns in format to display along with the standard columns.

X Display data in the register format.

Z Include security information in the output.

j Show job information.

l Use the long format.

o format Display only columns specified in format.

s Use the signal format.

u Use the user-oriented format.

v Use the virtual memory format.

N namelist Define the values to use in the WCHAN column.

O order Define the order in which to display the information columns.

S Sum numerical information, such as CPU and memory usage, for child processes
into the parent process.

c Display the true command name (the name of the program used to start the
process).

e Display any environment variables used by the command.

f Display processes in a hierarchical format, showing which processes started
which processes.

h Don't display the header information.

k sort Define the column(s) to use for sorting the output.

n Use numeric values for user and group IDs, along with WCHAN information.

www.it-ebooks.info

#c04_tbl_anc_0002
http://www.it-ebooks.info/

w Produce wide output for wider terminals.

H Display threads as if they were processes.

m Display threads after their processes.

L List all format specifiers.

V Display the version of ps.

As you can see, there's a lot of overlap between the Unix and BSD types of parameters. Most of the information you can
get from one you can also get from the other. Most of the time, you choose a parameter type based on which format you're

more comfortable with (for example, if you were used to a BSD environment before using Linux).
When you use the BSD-style parameters, the ps command automatically changes the output to simulate the BSD format.

Here's an example using the l parameter:

 $ ps l
 F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
 0 500 3081 3080 20 0 4692 1432 wait Ss pts/0 0:00 -bash
 0 500 5104 3081 20 0 4468 844 - R+ pts/0 0:00 ps l
 $
Notice that while many of the output columns are the same as when we used the Unix-style parameters, there are a couple

of different ones:
VSZ: The size in kilobytes of the process in memory
RSS: The physical memory that a process has used that isn't swapped out
STAT: A two-character state code representing the current process state

Many system administrators like the BSD-style l parameter because it produces a more detailed state code for processes
(the STAT column). The two-character code more precisely defines exactly what's happening with the process than the single-

character Unix-style output.
The first character uses the same values as the Unix-style S output column, showing when a process is sleeping, running,

or waiting. The second character further defines the process's status:
<: The process is running at high priority.
N: The process is running at low priority.
L: The process has pages locked in memory.
s: The process is a session leader.
l: The process is multi-threaded.
+: The process is running in the foreground.

From the simple example shown previously, you can see that the bash command is sleeping, but it is a session leader (it's

the main process in my session), whereas the ps command was running in the foreground on the system.

The GNU Long Parameters
Finally, the GNU developers put their own touches on the new, improved ps command by adding a few more options to the
parameter mix. Some of the GNU long parameters copy existing Unix- or BSD-style parameters, while others provide new

features. Table 4.3 lists the available GNU long parameters.

Table 4.3 The ps Command GNU Parameters

Parameter Description

--deselect Show all processes except those listed in the command line.

--Group grplist Show processes whose group ID is listed in grplist.

www.it-ebooks.info

#c04_tbl_0003
#c04_tbl_anc_0003
http://www.it-ebooks.info/

--User userlist Show processes whose user ID is listed in userlist.

--group grplist Show processes whose effective group ID is listed in grplist.

--pid pidlist Show processes whose process ID is listed in pidlist.

--ppid pidlist Show processes whose parent process ID is listed in pidlist.

--sid sidlist Show processes whose session ID is listed in sidlist.

--tty ttylist Show processes whose terminal device ID is listed in ttylist.

--user userlist Show processes whose effective user ID is listed in userlist.

--format format Display only columns specified in the format.

--context Display additional security information.

--cols n Set screen width to n columns.

--columns n Set screen width to n columns.

--cumulative Include stopped child process information.

--forest Display processes in a hierarchical listing showing parent processes.

--headers Repeat column headers on each page of output.

--no-headers Don't display column headers.

--lines n Set the screen height to n lines.

--rows n Set the screen height to n rows.

--sort order Define the column(s) to use for sorting the output.

--width n Set the screen width to n columns.

--help Display the help information.

--info Display debugging information.

--version Display the version of the ps program.

You can combine GNU long parameters with either Unix- or BSD-style parameters to really customize your display. One
cool feature of GNU long parameters that we really like is the --forest parameter. It displays the hierarchical process

information, but using ASCII characters to draw cute charts:

 1981 ? 00:00:00 sshd
 3078 ? 00:00:00 _ sshd
 3080 ? 00:00:00 _ sshd
 3081 pts/0 00:00:00 _ bash
 16676 pts/0 00:00:00 _ ps
This format makes tracing child and parent processes a snap!

Real-Time Process Monitoring

www.it-ebooks.info

http://www.it-ebooks.info/

The ps command is great for gleaning information about processes running on the system, but it has one drawback. The ps
command can only display information for a specific point in time. If you're trying to find trends about processes that are

frequently swapped in and out of memory, it's hard to do that with the ps command.
Instead, the top command can solve this problem. The top command displays process information similarly to the ps

command, but it does it in real-time mode. Figure 4.1 is a snapshot of the top command in action.

Figure 4.1 The output of the top command while it is running

The first section of the output shows general system information. The first line shows the current time, how long the

system has been up, the number of users logged in, and the load average on the system.
The load average appears as three numbers, the 1-minute, 5-minute, and 15-minute load averages. The higher the values,

the more load the system is experiencing. It's not uncommon for the 1-minute load value to be high for short bursts of

activity. If the 15-minute load value is high, your system may be in trouble.

Note

The trick in Linux system administration is defining what exactly a high load
average value is. This value depends on what's normally running on your system and
the hardware configuration. What's high for one system might be normal for
another. Usually, if your load averages start getting over 2, things are getting busy
on your system.

The second line shows general process information (called tasks in top): how many processes are running, sleeping,

stopped, and zombie (have finished but their parent process hasn't responded).

www.it-ebooks.info

#c04_fig_0001
#c04_fig_anc_0001
http://www.it-ebooks.info/

The next line shows general CPU information. The top display breaks down the CPU utilization into several categories
depending on the owner of the process (user versus system processes) and the state of the processes (running, idle, or

waiting).
Following that, there are two lines that detail the status of the system memory. The first line shows the status of the

physical memory in the system, how much total memory there is, how much is currently being used, and how much is free. The

second memory line shows the status of the swap memory area in the system (if any is installed), with the same information.
Finally, the next section shows a detailed list of the currently running processes, with some information columns that

should look familiar from the ps command output:
PID: The process ID of the process
USER: The user name of the owner of the process
PR: The priority of the process
NI: The nice value of the process
VIRT: The total amount of virtual memory used by the process
RES: The amount of physical memory the process is using
SHR: The amount of memory the process is sharing with other processes
S: The process status (D = interruptible sleep, R = running, S = sleeping, T = traced or stopped, or Z = zombie)
%CPU: The share of CPU time that the process is using
%MEM: The share of available physical memory the process is using
TIME+: The total CPU time the process has used since starting
COMMAND: The command line name of the process (program started)

By default, when you start top it sorts the processes based on the %CPU value. You can change the sort order by using
one of several interactive commands while top is running. Each interactive command is a single character you can press while

top is running and changes the behavior of the program. These commands are shown in Table 4.4.

Table 4.4 The top Interactive Commands

Command Description

1 Toggle the single CPU and Symmetric Multiprocessor (SMP) state.

b Toggle the bolding of important numbers in the tables.

I Toggle Irix/Solaris mode.

z Configure color for the table.

l Toggle the displaying of the load average information line.

t Toggle the displaying of the CPU information line.

m Toggle the displaying of the MEM and SWAP information lines.

f Add or remove different information columns.

o Change the display order of information columns.

F or O Select a field on which to sort the processes (%CPU by default).

< or > Move the sort field one column left (<) or right (>).

r Toggle the normal or reverse sort order.

h Toggle the showing of threads.

c Toggle the showing of the command name or the full command line (including

www.it-ebooks.info

#c04_tbl_0004
#c04_tbl_anc_0004
http://www.it-ebooks.info/

Toggle the showing of the command name or the full command line (including

parameters) of processes.

i Toggle the showing of idle processes.

S Toggle the showing of the cumulative CPU time or relative CPU time.

x Toggle highlighting of the sort field.

y Toggle highlighting of running tasks.

z Toggle color and mono mode.

b Toggle bold mode for x and y modes.

u Show processes for a specific user.

n or # Set the number of processes to display.

k Kill a specific process (only if process owner or if root user).

r Change the priority (renice) of a specific process (only if process owner or if root
user).

d or s Change the update interval (default three seconds).

W Write current settings to a configuration file.

q Exit the top command.

You have lots of control over the output of the top command. Using this tool, you can often find offending processes

that have taken over your system. Of course, once you find one, the next job is to stop it, which brings us to the next topic.

Stopping Processes
A crucial part of being a system administrator is knowing when and how to stop a process. Sometimes a process gets hung up
and just needs a gentle nudge to either get going again or stop. Other times, a process runs away with the CPU and refuses
to give it up. In both cases, you need a command that will allow you to control a process. Linux follows the Unix method of

interprocess communication.
In Linux, processes communicate with each other using signals. A process signal is a predefined message that processes

recognize and may choose to ignore or act on. The developers program how a process handles signals. Most well-written

applications have the ability to receive and act on the standard Unix process signals. These signals are shown in Table 4.5.

Table 4.5 Linux Process Signals

Signal Name Description

1 HUP Hang up.

2 INT Interrupt.

3 QUIT Stop running.

9 KILL Unconditionally terminate.

11 SEGV Segment violation.

15 TERM Terminate if possible.

www.it-ebooks.info

#c04_tbl_0005
#c04_tbl_anc_0005
http://www.it-ebooks.info/

17 STOP Stop unconditionally, but don't terminate.

18 TSTP Stop or pause, but continue to run in background.

19 CONT Resume execution after STOP or TSTP.

There are two commands available in Linux that allow you to send process signals to running processes.

The kill Command
The kill command allows you to send signals to processes based on their process ID (PID). By default, the kill command
sends a TERM signal to all the PIDs listed on the command line. Unfortunately, you can only use the process PID instead of its

command name, making the kill command difficult to use sometimes.
To send a process signal, you must either be the owner of the process or be logged in as the root user.

 $ kill 3940
 -bash: kill: (3940) - Operation not permitted
 $
The TERM signal tells the process to kindly stop running. Unfortunately, if you have a runaway process, most likely it will

ignore the request. When you need to get forceful, the -s parameter allows you to specify other signals (either using their

name or signal number).
The generally accepted procedure is to first try the TERM signal. If the process ignores that, try the INT or HUP signals. If

the program recognizes these signals, it will try to gracefully stop doing what it was doing before shutting down. The most
forceful signal is the KILL signal. When a process receives this signal, it immediately stops running. This can lead to corrupt

files.
As you can see from the following example, there's no output associated with the kill command.

 # kill -s HUP 3940
 #
To see if the command was effective, you'll have to perform another ps or top command to see if the offending process

stopped.

The killall Command
The killall command is a powerful way to stop processes by using their names rather than the PID numbers. The killall
command allows you to use wildcard characters as well, making it a very useful tool when you've got a system that's gone

awry:

killall http*

This example will kill all of the processes that start with http, such as the httpd services for the Apache Web server.

Caution

Be extremely careful using the killall command when logged in as the root user. It's
easy to get carried away with wildcard characters and accidentally stop important system
processes. This could lead to a damaged filesystem.

Monitoring Disk Space
Another important task of the system administrator is to keep track of the disk usage on the system. Whether you're running

a simple Linux desktop or a large Linux server, you'll need to know how much space you have for your applications.
There are a few command line commands you can use to help you manage the media environment on your Linux system.

This section describes the core commands you'll likely run into during your system administration duties.

www.it-ebooks.info

http://www.it-ebooks.info/

Mounting Media
As discussed in Chapter 3, the Linux filesystem combines all media disks into a single virtual directory. Before you can use a

new media disk on your system, you need to place it in the virtual directory. This task is called mounting.
In today's graphical desktop world, most Linux distributions have the ability to automatically mount specific types of

removable media. A removable media device is a medium that (obviously) can be easily removed from the PC, such as CD-ROMs,

floppy disks, and USB memory sticks.
If you're not using a distribution that automatically mounts and unmounts removable media, you'll have to do it

yourself. This section describes the Linux command line commands to help you manage your removable media devices.

The mount Command
Oddly enough, the command used to mount media is called mount. By default, the mount command displays a list of media

devices currently mounted on the system:

 $ mount
 /dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)
 proc on /proc type proc (rw)
 sysfs on /sys type sysfs (rw)
 devpts on /dev/pts type devpts (rw,gid=5,mode=620)
 /dev/sda1 on /boot type ext3 (rw)
 tmpfs on /dev/shm type tmpfs (rw)
 none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
 sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
 /dev/sdb1 on /media/disk type vfat
 (rw,nosuid,nodev,uhelper=hal,shortname=lower,uid=503)
 $
The mount command provides four pieces of information:

The device file name of the media
The mount point in the virtual directory where the media is mounted
The filesystem type
The access status of the mounted media

The last entry in the preceding example is a USB memory stick that the GNOME desktop automatically mounted at the

/media/disk mount point. The vfat filesystem type shows that it was formatted on a Microsoft Windows PC.
To manually mount a media device in the virtual directory, you'll need to be logged in as the root user. The following is

the basic command for manually mounting a media device:

 mount -t type device directory
The type parameter defines the filesystem type the disk was formatted under. There are lots and lots of different

filesystem types that Linux recognizes. If you share removable media devices with your Windows PCs, the types you're most

likely to run into are:
vfat: Windows long filesystem.
ntfs: Windows advanced filesystem used in Windows NT, XP, and Vista.
iso9660: The standard CD-ROM filesystem.

Most USB memory sticks and floppies are formatted using the vfat filesystem. If you need to mount a data CD, you'll

have to use the iso9660 filesystem type.
The next two parameters define the location of the device file for the media device and the location in the virtual

directory for the mount point. For example, to manually mount the USB memory stick at device /dev/sdb1 at location

/media/disk, you'd use the following command:

 mount -t vfat /dev/sdb1 /media/disk
Once a media device is mounted in the virtual directory, the root user will have full access to the device, but access by

other users will be restricted. You can control who has access to the device using directory permissions (discussed in Chapter

www.it-ebooks.info

http://www.it-ebooks.info/

other users will be restricted. You can control who has access to the device using directory permissions (discussed in Chapter

6).
In case you need to use some of the more exotic features of the mount command, the available parameters are shown in

Table 4.6.

Table 4.6 The mount Command Parameters

Parameter Description

-a Mount all filesystems specified in the /etc/fstab file.

-f Causes the mount command to simulate mounting a device, but not actually mount
it.

-F When used with the -a parameter, mounts all filesystems at the same time.

-v Verbose mode, explains all the steps required to mount the device.

-I Don't use any filesystem helper files under /sbin/mount.filesystem.

-l Add the filesystem labels automatically for ext2, ext3, or XFS filesystems.

-n Mount the device without registering it in the /etc/mstab mounted device file.

-p num For encrypted mounting, read the passphrase from the file descriptor num.

-s Ignore mount options not supported by the filesystem.

-r Mount the device as read-only.

-w Mount the device as read-write (the default).

-L label Mount the device with the specified label.

-U uuid Mount the device with the specified uuid.

-O When used with the -a parameter, limits the set of filesystems applied.

-o Add specific options to the filesystem.

The -o option allows you to mount the filesystem with a comma-separated list of additional options. The popular

options to use are:
ro: Mount as read-only.
rw: Mount as read-write.
user: Allow an ordinary user to mount the filesystem.
check=none: Mount the filesystem without performing an integrity check.
loop: Mount a file.

A popular thing in Linux these days is to distribute a CD as a .iso file. The .iso file is a complete image of the CD in a
single file. Most CD-burning software packages can create a new CD based on the .iso file. A feature of the mount
command is that you can mount a .iso file directly to your Linux virtual directory without having to burn it onto a CD. This

is accomplished using the -o parameter with the loop option:

 $ mkdir mnt
 $ su
 Password:
 # mount -t iso9660 -o loop MEPIS-KDE4-LIVE-DVD_32.iso mnt
 # ls -l mnt

www.it-ebooks.info

#c04_tbl_0006
#c04_tbl_anc_0006
http://www.it-ebooks.info/

 total 16
 -r--r--r-- 1 root root 702 2007-08-03 08:49 about
 dr-xr-xr-x 3 root root 2048 2007-07-29 14:30 boot
 -r--r--r-- 1 root root 2048 2007-08-09 22:36 boot.catalog
 -r--r--r-- 1 root root 894 2004-01-23 13:22 cdrom.ico
 -r--r--r-- 1 root root 5229 2006-07-07 18:07 MCWL
 dr-xr-xr-x 2 root root 2048 2007-08-09 22:32 mepis
 dr-xr-xr-x 2 root root 2048 2007-04-03 16:44 OSX
 -r--r--r-- 1 root root 107 2007-08-09 22:36 version
 # cd mnt/boot
 # ls -l
 total 4399
 dr-xr-xr-x 2 root root 2048 2007-06-29 09:00 grub
 -r--r--r-- 1 root root 2392512 2007-07-29 12:53 initrd.gz
 -r--r--r-- 1 root root 94760 2007-06-14 14:56 memtest
 -r--r--r-- 1 root root 2014704 2007-07-29 14:26 vmlinuz
 #
The mount command mounted the .iso CD image file just as if it were a real CD and allowed us to maneuver around

within its filesystem.

The umount Command
To remove a removable media device, you should never just remove it from the system. Instead, you should always unmount it

first.

Tip

Linux doesn't allow you to eject a mounted CD. If you ever have trouble removing a CD
from the drive, most likely it means the CD is still mounted in the virtual directory.
Unmount it first, and then try to eject it.

The command used to unmount devices is umount (yes, there's no “n” in the command, which gets confusing sometimes).

The format for the umount command is pretty simple:

 umount [directory | device]
The umount command gives you the choice of defining the media device by either its device location or its mounted

directory name. If any program has a file open on a device, the system won't let you unmount it.

 [root@testbox mnt]# umount /home/rich/mnt
 umount: /home/rich/mnt: device is busy
 umount: /home/rich/mnt: device is busy
 [root@testbox mnt]# cd /home/rich
 [root@testbox rich]# umount /home/rich/mnt
 [root@testbox rich]# ls -l mnt
 total 0
 [root@testbox rich]#
In this example, the command prompt was still in a directory within the filesystem structure, so the umount command

couldn't unmount the image file. Once the command prompt was moved out of the image file filesystem, the umount

command was able to successfully unmount the image file.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the df Command
Sometimes you need to see how much disk space is available on an individual device. The df command allows you to easily see

what's happening on all of the mounted disks:

 $ df
 Filesystem 1K-blocks Used Available Use% Mounted on
 /dev/sda2 18251068 7703964 9605024 45% /
 /dev/sda1 101086 18680 77187 20% /boot
 tmpfs 119536 0 119536 0% /dev/shm
 /dev/sdb1 127462 113892 13570 90% /media/disk
 $
The df command shows each mounted filesystem that contains data. As you can see from the mount command earlier,

some mounted devices are used for internal system purposes. The command displays the following:
The device location of the device
How many 1024-byte blocks of data it can hold
How many 1024-byte blocks are used
How many 1024-byte blocks are available
The amount of used space as a percentage
The mount point where the device is mounted

A few different command line parameters are available with the df command, most of which you'll never use. One
popular parameter is -h, which shows the disk space in human-readable form, usually as an M for megabytes or a G for

gigabytes:

 $ df -h
 Filesystem Size Used Avail Use% Mounted on
 /dev/sdb2 18G 7.4G 9.2G 45% /
 /dev/sda1 99M 19M 76M 20% /boot
 tmpfs 117M 0 117M 0% /dev/shm
 /dev/sdb1 125M 112M 14M 90% /media/disk
 $
Now instead of having to decode those ugly block numbers, all of the disk sizes are shown using “normal” sizes. The df

command is invaluable in troubleshooting disk space problems on the system.

Note

Remember that the Linux system always has processes running in the background
that handle files. The values from the df command reflect what the Linux system
thinks are the current values at that point in time. It's possible that you have a
process running that has created or deleted a file but has not released the file yet.
This value is not included in the free space calculation.

Using the du Command
With the df command, it is easy to see when a disk is running out of space. The next problem for the system administrator is

to know what to do when that happens.
Another useful command to help you out is the du command. The du command shows the disk usage for a specific

directory (by default, the current directory). This is a quick way to determine if you have any obvious disk hogs on the system.
By default, the du command displays all of the files, directories, and subdirectories under the current directory, and it

shows how many disk blocks each file or directory takes. For a standard-sized directory, this can be quite a listing. Here's a

partial listing of using the du command:

www.it-ebooks.info

http://www.it-ebooks.info/

 $ du
 484 ./.gstreamer-0.10
 8 ./Templates
 8 ./Download
 8 ./.ccache/7/0
 24 ./.ccache/7
 368 ./.ccache/a/d
 384 ./.ccache/a
 424 ./.ccache
 8 ./Public
 8 ./.gphpedit/plugins
 32 ./.gphpedit
 72 ./.gconfd
 128 ./.nautilus/metafiles
 384 ./.nautilus
 72 ./.bittorrent/data/metainfo
 20 ./.bittorrent/data/resume
 144 ./.bittorrent/data
 152 ./.bittorrent
 8 ./Videos
 8 ./Music
 16 ./.config/gtk-2.0
 40 ./.config
 8 ./Documents
The number at the right of each line is the number of disk blocks that each file or directory takes. Notice that the listing

starts at the bottom of a directory and works its way up through the files and subdirectories contained within the directory.
The du command by itself can be somewhat useless. It's nice to be able to see how much disk space each individual file and

directory takes up, but it can be meaningless when you have to wade through pages and pages of information before you

find what you're looking for.
There are a few command line parameters that you can use with the du command to make things a little more legible:

-c: Produce a grand total of all the files listed.
-h: Print sizes in human-readable form, using K for kilobyte, M for megabyte, and G for gigabyte.
-s: Summarize each argument.

The next step for the system administrator is to use some file-handling commands for manipulating large amounts of

data. That's exactly what the next section covers.

Working with Data Files
When you have a large amount of data, it's often difficult to handle the information and make it useful. As you saw with the

du command in the previous section, it's easy to get data overload when working with system commands.
The Linux system provides several command line tools to help you manage large amounts of data. This section covers the

basic commands that every system administrator—as well as any everyday Linux user—should know how to use to make their

lives easier.

Sorting Data
One popular function that comes in handy when working with large amounts of data is the sort command. The sort

command does what it says—it sorts data.
By default, the sort command sorts the data lines in a text file using standard sorting rules for the language you specify

www.it-ebooks.info

http://www.it-ebooks.info/

By default, the sort command sorts the data lines in a text file using standard sorting rules for the language you specify

as the default for the session.

 $ cat file1
 one
 two
 three
 four
 five
 $ sort file1
 five
 four
 one
 three
 two
 $
Pretty simple. However, things aren't always as easy as they appear. Take a look at this example:

 $ cat file2
 1
 2
 100
 45
 3
 10
 145
 75
 $ sort file2
 1
 10
 100
 145
 2
 3
 45
 75
 $
If you were expecting the numbers to sort in numerical order, you were disappointed. By default, the sort command

interprets numbers as characters and performs a standard character sort, producing output that might not be what you
want. To solve this problem, use the -n parameter, which tells the sort command to recognize numbers as numbers instead

of characters and to sort them based on their numerical values:

 $ sort -n file2
 1
 2
 3
 10
 45
 75

www.it-ebooks.info

http://www.it-ebooks.info/

 100
 145
 $
Now, that's much better! Another common parameter that's used is -M, the month sort. Linux log files usually contain a

timestamp at the beginning of the line to indicate when the event occurred:

 Sep 13 07:10:09 testbox smartd[2718]: Device: /dev/sda, opened
If you sort a file that uses timestamp dates using the default sort, you'll get something like this:

 $ sort file3
 Apr
 Aug
 Dec
 Feb
 Jan
 Jul
 Jun
 Mar
 May
 Nov
 Oct
 Sep
 $
Not exactly what you wanted. If you use the -M parameter, the sort command recognizes the three-character month

nomenclature, and sorts appropriately:

 $ sort -M file3
 Jan
 Feb
 Mar
 Apr
 May
 Jun
 Jul
 Aug
 Sep
 Oct
 Nov
 Dec
 $
There are several other handy sort parameters to use, as shown in Table 4.7.

Table 4.7 The sort Command Parameters

Single Dash Double Dash Description

-b --ignore-leading-blanks Ignore leading blanks when sorting.

-C --check = quiet Don't sort, but don't report if data is out of sort

www.it-ebooks.info

#c04_tbl_0007
#c04_tbl_anc_0007
http://www.it-ebooks.info/

Don't sort, but don't report if data is out of sort

order.

-c --check Don't sort, but check if the input data is already
sorted. Report if not sorted.

-d --dictionary-order Consider only blanks and alphanumeric
characters; don't consider special characters.

-f --ignore-case By default, sort orders capitalized letters first.
This parameter ignores case.

-g --general-numeric-sort Use general numerical value to sort.

-i --ignore-nonprinting Ignore nonprintable characters in the sort.

-k --key = POS1[,POS2] Sort based on position POS1, and end at POS2 if
specified.

-M --month-sort Sort by month order using three-character month
names.

-m --merge Merge two already sorted data files.

-n --numeric-sort Sort by string numerical value.

-o -output = file Write results to file specified.

-R --random-sort Sort by a random hash of keys.

--random-source = FILE Specify the file for random bytes used by the -R
parameter.

-r --reverse Reverse the sort order (descending instead of
ascending.

-S --buffer-size = SIZE Specify the amount of memory to use.

-s --stable Disable last-resort comparison.

-T --temporary-direction = DIR Specify a location to store temporary working
files.

-t --field-separator = SEP Specify the character used to distinguish key
positions.

-u --unique With the -c parameter, check for strict ordering;
without the -c parameter, output only the first
occurrence of two similar lines.

-z --zero-terminated End all lines with a NULL character instead of a
new line.

The -k and -t parameters are handy when sorting data that uses fields, such as the /etc/passwd file. Use the -t
parameter to specify the field separator character, and the -k parameter to specify which field to sort on. For example, to

sort the password file based on numerical userid, just do this:

 $ sort -t ‘:’ -k 3 -n /etc/passwd

www.it-ebooks.info

http://www.it-ebooks.info/

 root:x:0:0:root:/root:/bin/bash
 bin:x:1:1:bin:/bin:/sbin/nologin
 daemon:x:2:2:daemon:/sbin:/sbin/nologin
 adm:x:3:4:adm:/var/adm:/sbin/nologin
 lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
 sync:x:5:0:sync:/sbin:/bin/sync
 shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
 halt:x:7:0:halt:/sbin:/sbin/halt
 mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
 news:x:9:13:news:/etc/news:
 uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
 operator:x:11:0:operator:/root:/sbin/nologin
 games:x:12:100:games:/usr/games:/sbin/nologin
 gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
 ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
Now the data is perfectly sorted based on the third field, which is the numerical userid value.
The -n parameter is great for sorting numerical outputs, such as the output of the du command:

 $ du -sh * | sort -nr
 1008k mrtg-2.9.29.tar.gz
 972k bldg1
 888k fbs2.pdf
 760k Printtest
 680k rsync-2.6.6.tar.gz
 660k code
 516k fig1001.tiff
 496k test
 496k php-common-4.0.4pl1-6mdk.i586.rpm
 448k MesaGLUT-6.5.1.tar.gz
 400k plp
Notice that the -r option also sorts the values in descending order, so you can easily see what files are taking up the most

space in your directory.

Note

The pipe command (|) used in this example redirects the output of the du
command to the sort command. That's discussed in more detail in Chapter 10.

Searching for Data
Often in a large file, you have to look for a specific line of data buried somewhere in the middle of the file. Instead of
manually scrolling through the entire file, you can let the grep command search for you. The command line format for the

grep command is:

 grep [options] pattern [file]
The grep command searches either the input or the file you specify for lines that contain characters that match the

specified pattern. The output from grep is the lines that contain the matching pattern.
Here are two simple examples of using the grep command with the file1 file used in the “Sorting Data” section:

 $ grep three file1

www.it-ebooks.info

http://www.it-ebooks.info/

 three
 $ grep t file1
 two
 three
 $
The first example searches the file file1 for text matching the pattern three. The grep command produces the line that

contains the matching pattern. The next example searches the file file1 for the text matching the pattern t. In this case,

there were two lines that matched the specified pattern, and both are displayed.
Because of the popularity of the grep command, it has undergone lots of development changes over its lifetime. There

are lots of features that have been added to the grep command. If you look over the man pages for the grep command,

you'll see how versatile it really is.
If you want to reverse the search (output lines that don't match the pattern) use the -v parameter:

 $ grep -v t file1
 one
 four
 five
 $
If you need to find the line numbers where the matching patterns are found, use the -n parameter:

 $ grep -n t file1
 2:two
 3:three
 $
If you just need to see a count of how many lines contain the matching pattern, use the -c parameter:

 $ grep -c t file1
 2
 $
If you need to specify more than one matching pattern, use the -e parameter to specify each individual pattern:

 $ grep -e t -e f file1
 two
 three
 four
 five
 $
This example outputs lines that contain either the string t or the string f.
By default, the grep command uses basic Unix-style regular expressions to match patterns. A Unix-style regular

expression uses special characters to define how to look for matching patterns.
For a more detailed explanation of regular expressions, see Chapter 19.
Here's a simple example of using a regular expression in a grep search:

 $ grep [tf] file1
 two
 three
 four
 five
 $
The square brackets in the regular expression indicate that grep should look for matches that contain either a t or an f

www.it-ebooks.info

http://www.it-ebooks.info/

The square brackets in the regular expression indicate that grep should look for matches that contain either a t or an f

character. Without the regular expression, grep would search for text that would match the string tf.
The egrep command is an offshoot of grep, which allows you to specify POSIX extended regular expressions, which

contain more characters for specifying the matching pattern (again, see Chapter 19 for more details). The fgrep command is
another version that allows you to specify matching patterns as a list of fixed-string values, separated by newline characters.
This allows you to place a list of strings in a file and then use that list in the fgrep command to search for the strings in a

larger file.

Compressing Data
If you've done any work in the Microsoft Windows world, no doubt you've used zip files. It became such a popular feature
that Microsoft eventually incorporated it into the Windows XP operating system. The zip utility allows you to easily compress

large files (both text and executable) into smaller files that take up less space.
Linux contains several file compression utilities. While this may sound great, it often leads to confusion and chaos when

trying to download files. Table 4.8 lists the file compression utilities available for Linux.

Table 4.8 Linux File Compression Utilities

Utility File Extension Description

bzip2 .bz2 Uses the Burrows-Wheeler block sorting text compression
algorithm and Huffman coding

compress .Z Original Unix file compression utility; starting to fade away into
obscurity

gzip .gz The GNU Project's compression utility; uses Lempel-Ziv coding

zip .zip The Unix version of the PKZIP program for Windows

The compress file compression utility is not often found on Linux systems. If you download a file with a .Z extension,
you can usually install the compress package (called ncompress in many Linux distributions) using the software installation

methods discussed in Chapter 8, and then uncompress the file with the uncompress command.

The bzip2 Utility
The bzip2 utility is a relatively new compression package that is gaining popularity, especially when compressing large

binary files. The utilities in the bzip2 package are:
bzip2 for compressing files
bzcat for displaying the contents of compressed text files
bunzip2 for uncompressing compressed .bz2 files
bzip2recover for attempting to recover damaged compressed files

By default, the bzip2 command attempts to compress the original file and replaces it with the compressed file, using the

same file name with a .bz2 extension:

 $ ls -l myprog
 -rwxrwxr-x 1 rich rich 4882 2007-09-13 11:29 myprog
 $ bzip2 myprog
 $ ls -l my*
-rwxrwxr-x 1 rich rich 2378 2007-09-13 11:29 myprog.bz2
 $
The original size of the myprog program was 4882 bytes, and after the bzip2 compression it is now 2378 bytes. Also,

notice that the bzip2 command automatically renamed the original file with the .bz2 extension, indicating what

compression technique we used to compress it.
To uncompress the file, just use the bunzip2 command:

www.it-ebooks.info

#c04_tbl_0008
#c04_tbl_anc_0008
http://www.it-ebooks.info/

 $ bunzip2 myprog.bz2
 $ ls -l myprog
 -rwxrwxr-x 1 rich rich 4882 2007-09-13 11:29 myprog
 $
As you can see, the uncompressed file is back to the original file size. Once you compress a text file, you can't use the

standard cat, more, or less commands to view the data. Instead, you need to use the bzcat command:

 $ bzcat test.bz2
 This is a test text file.
 The quick brown fox jumps over the lazy dog.
 This is the end of the test text file.
 $
The bzcat command displays the text inside the compressed file without uncompressing the actual file.

The gzip Utility
By far the most popular file compression utility in Linux is the gzip utility. The gzip package is a creation of the GNU Project,

in their attempt to create a free version of the original Unix compress utility. This package includes the files:
gzip for compressing files
gzcat for displaying the contents of compressed text files
gunzip for uncompressing files

These utilities work the same way as the bzip2 utilities:

 $ gzip myprog
 $ ls -l my*
-rwxrwxr-x 1 rich rich 2197 2007-09-13 11:29 myprog.gz
 $
The gzip command compresses the file you specify on the command line. You can also specify more than one file name or

even use wildcard characters to compress multiple files at once:

 $ gzip my*
$ ls -l my*
-rwxr--r-- 1 rich rich 103 Sep 6 13:43 myprog.c.gz
 -rwxr-xr-x 1 rich rich 5178 Sep 6 13:43 myprog.gz
 -rwxr--r-- 1 rich rich 59 Sep 6 13:46 myscript.gz
 -rwxr--r-- 1 rich rich 60 Sep 6 13:44 myscript .gz
 $
The gzip command compresses every file in the directory that matches the wildcard pattern.

The zip Utility
The zip utility is compatible with the popular PKZIP package created by Phil Katz for MS-DOS and Windows. There are four

utilities in the Linux zip package:
zip creates a compressed file containing listed files and directories.
zipcloak creates an encrypted compress file containing listed files and directories.
zipnote extracts the comments from a zip file.
zipsplit splits a zip file into smaller files of a set size (used for copying large zip files to floppy disks).
unzip extracts files and directories from a compressed zip file.

To see all of the options available for the zip utility, just enter it by itself on the command line:

www.it-ebooks.info

http://www.it-ebooks.info/

 $ zip
 Copyright (C) 1990-2005 Info-ZIP
 Type ‘zip “-L”’ for software license.
 Zip 2.31 (March 8th 2005). Usage:
 zip [-options] [-b path] [-t mmddyyyy] [-n suffixes] [zipfile list]
 [-xi list]
 The default action is to add or replace zipfile entries from list,
 which can include the special name - to compress standard input.
 If zipfile and list are omitted, zip compresses stdin to stdout.
 -f freshen: only changed files -u update: only changed or new files
 -d delete entries in zipfile -m move into zipfile (delete files)
 -r recurse into directories -j junk directory names
 -0 store only -l convert LF to CR LF
 -1 compress faster -9 compress better
 -q quiet operation -v verbose operation
 -c add one-line comments -z add zipfile comment
 -@ read names from stdin -o make file as old as latest entry
 -x exclude the following names -i include only the following names
 -F fix zipfile (-FF try harder) -D do not add directory entries
 -A adjust self-extracting exe -J junk zipfile prefix (unzipsfx)
 -T test zipfile integrity -X eXclude eXtra file attributes
 -y store symbolic links as the link instead of the referenced file
 -R PKZIP recursion (see manual)
 -e encrypt -n don't compress these suffixes
 $
The power of the zip utility is its ability to compress entire directories of files into a single compressed file. This makes it

ideal for archiving entire directory structures:

 $ zip -r testzip test
 adding: test/ (stored 0%)
 adding: test/test1/ (stored 0%)
 adding: test/test1/myprog2 (stored 0%)
 adding: test/test1/myprog1 (stored 0%)
 adding: test/myprog.c (deflated 39%)
 adding: test/file3 (deflated 2%)
 adding: test/file4 (stored 0%)
 adding: test/test2/ (stored 0%)
 adding: test/file1.gz (stored 0%)
 adding: test/file2 (deflated 4%)
 adding: test/myprog.gz (stored 0%)
 $
This example creates the zip file named testzip.zip and recurses through the directory test, adding each file and

directory found to the zip file. Notice from the output that not all of the files stored in the zip file could be compressed. The

zip utility automatically determines the best compression type to use for each individual file.

Caution

www.it-ebooks.info

http://www.it-ebooks.info/

When you use the recursion feature in the zip command, files are stored in the same
directory structure in the zip file. Files contained in subdirectories are stored in the zip
file within the same subdirectories. You must be careful when extracting the files; the
unzip command will rebuild the entire directory structure in the new location. Sometimes
this gets confusing when you have lots of subdirectories and files.

Archiving Data
While the zip command works great for compressing and archiving data into a single file, it's not the standard utility used in

the Unix and Linux worlds. By far the most popular archiving tool used in Unix and Linux is the tar command.
The tar command was originally used to write files to a tape device for archiving. However, it can also write the output to

a file, which has become a popular way to archive data in Linux.
The following is the format of the tar command:

 tar function [options] object1 object2 …
The function parameter defines what the tar command should do, as shown in Table 4.9.

Table 4.9 The tar Command Functions

Function Long Name Description

-A --concatenate Append an existing tar archive file to another existing tar archive
file.

-c --create Create a new tar archive file.

-d --diff Check the differences between a tar archive file and the
filesystem.

--delete Delete from an existing tar archive file.

-r --append Append files to the end of an existing tar archive file.

-t --list List the contents of an existing tar archive file.

-u --update Append files to an existing tar archive file that are newer than a
file with the same name in the existing archive.

-x --extract Extract files from an existing archive file.

Each function uses options to define a specific behavior for the tar archive file. Table 4.10 lists the common options that you

can use with the tar command.

Table 4.10 The tar Command Options

Option Description

-C dir Change to the specified directory.

-f file Output results to file (or device) file.

-j Redirect output to the bzip2 command for compression.

-p Preserve all file permissions.

-v List files as they are processed.

www.it-ebooks.info

#c04_tbl_0009
#c04_tbl_anc_0009
#c04_tbl_0010
#c04_tbl_anc_0010
http://www.it-ebooks.info/

-z Redirect the output to the gzip command for compression.

These options are usually combined to create the following scenarios. First, you'll want to create an archive file using this

command:

 tar -cvf test.tar test/ test2/
The above command creates an archive file called test.tar containing the contents of both the test directory and the

test2 directory. Next, this command:

 tar -tf test.tar
lists (but doesn't extract) the contents of the tar file test.tar. Finally, this command:

 tar -xvf test.tar
extracts the contents of the tar file test.tar. If the tar file was created from a directory structure, the entire directory

structure is re-created starting at the current directory.
As you can see, using the tar command is a simple way to create archive files of entire directory structures. This is a

common method for distributing source code files for open source applications in the Linux world.

Tip

If you download open source software, often you'll see filenames that end in .tgz. These
are gzipped tar files, and can be extracted using the command tar -zxvf
filename.tgz.

Summary
This chapter discussed some of the more advanced bash commands used by Linux system administrators and programmers.
The ps and top commands are vital in determining the status of the system, allowing you to see what applications are

running and how many resources they are consuming.
In this day of removable media, another popular topic for system administrators is mounting storage devices. The mount

command allows you to mount a physical storage device into the Linux virtual directory structure. To remove the device, use

the umount command.
Finally, the chapter discussed various utilities used for handling data. The sort utility easily sorts large data files to help

you organize data, and the grep utility allows you to quickly scan through large data files looking for specific information.
There are a few different file compression utilities available in Linux, including bzip2, gzip, and zip. Each one allows you to
compress large files to help save space on your filesystem. The Linux tar utility is a popular way to archive directory

structures into a single file that can easily be ported to another system.
The next chapter discusses Linux environment variables. Environment variables allow you to access information about

the system from your scripts, as well as provide a convenient way to store data within your scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Using Linux Environment Variables

In This Chapter

What are environment variables?
Setting environment variables
Removing environment variables
Default shell environment variables
Setting the PATH environment variable
Locating system environment variables
Variable arrays
Using command aliases

Linux environment variables help define your Linux shell experience. However, they can be a confusing topic for new Linux
users. Many programs and scripts use environment variables to obtain system information and store temporary data and
configuration information. There are lots of places where environment variables are set on the Linux system, and it's
important to know where these places are. This chapter walks you through the world of Linux environment variables, showing
where they are, how to use them, and even how to create your own. The chapter finishes off with a related topic, defining and

using aliases in your shell session.

What Are Environment Variables?
The bash shell uses a feature called environment variables to store information about the shell session and the working
environment (thus the name environment variables). This feature also allows you to store data in memory that can be easily
accessed by any program or script running from the shell. This is a handy way to store persistent data that identifies features

of the user account, system, shell, or anything else you need to store.
There are two types of environment variables in the bash shell:

Global variables
Local variables

This section describes each type of environment variable, and shows how to see and use them.

Note

Even though the bash shell uses specific environment variables that are consistent,
different Linux distributions often add their own environment variables. The
environment variable examples you see in this chapter may differ slightly from
what's available in your specific distribution. If you run into an environment
variable not covered here, check the documentation for your Linux distribution.

Global Environment Variables
Global environment variables are visible from the shell session, and from any child processes that the shell spawns. Local
variables are only available in the shell that creates them. This makes global environment variables useful in applications that

spawn child processes that require information from the parent process.
The Linux system sets several global environment variables when you start your bash session (for more details about

what variables are started at that time, see the “Locating System Environment Variables” section later in this chapter). The

system environment variables always use all capital letters to differentiate them from normal user environment variables.
To view the global environment variables, use the printenv command:

$ printenv

www.it-ebooks.info

http://www.it-ebooks.info/

ORBIT_SOCKETDIR=/tmp/orbit-user
HOSTNAME=localhost.localdomain
IMSETTINGS_INTEGRATE_DESKTOP=yes
TERM=xterm
SHELL=/bin/bash
XDG_SESSION_COOKIE=787b3cf537971ef8462260960000006b-1284670942.440386-101
2435051
HISTSIZE=1000
GTK_RC_FILES=/etc/gtk/gtkrc:/home/user/.gtkrc-1.2-gnome2
WINDOWID=29360131
GNOME_KEYRING_CONTROL=/tmp/keyring-Egjauk
IMSETTINGS_MODULE=none
USER=user
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:
bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43
...
SSH_AUTH_SOCK=/tmp/keyring-Egjauk/ssh
SESSION_MANAGER=local/unix:@/tmp/.ICE-unix/1331,unix/unix:/tmp/.ICE-
unix/1331
USERNAME=user
DESKTOP_SESSION=gnome
MAIL=/var/spool/mail/user
PATH=/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin:
/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin
QT_IM_MODULE=xim
PWD=/home/user/Documents
XMODIFIERS=@im=none
GDM_KEYBOARD_LAYOUT=us
LANG=en_US.utf8
GNOME_KEYRING_PID=1324
GDM_LANG=en_US.utf8
GDMSESSION=gnome
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
HISTCONTROL=ignoredups
HOME=/home/user
SHLVL=2
GNOME_DESKTOP_SESSION_ID=this-is-deprecated
LOGNAME=user
DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-
ifKtHnDKnU,guid=6f061c07be822c134f12956b00000081
LESSOPEN=|/usr/bin/lesspipe.sh %s
WINDOWPATH=1
DISPLAY=:0.0
G_BROKEN_FILENAMES=1
XAUTHORITY=/var/run/gdm/auth-for-user-GIU7sE/database

www.it-ebooks.info

http://www.it-ebooks.info/

COLORTERM=gnome-terminal
_=/usr/bin/printenv
OLDPWD=/home/user
$
As you can see, there are lots of global environment variables that get set for the bash shell. Most of them are set by the

system during the login process.
To display the value of an individual environment variable, use the echo command. When referencing an environment

variable, you must place a dollar sign before the environment variable name:

$ echo $HOME
/home/user
$
As mentioned, global environment variables are also available to child processes running under the current shell session:

$ bash
$ echo $HOME
/home/user
$
In this example, after starting a new shell using the bash command, you displayed the current value of the HOME

environment variable, which the system sets when you log into the main shell. Sure enough, the value is also available from

the child shell process.

Local Environment Variables
Local environment variables, as their name implies, can be seen only in the local process in which they are defined. Even
though they are local, they are just as important as global environment variables. In fact, the Linux system also defines

standard local environment variables for you by default.
Trying to see the list of local environment variables is a little tricky. Unfortunately there isn't a command that displays

only local environment variables. The set command displays all of the environment variables set for a specific process.

However, this also includes the global environment variables.
Here's the output from a sample set command:

$ set
BASH=/bin/bash
BASHOPTS=checkwinsize:cmdhist:expand_aliases:extquote:
force_fignore:hostcomplete:interactive_comments:
progcomp:promptvars:sourcepath
BASH_ALIASES=()
BASH_ARGC=()
BASH_ARGV=()
BASH_CMDS=()
BASH_LINENO=()
BASH_SOURCE=()
BASH_VERSINFO=([0]=“4” [1]=“1” [2]=“7” [3]=“1”
[4]=“release” [5]=“i386-redhat-linux-gnu”)
BASH_VERSION=‘4.1.7(1)-release’
COLORS=/etc/DIR_COLORS
COLORTERM=gnome-terminal
COLUMNS=80
DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-

www.it-ebooks.info

http://www.it-ebooks.info/

ifKtHnDKnU,guid=6f061c07be822c134f12956b00000081
DESKTOP_SESSION=gnome
DIRSTACK=()
DISPLAY=:0.0
EUID=500
GDMSESSION=gnome
GDM_KEYBOARD_LAYOUT=us
GDM_LANG=en_US.utf8
GNOME_DESKTOP_SESSION_ID=this-is-deprecated
GNOME_KEYRING_CONTROL=/tmp/keyring-Egjauk
GNOME_KEYRING_PID=1324
GROUPS=()
GTK_RC_FILES=/etc/gtk/gtkrc:/home/user/.gtkrc-1.2-gnome2
G_BROKEN_FILENAMES=1
HISTCONTROL=ignoredups
HISTFILE=/home/user/.bash_history
HISTFILESIZE=1000
HISTSIZE=1000
HOME=/home/user
HOSTNAME=localhost.localdomain
HOSTTYPE=i386
IFS=$‘ \t\n’
IMSETTINGS_INTEGRATE_DESKTOP=yes
IMSETTINGS_MODULE=none
LANG=en_US.utf8
LESSOPEN=‘|/usr/bin/lesspipe.sh %s’
LINES=24
LOGNAME=user
LS_COLORS=‘rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:
bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43
...

MACHTYPE=i386-redhat-linux-gnu
MAIL=/var/spool/mail/user
MAILCHECK=60
OLDPWD=/home/user
OPTERR=1
OPTIND=1
ORBIT_SOCKETDIR=/tmp/orbit-user
OSTYPE=linux-gnu
PATH=/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin:
/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin
PIPESTATUS=([0]=“0”)
PPID=1674

www.it-ebooks.info

http://www.it-ebooks.info/

PROMPT_COMMAND=‘echo -ne “\033]0;${USER}@${HOSTNAME%%.*}:
${PWD/#$HOME/∼}“; echo -ne ”\007“’
PS1=‘[\u@\h \W]\$ ’
PS2=‘> ’
PS4=‘+ ’
PWD=/home/user/Documents
QT_IM_MODULE=xim
SESSION_MANAGER=local/unix:@/tmp/.ICE-unix/1331,unix/unix:/tmp/.ICE-
unix/1331
SHELL=/bin/bash
SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:interactive-
comments:monitor
SHLVL=2
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SSH_AUTH_SOCK=/tmp/keyring-Egjauk/ssh
TERM=xterm
UID=500
USER=user
USERNAME=user
WINDOWID=29360131
WINDOWPATH=1
XAUTHORITY=/var/run/gdm/auth-for-user-GIU7sE/database
XDG_SESSION_COOKIE=787b3cf537971ef8462260960000006b-1284670942.440386-101
2435051
XMODIFIERS=@im=none
_=printenv
colors=/etc/DIR_COLORS
__udisks ()
{
 local IFS=‘
’;
 local cur=“${COMP_WORDS[COMP_CWORD]}”;
 if [“${COMP_WORDS[$(($COMP_CWORD - 1))]}” = “--show-info”]; then
 COMPREPLY=($(compgen -W “$(udisks --enumerate-device-
files)” -- $cur));
 else
 if [“${COMP_WORDS[$(($COMP_CWORD - 1))]}” = “--inhibit-
polling”]; then
...
 fi;
 fi;
 fi;
 fi;
 fi
}

www.it-ebooks.info

http://www.it-ebooks.info/

command_not_found_handle ()
{
 runcnf=1;
 retval=127;
 [! -S /var/run/dbus/system_bus_socket] && runcnf=0;
 [! -x /usr/sbin/packagekitd] && runcnf=0;
 if [$runcnf -eq 1]; then
 /usr/libexec/pk-command-not-found $1;
 retval=$?;
 else
 echo “bash: $1: command not found”;
 fi;
 return $retval
}

$
You'll notice that all of the global environment variables seen from the printenv command appear in the output from

the set command. However, there are quite a few additional environment variables that now appear. These are the local

environment variables.

Setting Environment Variables
You can set your own environment variables directly from the bash shell. This section shows you how to create your own

environment variables and reference them from your interactive shell or shell script program.

Setting Local Environment Variables
Once you start a bash shell (or spawn a shell script), you're allowed to create local variables that are visible within your shell
process. You can assign either a numeric or a string value to an environment variable by assigning the variable to a value

using the equal sign:

$ test=testing
$ echo $test
testing
$
That was simple! Now any time you need to reference the value of the test environment variable, just reference it by the

name $test.
If you need to assign a string value that contains spaces, you'll need to use a single quotation mark to delineate the

beginning and the end of the string:

$ test=testing a long string
-bash: a: command not found
$ test=‘testing a long string’
$ echo $test
testing a long string
$
Without the single quotation marks, the bash shell assumes that the next character is another command to process. Notice

that for the local environment variable you defined, you used lowercase letters, while the system environment variables

you've seen so far have all used uppercase letters.
This is a standard convention in the bash shell. If you create new environment variables, it is recommended (but not

required) that you use lowercase letters. This helps distinguish your personal environment variables from the scores of

system environment variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Caution

It's extremely important that there are no spaces between the environment variable
name, the equal sign, and the value. If you put any spaces in the assignment, the bash shell
interprets the value as a separate command:

$ test2 = test
-bash: test2: command not found
$

Once you set a local environment variable, it's available for use anywhere within your shell process. However, if you spawn

another shell, it's not available in the child shell:

$ bash
$ echo $test

$ exit
exit
$ echo $test
testing a long string
$
In this example, you started a child shell. As you can see, the test environment variable is not available in the child shell (it

contains a blank value). After you exited the child shell and returned to the original shell, the local environment variable was

still available.
Similarly, if you set a local environment variable in a child process, once you leave the child process the local environment

variable is no longer available:

$ bash
$ test=testing
$ echo $test
testing
$ exit
exit
$ echo $test

$
The test environment variable set in the child shell doesn't exist when we go back to the parent shell.

Setting Global Environment Variables
Global environment variables are visible from any child processes created by the process that sets the global environment
variable. The method used to create a global environment variable is to create a local environment variable and then export

it to the global environment.
This is done by using the export command:

$ echo $test
testing a long string
$ export test
$ bash
$ echo $test
testing a long string
$

www.it-ebooks.info

http://www.it-ebooks.info/

After exporting the local environment variable test, we started a child shell process and viewed the value of the test

environment variable. This time, the environment variable kept its value, as the export command made it global.

Caution

Notice that when exporting a local environment variable, you don't use the dollar sign to
reference the variable's name.

Removing Environment Variables
Of course, if you can create a new environment variable, it makes sense that you can also remove an existing environment

variable. You can do this with the unset command:

$ echo $test
testing
$ unset test
$ echo $test

$
When referencing the environment variable in the unset command, remember not to use the dollar sign.
When dealing with global environment variables, things get a little tricky. If you're in a child process and unset a global

environment variable, it applies only to the child process. The global environment variable is still available in the parent

process:

$ test=testing
$ export test
$ bash
$ echo $test
testing
$ unset test
$ echo $test

$ exit
exit
$ echo $test
testing
$
In this example, you set a local environment variable called test, and then exported it to make it a global environment

variable. You then started a child shell process and checked to make sure that the global environment variable test was still
available. Next, while still in the child shell, you used the unset command to remove the global environment variable test,
and then exited the child shell. Now back in the original parent shell, you checked the test environment variable value, and it is

still valid.

Default Shell Environment Variables
There are specific environment variables that the bash shell uses by default to define the system environment. You can always
count on these variables being set on your Linux system. Because the bash shell is a derivative of the original Unix Bourne

shell, it also includes environment variables originally defined in that shell.
Table 5.1 shows the environment variables the bash shell provides that are compatible with the original Unix Bourne shell.

Table 5.1 The bash Shell Bourne Variables

Variable Description

CDPATH A colon-separated list of directories used as a search path for the cd command.

www.it-ebooks.info

#c05_tbl_0001
#c05_tbl_anc_0001
http://www.it-ebooks.info/

HOME The current user's home directory.

IFS A list of characters that separate fields used by the shell to split text strings.

MAIL The file name for the current user's mailbox. The bash shell checks this file for new
mail.

MAILPATH A colon-separated list of multiple file names for the current user's mailbox. The
bash shell checks each file in this list for new mail.

OPTARG The value of the last option argument processed by the getopts command.

OPTIND The index value of the last option argument processed by the getopts command.

PATH A colon-separated list of directories where the shell looks for commands.

PS1 The primary shell command line interface prompt string.

PS2 The secondary shell command line interface prompt string.

By far the most important environment variable in this list is the PATH environment variable. When you enter a command
in the shell command line interface (CLI), the shell must search the system to find the program. The PATH environment
variable defines the directories it searches looking for commands. On my Linux system, the PATH environment variable looks

like this:

$ echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin:
/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin

$
This shows that there are six directories where the shell looks for commands. Each directory in the PATH is separated by a

colon. There's nothing at the end of the PATH variable indicating the end of the directory listing. You can add additional
directories to the PATH simply by adding another colon, and adding the new directory. The PATH also shows the order in

which it looks for commands.
Besides the default Bourne environment variables, the bash shell also provides a few variables of its own, as shown in

Table 5.2.

Table 5.2 The bash Shell Environment Variables

Variable Description

BASH The full pathname to execute the current instance of the bash
shell.

BASH_ALIASES An associative array of currently set aliases.

BASH_ARGC A variable array that contains the number of parameters being
passed to a subroutine or shell script.

BASH_ARCV A variable array that contains the parameters being passed to a
subroutine or shell script.

BASH_CMDS An associative array of locations of commands the shell has
executed.

BASH_COMMAND The shell command currently being or about to be executed.

www.it-ebooks.info

#c05_tbl_0002
#c05_tbl_anc_0002
http://www.it-ebooks.info/

BASH_ENV When set, each bash script attempts to execute a startup file
defined by this variable before running.

BASH_EXECUTION_STRING The command(s) passed using the bash -c option.

BASH_LINENO A variable array containing the source code line number of the
currently executing shell function.

BASH_REMATCH A read-only variable array containing patterns and their
subpatterns for positive matches using the regular expression
comparison operator, =∼.

BASH_SOURCE A variable array containing the source code file name of the
currently executing shell function.

BASH_SUBSHELL The current nesting level of a subshell environment. The initial
value is 0.

BASH_VERSION The version number of the current instance of the bash shell.

BASH_VERSINFO A variable array that contains the individual major and minor
version numbers of the current instance of the bash shell.

BASH_XTRACEFD If set to a valid file descriptor (0,1,2), then trace output generated
from the ‘set -x’ debugging option can be redirected. This is
often used to separate trace output into a file.

BASHOPTS A list of bash shell options that are currently enabled.

BASHPID Process ID of the current bash process.

COLUMNS Contains the terminal width of the terminal used for the current
instance of the bash shell.

COMP_CWORD An index into the variable COMP_WORDS, which contains the current
cursor position.

COMP_LINE The current command line.

COMP_POINT The index of the current cursor position relative to the beginning
of the current command.

COMP_KEY The final key used to invoke the current completion of a shell
function.

COMP_TYPE An integer value representing the type of completion attempted
that caused a completion shell function to be invoked.

COMP_WORDBREAKS The Readline library word separator characters for performing
word completion.

COMP_WORDS A variable array that contains the individual words on the current
command line.

COMPREPLY A variable array that contains the possible completion codes
generated by a shell function.

www.it-ebooks.info

http://www.it-ebooks.info/

DIRSTACK A variable array that contains the current contents of the
directory stack.

EMACS Indicates the emacs shell buffer is executing and line editing is
disabled, when set to ‘t’.

EUID The numeric effective user ID of the current user.

FCEDIT The default editor used by the fc command.

FIGNORE A colon-separated list of suffixes to ignore when performing file
name completion.

FUNCNAME The name of the currently executing shell function.

GLOBIGNORE A colon-separated list of patterns defining the set of file names to
be ignored by file name expansion.

GROUPS A variable array containing the list of groups of which the current
user is a member.

histchars Up to three characters, which control history expansion.

HISTCMD The history number of the current command.

HISTCONTROL Controls what commands are entered in the shell history list.

HISTFILE The name of the file to save the shell history list (.bash_history
by default).

HISTFILESIZE The maximum number of lines to save in the history file.

HISTIGNORE A colon-separated list of patterns used to decide which commands
are ignored for the history file.

HISTSIZE The maximum number of commands stored in the history file.

HOSTFILE Contains the name of the file that should be read when the shell
needs to complete a hostname.

HOSTNAME The name of the current host.

HOSTTYPE A string describing the machine the bash shell is running on.

IGNOREEOF The number of consecutive EOF characters the shell must receive
before exiting. If this value doesn't exist, the default is 1.

INPUTRC The name of the Readline initialization file (the default is
.inputrc).

LANG The locale category for the shell.

LC_ALL Overrides the LANG variable, defining a locale category.

LC_COLLATE Sets the collation order used when sorting string values.

LC_CTYPE Determines the interpretation of characters used in file name

www.it-ebooks.info

http://www.it-ebooks.info/

Determines the interpretation of characters used in file name

expansion and pattern matching.

LC_MESSAGES Determines the locale setting used when interpreting double-
quoted strings preceded by a dollar sign.

LC_NUMERIC Determines the locale setting used when formatting numbers.

LINENO The line number in a script currently executing.

LINES Defines the number of lines available on the terminal.

MACHTYPE A string defining the system type in cpu-company-system format.

MAILCHECK How often (in seconds) the shell should check for new mail (default
is 60).

OLDPWD The previous working directory used in the shell.

OPTERR If set to 1, the bash shell displays errors generated by the getopts
command.

OSTYPE A string defining the operating system the shell is running on.

PIPESTATUS A variable array containing a list of exit status values from the
processes in the foreground process.

POSIXLY_CORRECT If set, bash starts in POSIX mode.

PPID The process ID (PID) of the bash shell's parent process.

PROMPT_COMMAND If set, the command to execute before displaying the primary
prompt.

PROMPT_DIRTRIM An integer used to indicate the number of trailing directory names
to display when using the \w and \W prompt string escapes. The
directory names removed are replaced with one set of ellipses.

PS3 The prompt to use for the select command.

PS4 The prompt displayed before the command line is echoed if the
bash -x parameter is used.

PWD The current working directory.

RANDOM Returns a random number between 0 and 32767. Assigning a value
to this variable seeds the random number generator.

REPLY The default variable for the read command.

SECONDS The number of seconds since the shell was started. Assigning a
value resets the timer to the value.

SHELL The full path name to the bash shell.

SHELLOPTS A colon-separated list of enabled bash shell options.

SHLVL Indicates the shell level, incremented by one each time a new bash

www.it-ebooks.info

http://www.it-ebooks.info/

Indicates the shell level, incremented by one each time a new bash

shell is started.

TIMEFORMAT A format specifying how the shell displays time values.

TMOUT The value of how long (in seconds) the select and read commands
should wait for input. The default of zero indicates to wait
indefinitely.

TMPDIR Directory name where the bash shell creates temporary files for its
use.

UID The numeric real user ID of the current user.

You may notice that not all of the default environment variables are shown when the set command was used. The reason

for this is that although these are the default environment variables, not all of them are required to contain a value.

Setting the PATH Environment Variable
The PATH environment variable seems to cause the most problem on Linux systems. It defines where the shell looks for

commands you enter on the command line. If it can't find the command, it produces an error message:

$ myprog
-bash: myprog: command not found
$
The problem is that often applications place their executable programs in directories that aren't in the PATH environment

variable. The trick is ensuring that your PATH environment variable includes all of the directories where your applications

reside.
You can add new search directories to the existing PATH environment variable without having to rebuild it from scratch.

The individual directories listed in the PATH are separated by a colon. All you need to do is reference the original PATH value

and add any new directories to the string. This looks something like this:

$ echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin:
/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin

$ PATH=$PATH:/home/user/test
$ echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin:
/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin:/home/user/test
$ myprog
The factorial of 5 is 120.
$
By adding the directory to the PATH environment variable, you can now execute your program from anywhere in the

virtual directory structure:

[user@localhost ∼]$ cd /etc
[user@localhost etc]$ myprog
The factorial of 5 is 120
[user@localhost etc]$
A common trick for programmers is to include the single dot symbol in their PATH environment variable. The single dot

symbol represents the current directory (see Chapter 3):

[user@localhost ∼]$ PATH=$PATH:.
[user@localhost ∼]$ cd test2

www.it-ebooks.info

http://www.it-ebooks.info/

[user@localhost test2]$ myprog2
The factorial of 6 is 720
[user@localhost test2]$
In the next section, you'll see how you can make changes to environment variables permanent on your system, so you can

always execute your programs.

Locating System Environment Variables
The Linux system uses environment variables to identify itself in programs and scripts. This provides a convenient way to

obtain system information for your programs. The trick is in how these environment variables are set.
When you start a bash shell by logging in to the Linux system, by default bash checks several files for commands. These

files are called startup files. The startup files bash processes depend on the method you use to start the bash shell. There are

three ways of starting a bash shell:
As a default login shell at login time
As an interactive shell that is not the login shell
As a non-interactive shell to run a script

The following sections describe the startup files the bash shell executes in each of these startup methods.

Login Shell
When you log in to the Linux system, the bash shell starts as a login shell. The login shell looks for four different startup files

to process commands from. The following is the order in which the bash shell processes the files:
/etc/profile
$HOME/.bash_profile
$HOME/.bash_login
$HOME/.profile

The /etc/profile file is the main default startup file for the bash shell on the system. Every user on the system
executes this startup file when they log in. The other three startup files are specific for each user and can be customized for

each user's requirements. Let's take a closer look at these files.

The /etc/profile File
The /etc/profile file is the main default startup file for the bash shell. Whenever you log in to the Linux system, bash
executes the commands in the /etc/profile startup file. Different Linux distributions place different commands in this

file. On this Linux system, it looks like this:

$ cat /etc/profile
/etc/profile

System wide environment and startup programs, for login setup
Functions and aliases go in /etc/bashrc

It's NOT good idea to change this file unless you know what you
are doing. Much better way is to create custom.sh shell script in
/etc/profile.d/ to make custom changes to environment. This will
prevent need for merging in future updates.

pathmunge () {
 case “:${PATH}:” in
 :“$1”:)
 ;;

www.it-ebooks.info

http://www.it-ebooks.info/

 *)
 if [“$2” = “after”] ; then
 PATH=$PATH:$1
 else
 PATH=$1:$PATH
 fi
 esac
}

if [-x /usr/bin/id]; then
 if [-z “$EUID”]; then
 # ksh workaround
 EUID=‘id -u‘
 UID=‘id -ru‘
 fi
 USER=“‘id -un‘”
 LOGNAME=$USER
 MAIL=“/var/spool/mail/$USER”
fi

Path manipulation
if [“$EUID“ = “0”]; then
 pathmunge /sbin
 pathmunge /usr/sbin
 pathmunge /usr/local/sbin
else
 pathmunge /usr/local/sbin after
 pathmunge /usr/sbin after
 pathmunge /sbin after
fi

HOSTNAME=‘/bin/hostname 2>/dev/null‘
HISTSIZE=1000
if [“$HISTCONTROL“ = “ignorespace”] ; then
 export HISTCONTROL=ignoreboth
else
 export HISTCONTROL=ignoredups
fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL

for i in /etc/profile.d/*.sh ; do
 if [-r “$i”]; then
 if [“$PS1”]; then

www.it-ebooks.info

http://www.it-ebooks.info/

 . $i
 else
 . $i >/dev/null 2>&1
 fi
 fi
done

unset i
unset pathmunge
$
Most of the commands and scripts you see in this file are covered in more detail later on in Chapter 10. The important

thing to notice now is the environment variables that are set in this startup file. Notice the export line near the bottom of the

file:

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL
This ensures that these environment variables are available to all child processes spawned from the login shell.
There's also another tricky feature that the profile file uses. There's a for statement that iterates through any files

located in the /etc/profile.d directory. (for statements are discussed in detail in Chapter 12.) This provides a place for
the Linux system to place application-specific startup files that will be executed by the shell when you log in. On this Linux

system, the following files are in the profile.d directory:

$ ls -l /etc/profile.d
total 72
-rw-r--r--. 1 root root 1133 Apr 28 10:43 colorls.csh
-rw-r--r--. 1 root root 1143 Apr 28 10:43 colorls.sh
-rw-r--r--. 1 root root 192 Sep 9 2004 glib2.csh
-rw-r--r--. 1 root root 192 Dec 12 2005 glib2.sh
-rw-r--r--. 1 root root 58 May 31 06:23 gnome-ssh-askpass.csh
-rw-r--r--. 1 root root 70 May 31 06:23 gnome-ssh-askpass.sh
-rw-r--r--. 1 root root 184 Aug 25 11:36 krb5-workstation.csh
-rw-r--r--. 1 root root 57 Aug 25 11:36 krb5-workstation.sh
-rw-r--r--. 1 root root 1741 Jun 24 15:20 lang.csh
-rw-r--r--. 1 root root 2706 Jun 24 15:20 lang.sh
-rw-r--r--. 1 root root 122 Feb 7 2007 less.csh
-rw-r--r--. 1 root root 108 Feb 7 2007 less.sh
-rw-r--r--. 1 root root 837 Sep 2 05:24 PackageKit.sh
-rw-r--r--. 1 root root 2142 Aug 10 16:41 udisks-bash-completion.sh
-rw-r--r--. 1 root root 74 Mar 25 19:24 vim.csh
-rw-r--r--. 1 root root 248 Mar 25 19:24 vim.sh
-rw-r--r--. 1 root root 161 Nov 27 2007 which2.csh
-rw-r--r--. 1 root root 169 Nov 27 2007 which2.sh
$
You'll notice that these are mostly related to specific applications on the system. Most applications create two startup

files, one for the bash shell (using the .sh extension) and one for the c shell (using the .csh extension).
The lang.csh and lang.sh files attempt to determine the default language character set used on the system, and set

the LANG environment variable appropriately.

The $HOME Startup Files

www.it-ebooks.info

http://www.it-ebooks.info/

The remaining three startup files are all used for the same function—to provide a user-specific startup file for defining user-

specific environment variables. Most Linux distributions use only one of these three startup files:
$HOME/.bash_profile
$HOME/.bash_login
$HOME/.profile

Notice that all three files start with a dot, making them hidden files (they don't appear in a normal ls command listing).
Because they are in the user's HOME directory, each user can edit the files and add his or her own environment variables that

are active for every bash shell session they start.
This Linux system contains the following .bash_profile file:

$ cat .bash_profile
.bash_profile

Get the aliases and functions
if [-f ∼/.bashrc]; then
 . ∼/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin

export PATH
$
The .bash_profile startup file first checks to see if there's another startup file present in the HOME directory, called

.bashrc (which we'll talk about next in the “Interactive Shell” section). If it's there, the startup file executes the commands in
it. Next, the startup file adds a directory to the PATH environment variable, providing a common location to place executable

files in your HOME directory.

Interactive Shell
If you start a bash shell without logging into a system (such as if you just type bash at a CLI prompt), you start what's called
an interactive shell. The interactive shell doesn't act like the login shell, but it still provides a CLI prompt for you to enter

commands.
If bash is started as an interactive shell, it doesn't process the /etc/profile file. Instead, it checks for the .bashrc file

in the user's HOME directory.
On this Linux distribution, this file looks like this:

$ cat .bashrc

.bashrc
Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific aliases and functions
$
The .bashrc file does two things. First, it checks for a common bashrc file in the /etc directory. Second, it provides a

place for the user to enter personal aliases (discussed later in the “Using Command Aliases” section) and private script

www.it-ebooks.info

http://www.it-ebooks.info/

place for the user to enter personal aliases (discussed later in the “Using Command Aliases” section) and private script

functions (described in Chapter 16).
The common /etc/bashrc startup file is run by everyone on the system who starts an interactive shell session. On this

Linux distribution it looks like this:

$ cat /etc/bashrc
/etc/bashrc

System wide functions and aliases
Environment stuff goes in /etc/profile

It's NOT good idea to change this file unless you know what you
are doing. Much better way is to create custom.sh shell script in
/etc/profile.d/ to make custom changes to environment. This will
prevent need for merging in future updates.

By default, we want this to get set.
Even for non-interactive, non-login shells.
Current threshold for system reserved uid/gids is 200
You could check uidgid reservation validity in
/usr/share/doc/setup-*/uidgid file
if [$UID -gt 199] && [“‘id -gn‘” = “‘id -un‘”]; then
 umask 002
else
 umask 022
fi

are we an interactive shell?
if [“$PS1”]; then
 case $TERM in
 xterm*)
 if [-e /etc/sysconfig/bash-prompt-xterm]; then
 PROMPT_COMMAND=/etc/sysconfig/bash-prompt-xterm
 else
 PROMPT_COMMAND=‘echo -ne
“\033]0;${USER}@${HOSTNAME%%.*}:
${PWD/#$HOME/∼}”; echo -ne “\007”’
 fi
 ;;
 screen)
 if [-e /etc/sysconfig/bash-prompt-screen]; then
 PROMPT_COMMAND=/etc/sysconfig/bash-prompt-screen
 else
 PROMPT_COMMAND=‘echo -ne
“\033_${USER}@${HOSTNAME%%.*}:
${PWD/#$HOME/∼}”; echo -ne “\033\\”’

www.it-ebooks.info

http://www.it-ebooks.info/

 fi
 ;;
 *)
 [-e /etc/sysconfig/bash-prompt-default] &&
PROMPT_COMMAND=/etc/sysconfig/bash-prompt-default
 ;;
 esac
 # Turn on checkwinsize
 shopt -s checkwinsize
 [“$PS1” = “\\s-\\v\\\$ ”] && PS1=“[\u@\h \W]\\$ ”
 # You might want to have e.g. tty in prompt (e.g. more virtual machin
es)
 # and console windows
 # If you want to do so, just add e.g.
 # if [“$PS1”]; then
 # PS1=“[\u@\h:\1 \W]\\$ ”
 # fi
 # to your custom modification shell script in /etc/profile.d/ directo
ry
fi

if ! shopt -q login_shell ; then # We're not a login shell
 # Need to redefine pathmunge, it get's undefined at the end of /etc/p
rofile
 pathmunge () {
 case “:${PATH}:” in
 :“$1”:)
 ;;
 *)
 if [“$2” = “after”] ; then
 PATH=$PATH:$1
 else
 PATH=$1:$PATH
 fi
 esac
 }

 # Only display echos from profile.d scripts if we are no login shell
 # and interactive - otherwise just process them to set envvars
 for i in /etc/profile.d/*.sh; do
 if [-r “$i”]; then
 if [“$PS1”]; then
 . $i
 else
 . $i >/dev/null 2>&1

www.it-ebooks.info

http://www.it-ebooks.info/

 fi
 fi
 done

 unset i
 unset pathmunge
fi
vim:ts=4:sw=4
$
The default file sets a few environment variables, but notice that it doesn't use the export command to make them

global. Remember, the interactive shell startup file runs each time a new interactive shell starts; thus, any child shell will

automatically execute the interactive shell startup file.
You'll also notice that the /etc/bashrc file also executes the application-specific startup files located in the

/etc/profile.d directory.

Non-Interactive Shell
Finally, the last type of shell is a non-interactive shell. This is the shell that the system starts to execute a shell script. This is
different in that there isn't a CLI prompt to worry about. However, there may still be specific startup commands you want to

run each time you start a script on your system.
To accommodate that situation, the bash shell provides the BASH_ENV environment variable. When the shell starts a non-

interactive shell process, it checks this environment variable for the name of a startup file to execute. If one is present, the

shell executes the commands in the file. On our Linux distribution, this environment value is not set by default.

Variable Arrays
A really cool feature of environment variables is that they can be used as arrays. An array is a variable that can hold multiple

values. Values can be referenced either individually or as a whole for the entire array.
To set multiple values for an environment variable, just list them in parentheses, with each value separated by a space:

$ mytest=(one two three four five)
$
Not much excitement there. If you try to display the array as a normal environment variable, you'll be disappointed:

$ echo $mytest
one
$
Only the first value in the array appears. To reference an individual array element, you must use a numerical index value,

which represents its place in the array. The numeric value is enclosed in square brackets:

$ echo ${mytest[2]}
three
$

Caution

Environment variable arrays start with an index value of zero. This often gets confusing.

To display an entire array variable, you use the asterisk wildcard character as the index value:

$ echo ${mytest[*]}
one two three four five
$
You can also change the value of an individual index position:

www.it-ebooks.info

http://www.it-ebooks.info/

$ mytest[2]=seven
$ echo ${mytest[*]}
one two seven four five
$
You can even use the unset command to remove an individual value within the array, but be careful, as this gets tricky.

Watch this example:

$ unset mytest[2]
$ echo ${mytest[*]}
one two four five
$
$ echo ${mytest[2]}

$ echo ${mytest[3]}
four
$
This example uses the unset command to remove the value at index value 2. When you display the array, it appears that

the other index values just dropped down one. However, if you specifically display the data at index value 2, you'll see that

that location is empty.
Finally, you can remove the entire array just by using the array name in the unset command:

$ unset mytest
$ echo ${mytest[*]}

$
Sometimes variable arrays just complicate matters, so they're often not used in shell script programming. They're not very

portable to other shell environments, which is a downside if you do lots of shell programming for different shells. There are a
couple of bash system environment variables that use arrays (such as BASH_VERSINFO), but overall you probably won't run

into them very often.

Using Command Aliases
While not officially environment variables, shell command aliases behave in much the same manner. A command alias allows

you to create an alias name for common commands (along with their parameters) to help keep your typing to a minimum.
Most likely, your Linux distribution has already set some common command aliases for you. To see a list of the active

aliases, use the alias command with the -p parameter:

$ alias -p
alias l.=‘ls -d .* --color=auto’
alias ll=‘ls -l --color=auto’
alias ls=‘ls --color=auto’
alias vi=‘vim’
alias which=‘alias | /usr/bin/which --tty-only --read-alias --show-dot
 --show-tilde’
$
Notice that on this Linux distribution, an alias is used to override the standard ls command. It automatically provides the

--color parameter, indicating that the terminal supports color mode listings.
You can create your own aliases by using the alias command:

$ alias li=‘ls -il’
$ li
total 32

www.it-ebooks.info

http://www.it-ebooks.info/

75 drwxr-xr-x. 2 user user 4096 Sep 16 13:11 Desktop
79 drwxr-xr-x. 2 user user 4096 Sep 20 15:40 Documents
76 drwxr-xr-x. 2 user user 4096 Sep 15 13:30 Downloads
80 drwxr-xr-x. 2 user user 4096 Sep 15 13:30 Music
81 drwxr-xr-x. 2 user user 4096 Sep 15 13:30 Pictures
78 drwxr-xr-x. 2 user user 4096 Sep 15 13:30 Public
77 drwxr-xr-x. 2 user user 4096 Sep 15 13:30 Templates
82 drwxr-xr-x. 2 user user 4096 Sep 15 13:30 Videos
$
Once you define an alias value, you can use it at any time in your shell, including in shell scripts.
Command aliases act like local environment variables. They're only valid for the shell process in which they're defined:

$ alias li=‘ls -il’
$ bash
$ li
bash: li: command not found
$
Of course, now you know a way to solve that problem. The bash shell always reads the $HOME/.bashrc startup file when

starting a new interactive shell. This is a great place to put command alias statements (as was pointed out in the .bashrc

file comments).

Summary
This chapter examined the world of Linux environment variables. Global environment variables can be accessed from any
child process spawned by the process they're defined in. Local environment variables can only be accessed from the process in

which they're defined.
The Linux system uses both global and local environment variables to store information about the system environment.

You can access this information from the shell command line interface, as well as within shell scripts. The bash shell uses the
system environment variables defined in the original Unix Bourne shell, as well as lots of new environment variables. The
PATH environment variable defines the search pattern the bash shell takes to find an executable command. You can modify
the PATH environment variable to add your own directories, or even the current directory symbol, to make running your

programs easier.
You can also create your own global and local environment variables for your own use. Once you create an environment

variable, it's accessible for the entire duration of your shell session.
There are several startup files that the bash shell executes when it starts up. These startup files can contain environment

variable definitions to set standard environment variables for each bash session. When you log in to the Linux system, the
bash shell accesses the /etc/profile startup file, and also three local startup files for each user, $HOME/.bash_profile,
$HOME/.bash_login, and $HOME/.profile. Users can customize these files to include environment variables and

startup scripts for their own use.
The bash shell also provides for environment variable arrays. These environment variables can contain multiple values in

a single variable. You can access the values either individually by referencing an index value or as a whole by referencing the

entire environment variable array name.
Finally, the chapter discussed the use of command aliases. While not environment variables, command aliases behave

much like environment variables. They allow you to define an alias name for a command, along with its parameters. Instead
of having to type in a long command and parameters, you can just assign it to a simple alias and use the alias at any time in

your shell session.
The next chapter dives into the world of Linux file permissions. This is possibly the most difficult topic for novice Linux

users. However, to write good shell scripts, you need to understand how file permissions work and be able to use them in

your Linux system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Understanding Linux File Permissions

In This Chapter

Understanding Linux security
Decoding the permissions
Working with Linux groups

No system is complete without some form of security. There must be a mechanism available to protect files from
unauthorized viewing or modification. The Linux system follows the Unix method of file permissions, allowing individual
users and groups access to files based on a set of security settings for each file and directory. This chapter discusses how to

use the Linux file security system to protect data when necessary and share data when desired.

Linux Security
The core of the Linux security system is the user account. Each individual who accesses a Linux system should have a unique user

account assigned. The permissions users have to objects on the system depend on the user account they log in with.
User permissions are tracked using a user ID (often called a UID), which is assigned to an account when it's created. The UID

is a numerical value, unique for each user. However, you don't log in to a Linux system using your UID. Instead, you use a
login name. The login name is an alphanumeric text string of eight characters or fewer that the user uses to log in to the

system (along with an associated password).
The Linux system uses special files and utilities to track and manage user accounts on the system. Before we can discuss

file permissions, we need to discuss how Linux handles user accounts. This section describes the files and utilities required for

user accounts so that you can understand how to use them when working with file permissions.

The /etc/passwd File
The Linux system uses a special file to match the login name to a corresponding UID value. This file is the /etc/passwd file.
The /etc/passwd file contains several pieces of information about the user. Here's what a typical /etc/passwd file looks

like on a Linux system:

 $ cat /etc/passwd
 root:x:0:0:root:/root:/bin/bash
 bin:x:1:1:bin:/bin:/sbin/nologin
 daemon:x:2:2:daemon:/sbin:/sbin/nologin
 adm:x:3:4:adm:/var/adm:/sbin/nologin
 lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
 sync:x:5:0:sync:/sbin:/bin/sync
 shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
 halt:x:7:0:halt:/sbin:/sbin/halt
 mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
 news:x:9:13:news:/etc/news:
 uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
 operator:x:11:0:operator:/root:/sbin/nologin
 games:x:12:100:games:/usr/games:/sbin/nologin
 gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
 ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
 nobody:x:99:99:Nobody:/:/sbin/nologin

www.it-ebooks.info

http://www.it-ebooks.info/

 rpm:x:37:37::/var/lib/rpm:/sbin/nologin
 vcsa:x:69:69:virtual console memory owner:/dev:/sbin/nologin
 mailnull:x:47:47::/var/spool/mqueue:/sbin/nologin
 smmsp:x:51:51::/var/spool/mqueue:/sbin/nologin
 apache:x:48:48:Apache:/var/www:/sbin/nologin
 rpc:x:32:32:Rpcbind Daemon:/var/lib/rpcbind:/sbin/nologin
 ntp:x:38:38::/etc/ntp:/sbin/nologin
 nscd:x:28:28:NSCD Daemon:/:/sbin/nologin
 tcpdump:x:72:72::/:/sbin/nologin
 dbus:x:81:81:System message bus:/:/sbin/nologin
 avahi:x:70:70:Avahi daemon:/:/sbin/nologin
 hsqldb:x:96:96::/var/lib/hsqldb:/sbin/nologin
 sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
 rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
 nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
 haldaemon:x:68:68:HAL daemon:/:/sbin/nologin
 xfs:x:43:43:X Font Server:/etc/X11/fs:/sbin/nologin
 gdm:x:42:42::/var/gdm:/sbin/nologin
 rich:x:500:500:Rich Blum:/home/rich:/bin/bash
 mama:x:501:501:Mama:/home/mama:/bin/bash
 katie:x:502:502:katie:/home/katie:/bin/bash
 jessica:x:503:503:Jessica:/home/jessica:/bin/bash
 mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash
 $
The root user account is the administrator for the Linux system and is always assigned UID 0. As you can see, the Linux

system creates lots of user accounts for various functions that aren't actual users. These are called system accounts. A system
account is a special account that services running on the system use to gain access to resources on the system. All services that

run in background mode need to be logged in to the Linux system under a system user account.
Before security became a big issue, these services often just logged in using the root user account. Unfortunately, if an

unauthorized person broke into one of these services, he instantly gained access to the system as the root user. To prevent
this, now just about every service that runs in background on a Linux server has its own user account to log in with. This way, if

a troublemaker does compromise a service, he still can't necessarily get access to the whole system.
Linux reserves UIDs below 500 for system accounts. Some services even require specific UIDs to work properly. When you

create accounts for normal users, most Linux systems assign the first available UID starting at 500 (although this is not

necessarily true for all Linux distributions).
You probably noticed that the /etc/passwd file contains lots more than just the login name and UID for the user. The

fields of the /etc/passwd file contain the following information:
The login username
The password for the user
The numerical UID of the user account
The numerical group ID (GID) of the user account
A text description of the user account (called the comment field)
The location of the HOME directory for the user
The default shell for the user

The password field in the /etc/passwd file is set to an x. This doesn't mean that all of the user accounts have the same
password. In the old days of Linux, the /etc/passwd file contained an encrypted version of the user's password. However,
since lots of programs need to access the /etc/passwd file for user information, this became somewhat of a security
problem. With the advent of software that could easily decrypt encrypted passwords, the bad guys had a field day trying to

break user passwords stored in the /etc/passwd file. Linux developers needed to rethink that policy.

www.it-ebooks.info

http://www.it-ebooks.info/

Now, most Linux systems hold user passwords in a separate file (called the shadow file, located at /etc/shadow). Only

special programs (such as the login program) are allowed access to this file.
As you can see, the /etc/passwd file is a standard text file. You can use any text editor to manually perform user

management functions (such as adding, modifying, or removing user accounts) directly in the /etc/passwd file. However,
this is an extremely dangerous practice. If the /etc/passwd file becomes corrupt, the system won't be able to read it, and it
will prevent anyone (even the root user) from logging in. Instead, it's safer to use the standard Linux user management

utilities to perform all user management functions.

The /etc/shadow File
The /etc/shadow file provides more control over how the Linux system manages passwords. Only the root user has access

to the /etc/shadow file, making it more secure than the /etc/passwd file.
The /etc/shadow file contains one record for each user account on the system. A record looks like this:

 rich:1.FfcK0ns$f1UgiyHQ25wrB/hykCn020:11627:0:99999:7:::
There are nine fields in each /etc/shadow file record:

The login name corresponding to the login name in the /etc/passwd file
The encrypted password
The number of days since January 1, 1970, that the password was last changed
The minimum number of days before the password can be changed
The number of days before the password must be changed
The number of days before password expiration that the user is warned to change the password
The number of days after a password expires before the account will be disabled
The date (stored as the number of days since January 1, 1970) since the user account was disabled
A field reserved for future use

Using the shadow password system, the Linux system has much finer control over user passwords. It can control how

often a user must change his or her password, and when to disable the account if the password hasn't been changed.

Adding a New User
The primary tool used to add new users to your Linux system is useradd. This command provides an easy way to create a
new user account and set up the user's HOME directory structure all at once. The useradd command uses a combination of
system default values and command line parameters to define a user account. To see the system default values used on your

Linux distribution, enter the useradd command with the -D parameter:

 # /usr/sbin/useradd -D
 GROUP=100
 HOME=/home
 INACTIVE=-1
 EXPIRE=
 SHELL=/bin/bash
 SKEL=/etc/skel
 CREATE_MAIL_SPOOL=yes
 #

Note

Some Linux distributions place the Linux user and group utilities in the
/usr/sbin directory, which may not be in your PATH environment variable. If
that's the case in your Linux distribution, either add the directory to your PATH or
use the absolute filepath to run it.

The -D parameter shows what defaults the useradd command uses if you don't specify them in the command line when

www.it-ebooks.info

http://www.it-ebooks.info/

The -D parameter shows what defaults the useradd command uses if you don't specify them in the command line when

creating a new user account. This example shows the following default values:
The new user will be added to a common group with group ID 100.
The new user will have a HOME account created in the directory /home/loginname.
The account will not be disabled when the password expires.
The new account will not be set to expire at a set date.
The new account will use the bash shell as the default shell.
The system will copy the contents of the /etc/skel directory to the user's HOME directory.
The system will create a file in the mail directory for the user account to receive mail.

The penultimate value is interesting. The useradd command allows an administrator to create a default HOME directory
configuration and then uses that as a template to create the new user's HOME directory. This allows you to place default files
for the system in every new user's HOME directory automatically. In the Ubuntu Linux system, the /etc/skel directory has

the following files:

$ ls -al /etc/skel
total 32
drwxr-xr-x 2 root root 4096 2010-04-29 08:26 .
drwxr-xr-x 135 root root 12288 2010-09-23 18:49 ..
-rw-r--r-- 1 root root 220 2010-04-18 21:51 .bash_logout
-rw-r--r-- 1 root root 3103 2010-04-18 21:51 .bashrc
-rw-r--r-- 1 root root 179 2010-03-26 08:31 examples.desktop
-rw-r--r-- 1 root root 675 2010-04-18 21:51 .profile
$
You should recognize these files from Chapter 5. These are the standard startup files for the bash shell environment. The

system automatically copies these default files into every user's HOME directory you create.
You can test this by creating a new user account using the default system parameters and then looking at the HOME

directory for the new user:

useradd -m test
ls -al /home/test
total 24
drwxr-xr-x 2 test test 4096 2010-09-23 19:01 .
drwxr-xr-x 4 root root 4096 2010-09-23 19:01 ..
-rw-r--r-- 1 test test 220 2010-04-18 21:51 .bash_logout
-rw-r--r-- 1 test test 3103 2010-04-18 21:51 .bashrc
-rw-r--r-- 1 test test 179 2010-03-26 08:31 examples.desktop
-rw-r--r-- 1 test test 675 2010-04-18 21:51 .profile

By default, the useradd command doesn't create a HOME directory, but the –m command line option tells it to create the

HOME directory. As you can see in the example, the useradd command created the new HOME directory, using the files

contained in the /etc/skel directory.

Note

To run the user account administration commands in this chapter, you either need
to be logged in as the special root user account or use the sudo command to run
the commands as the root user account.

If you want to override a default value or behavior when creating a new user, you can do that with command line

parameters. These are shown in Table 6.1.

Table 6.1 The useradd Command Line Parameters

www.it-ebooks.info

#c06_tbl_0001
#c06_tbl_anc_0001
http://www.it-ebooks.info/

Parameter Description

-c comment Add text to the new user's comment field.

-d home_dir Specify a different name for the home directory other than the login
name.

-e expire_date Specify a date, in YYYY-MM-DD format, when the account will expire.

-f inactive_days Specify the number of days after a password expires when the account
will be disabled. A value of 0 disables the account as soon as the password
expires; a value of -1 disables this feature.

-g initial_group Specify the group name or GID of the user's login group.

-G group . . . Specify one or more supplementary groups the user belongs to.

-k Copy the /etc/skel directory contents into the user's HOME directory
(must use -m as well).

-m Create the user's HOME directory.

-M Don't create a user's HOME directory (used if the default setting is to
create one).

-n Create a new group using the same name as the user's login name.

-r Create a system account

-p passwd Specify a default password for the user account.

-s shell Specify the default login shell.

-u uid Specify a unique UID for the account.

As you can see, you can override all of the system default values when creating a new user account just by using
command line parameters. However, if you find yourself having to override a value all the time, it's easier to just change the

system default value.
You can change the system default new user values by using the -D parameter, along with a parameter representing the

value you need to change. These parameters are shown in Table 6.2.

Table 6.2 The useradd Change Default Values Parameters

Parameter Description

-b default_home Change the location where users' HOME directories are created.

-e expiration_date Change the expiration date on new accounts.

-f inactive Change the number of days after a password has expired before the
account is disabled.

-g group Change the default group name or GID used.

-s shell Change the default login shell.

Changing the default values is a snap:

www.it-ebooks.info

#c06_tbl_0002
#c06_tbl_anc_0002
http://www.it-ebooks.info/

 # useradd -D -s /bin/tsch
 # useradd -D
 GROUP=100
 HOME=/home
 INACTIVE=-1
 EXPIRE=
 SHELL=/bin/tsch
 SKEL=/etc/skel
 CREATE_MAIL_SPOOL=yes
 #
Now, the useradd command will use the tsch shell as the default login shell for all new user accounts you create.

Removing a User
If you want to remove a user from the system, the userdel command is what you need. By default, the userdel command

removes only the user information from the /etc/passwd file. It doesn't remove any files the account owns on the system.
If you use the -r parameter, userdel will remove the user's HOME directory, along with the user's mail directory.

However, there may still be other files owned by the deleted user account on the system. This can be a problem in some

environments.
Here's an example of using the userdel command to remove an existing user account:

 # /usr/sbin/userdel -r test
 # ls -al /home/test
 ls: cannot access /home/test: No such file or directory
 #
After using the -r parameter, the user's old /home/test directory no longer exists.

Caution

Be careful when using the -r parameter in an environment with lots of users. You never
know if a user had important files stored in his or her HOME directory that are used by
someone else or another program. Always check before removing a user's HOME directory!

Modifying a User
Linux provides a few different utilities for modifying the information for existing user accounts. Table 6.3 shows these

utilities.

Table 6.3 User Account Modification Utilities

Command Description

usermod Edits user account fields, as well as specifying primary and secondary group
membership

passwd Changes the password for an existing user

chpasswd Reads a file of login name and password pairs, and updates the passwords

chage Changes the password's expiration date

chfn Changes the user account's comment information

www.it-ebooks.info

#c06_tbl_0003
#c06_tbl_anc_0003
http://www.it-ebooks.info/

chsh Changes the user account's default shell

Each of these utilities provides a specific function for changing information about user accounts. The following sections

describe each of these utilities.

usermod
The usermod command is the most robust of the user account modification utilities. It provides options for changing most
of the fields in the /etc/passwd file. To do that, you just need to use the command line parameter that corresponds to the
value you want to change. The parameters are mostly the same as the useradd parameters (such as -c to change the
comment field, -e to change the expiration date, and -g to change the default login group). However, there are a couple of

additional parameters that might come in handy:
-l to change the login name of the user account
-L to lock the account so the user can't log in
-p to change the password for the account
-U to unlock the account so that the user can log in

The -L parameter is especially handy. Use this to lock an account so that a user can't log in without having to remove the

account and the user's data. To return the account to normal, just use the -U parameter.

passwd and chpasswd

A quick way to change just the password for a user is the passwd command:

 # passwd test
 Changing password for user test.
 New UNIX password:
 Retype new UNIX password:
 passwd: all authentication tokens updated successfully.
 #
If you just use the passwd command by itself, it will change your own password. Any user in the system can change his or

her own password, but only the root user can change someone else's password.
The -e option is a handy way to force a user to change the password on the next log in. This allows you to set the user's

password to a simple value and then force them to change it to something harder that they can remember.
If you ever need to do a mass password change for lots of users on the system, the chpasswd command can be a

lifesaver. The chpasswd command reads a list of login name and password pairs (separated by a colon) from the standard
input automatically encrypts the password, and sets it for the user account. You can also use the redirection command to

redirect a file of userid:password pairs into the command:

chpasswd < users.txt

chsh, chfn, and chage
The chsh, chfn, and chage utilities are specialized for specific account modification functions. The chsh command allows
you to quickly change the default login shell for a user. You must use the full pathname for the shell, and not just the shell

name:

 # chsh -s /bin/csh test
 Changing shell for test.
 Shell changed.
 #
The chfn command provides a standard method for storing information in the comments field in the /etc/passwd file.

Instead of just inserting random text, such as names or nicknames, or even just leaving the comment field blank, the chfn

www.it-ebooks.info

http://www.it-ebooks.info/

Instead of just inserting random text, such as names or nicknames, or even just leaving the comment field blank, the chfn

command uses specific information used in the Unix finger command to store information in the comment field. The

finger command allows you to easily find information about people on your Linux system:

 # finger rich
 Login: rich Name: Rich Blum
 Directory: /home/rich Shell: /bin/bash
 On since Thu Sep 20 18:03 (EDT) on pts/0 from 192.168.1.2
 No mail.
 No Plan.
 #

Note

Because of security concerns, many Linux system administrators disable the
finger command on their systems.

If you use the chfn command with no parameters, it queries you for the appropriate values to enter in to the comment

field:

 # chfn test
 Changing finger information for test.
 Name []: Ima Test
 Office []: Director of Technology
 Office Phone []: (123)555-1234
 Home Phone []: (123)555-9876

 Finger information changed.
 # finger test
 Login: test Name: Ima Test
 Directory: /home/test Shell: /bin/csh
 Office: Director of Technology Office Phone: (123)555-1234
 Home Phone: (123)555-9876
 Never logged in.
 No mail.
 No Plan.
 #
If you now look at the entry in the /etc/passwd file, it looks like this:

 # grep test /etc/passwd
 test:x:504:504:Ima Test,Director of Technology,(123)555-
 1234,(123)555-9876:/home/test:/bin/csh
 #
All of the finger information is neatly stored away in the /etc/passwd file entry.
Finally, the chage command helps you manage the password aging process for user accounts. There are several

parameters to set individual values, shown in Table 6.4.

Table 6.4 The chage Command Parameters

Parameter Description

-d Set the number of days since the password was last changed.

www.it-ebooks.info

#c06_tbl_0004
#c06_tbl_anc_0004
http://www.it-ebooks.info/

-E Set the date the password will expire.

-I Set the number of days of inactivity after the password expires to lock the
account.

-m Set the minimum number of days between password changes.

-W Set the number of days before the password expires that a warning message
appears.

The chage date values can be expressed using one of two methods:
A date in YYYY-MM-DD format
A numerical value representing the number of days since January 1, 1970

One neat feature of the chage command is that it allows you to set an expiration date for an account. Using this feature,
you can create temporary user accounts that automatically expire on a set date, without your having to remember to delete

them! Expired accounts are similar to locked accounts. The account still exists, but the user can't log in with it.

Using Linux Groups
User accounts are great for controlling security for individual users, but they aren't so good at allowing groups of users to

share resources. To accomplish this, the Linux system uses another security concept, called groups.
Group permissions allow multiple users to share a common set of permissions for an object on the system, such as a file,

directory, or device (more on that later in the “Decoding File Permissions” section).
Linux distributions differ somewhat on how they handle default group memberships. Some Linux distributions create just

one group that contains all of the user accounts as members. You need to be careful if your Linux distribution does this, as
your files may be readable by all other users on the system. Other distributions create a separate user account for each user

to provide a little more security.
Each group has a unique GID, which, like UIDs, is a unique numerical value on the system. Along with the GID, each group

has a unique group name. There are a few group utilities you can use to create and manage your own groups on the Linux
system. This section discusses how group information is stored and how to use the group utilities to create new groups and

modify existing groups.

The /etc/group File
Just like user accounts, group information is stored in a file on the system. The /etc/group file contains information about

each group used on the system. Here are a few examples from a typical /etc/group file on a Linux system:

 root:x:0:root
 bin:x:1:root,bin,daemon
 daemon:x:2:root,bin,daemon
 sys:x:3:root,bin,adm
 adm:x:4:root,adm,daemon
 rich:x:500:
 mama:x:501:
 katie:x:502:
 jessica:x:503:
 mysql:x:27:
 test:x:504:
Like UIDs, GIDs are assigned using a special format. Groups used for system accounts are assigned GIDs below 500, and

user groups are assigned GIDs starting at 500. The /etc/group file uses four fields:
The group name
The group password
The GID

www.it-ebooks.info

http://www.it-ebooks.info/

The list of user accounts that belong to the group
The group password allows a non-group member to temporarily become a member of the group by using the password.

This feature is not used all that commonly, but it does exist.
You should never add users to groups by editing the /etc/group file. Instead, use the usermod command (discussed

earlier in the “Linux Security” section) to add a user account to a group. Before you can add users to different groups, you

must create the groups.

Note

The list of user accounts is somewhat misleading. You'll notice that there are
several groups in the list that don't have any users listed. This isn't because they
don't have any members. When a user account uses a group as the default group in
the /etc/passwd file, the user account doesn't appear in the /etc/group file
as a member. This has caused confusion for more than one system administrator
over the years!

Creating New Groups

The groupadd command allows you to create new groups on your system:

 # /usr/sbin/groupadd shared
 # tail /etc/group
 haldaemon:x:68:
 xfs:x:43:
 gdm:x:42:
 rich:x:500:
 mama:x:501:
 katie:x:502:
 jessica:x:503:
 mysql:x:27:
 test:x:504:
 shared:x:505:
 #
When you create a new group, there are no users assigned to it by default. The groupadd command doesn't provide an

option for adding user accounts to the group. Instead, to add new users, use the usermod command:

 # /usr/sbin/usermod -G shared rich
 # /usr/sbin/usermod -G shared test
 # tail /etc/group
 haldaemon:x:68:
 xfs:x:43:
 gdm:x:42:
 rich:x:500:
 mama:x:501:
 katie:x:502:
 jessica:x:503:
 mysql:x:27:
 test:x:504:
 shared:x:505:rich, test
 #

www.it-ebooks.info

http://www.it-ebooks.info/

The shared group now has two members, test and rich. The -G parameter in usermod appends the new group to the list

of groups for the user account.

Note

If you change the user groups for an account that is currently logged into the
system, the user will have to log out then back in for the group changes to take
effect.

Caution

Be careful when assigning groups for user accounts. If you use the -g parameter, the
group name you specify replaces the default group for the user account. The -G
parameter adds the group to the list of groups the user belongs to, keeping the default
group intact.

Modifying Groups
As you can see from the /etc/group file, there isn't too much information about a group for you to modify. The groupmod
command allows you to change the GID (using the -g parameter) or the group name (using the -n parameter) of an existing

group:

 # /usr/sbin/groupmod -n sharing shared
 # tail /etc/group
 haldaemon:x:68:
 xfs:x:43:
 gdm:x:42:
 rich:x:500:
 mama:x:501:
 katie:x:502:
 jessica:x:503:
 mysql:x:27:
 test:x:504:
 sharing:x:505:test,rich
 #
When changing the name of a group, the GID and group members remain the same, only the group name changes.

Because all security permissions are based on the GID, you can change the name of a group as often as you wish without

adversely affecting file security.

Decoding File Permissions
Now that you know about users and groups, it's time to decode the cryptic file permissions you've seen when using the ls

command. This section describes how to decipher the permissions and where they come from.

Using File Permission Symbols
If you remember from Chapter 3, the ls command allows you to see the file permissions for files, directories, and devices on

the Linux system:

 $ ls -l
 total 68
 -rw-rw-r-- 1 rich rich 50 2010-09-13 07:49 file1.gz
 -rw-rw-r-- 1 rich rich 23 2010-09-13 07:50 file2
 -rw-rw-r-- 1 rich rich 48 2010-09-13 07:56 file3

www.it-ebooks.info

http://www.it-ebooks.info/

 -rw-rw-r-- 1 rich rich 34 2010-09-13 08:59 file4
 -rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog
 -rw-rw-r-- 1 rich rich 237 2010-09-18 13:58 myprog.c
 drwxrwxr-x 2 rich rich 4096 2010-09-03 15:12 test1
 drwxrwxr-x 2 rich rich 4096 2010-09-03 15:12 test2
 $
The first field in the output listing is a code that describes the permissions for the files and directories. The first character in

the field defines the type of the object:
- for files
d for directories
l for links
c for character devices
b for block devices
n for network devices

After that, there are three sets of three characters. Each set of three characters defines an access permission triplet:
r for read permission for the object
w for write permission for the object
x for execute permission for the object

If a permission is denied, a dash appears in the location. The three sets relate the three levels of security for the object:
The owner of the object
The group that owns the object
Everyone else on the system

This is broken down in Figure 6.1.

Figure 6.1 The Linux file permissions

The easiest way to discuss this is to take an example and decode the file permissions one by one:

 -rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog
The file myprog has the following sets of permissions:

rwx for the file owner (set to the login name rich)
rwx for the file group owner (set to the group name rich)
r-x for everyone else on the system

These permissions indicate that the user login name rich can read, write, and execute the file (considered full permissions).
Likewise, members in the group rich can also read, write, and execute the file. However, anyone else not in the rich group can
only read and execute the file; the w is replaced with a dash, indicating that write permissions are not assigned to this security

level.

www.it-ebooks.info

#c06_fig_0001
#c06_fig_anc_0001
http://www.it-ebooks.info/

Default File Permissions
You may be wondering about where these file permissions come from. The answer is umask. The umask command sets the

default permissions for any file or directory you create:

 $ touch newfile
 $ ls -al newfile
 -rw-r--r-- 1 rich rich 0 Sep 20 19:16 newfile
 $
The touch command created the file using the default permissions assigned to my user account. The umask command

shows and sets the default permissions:

 $ umask
 0022
 $
Unfortunately, the umask command setting isn't overtly clear, and trying to understand exactly how it works makes

things even muddier. The first digit represents a special security feature called the sticky bit. We'll talk more about that

later on in this chapter in the “Sharing Files” section.
The next three digits represent the octal values of the umask for a file or directory. To understand how umask works, you

first need to understand octal mode security settings.
Octal mode security settings take the three rwx permission values and convert them into a 3-bit binary value,

represented by a single octal value. In the binary representation, each position is a binary bit. Thus, if the read permission is
the only permission set, the value becomes r--, relating to a binary value of 100, indicating the octal value of 4. Table 6.5

shows the possible combinations you'll run into.

Table 6.5 Linux File Permission Codes

Octal mode takes the octal permissions and lists three of them in order for the three security levels (user, group, and
everyone). Thus, the octal mode value 664 represents read and write permissions for the user and group, but read-only

permission for everyone else.
Now that you know about octal mode permissions, the umask value becomes even more confusing. The octal mode

www.it-ebooks.info

#c06_tbl_0005
#c06_tbl_anc_0005
http://www.it-ebooks.info/

Now that you know about octal mode permissions, the umask value becomes even more confusing. The octal mode

shown for the default umask on my Linux system is 0022, but the file I created had an octal mode permission of 644. How did

that happen?
The umask value is just that, a mask. It masks out the permissions you don't want to give to the security level. Now we have

to dive into some octal arithmetic to figure out the rest of the story.
The umask value is subtracted from the full permission set for an object. The full permission for a file is mode 666

(read/write permission for all), but for a directory it's 777 (read/write/execute permission for all).
Thus, in the example, the file starts out with permissions 666, and the umask of 022 is applied, leaving a file permission of

644.
The umask value is normally set in the /etc/profile startup file (see Chapter 5). You can specify a different default

umask setting using the umask command:

 $ umask 026
 $ touch newfile2
 $ ls -l newfile2
 -rw-r----- 1 rich rich 0 Sep 20 19:46 newfile2
 $
By setting the umask value to 026, the default file permissions become 640, so the new file now is restricted to read-only

for the group members, and everyone else on the system has no permissions to the file.
The umask value also applies to making new directories:

 $ mkdir newdir
 $ ls -l
 drwxr-x--x 2 rich rich 4096 Sep 20 20:11 newdir/
 $
Because the default permissions for a directory are 777, the resulting permissions from the umask are different from

those of a new file. The 026 umask value is subtracted from 777, leaving the 751 directory permission setting.

Changing Security Settings
If you've already created a file or directory and need to change the security settings on it, there are a few different utilities
available in Linux. This section shows you how to change the existing permissions, the default owner, and the default group

settings for a file or directory.

Changing Permissions
The chmod command allows you to change the security settings for files and directories. The format of the chmod command

is:

 chmod options mode file
The mode parameter allows you to set the security settings using either octal or symbolic mode. The octal mode settings

are pretty straightforward; just use the standard three-digit octal code you want the file to have:

 $ chmod 760 newfile
 $ ls -l newfile
 -rwxrw---- 1 rich rich 0 Sep 20 19:16 newfile
$
The octal file permissions are automatically applied to the file indicated. The symbolic mode permissions are not so easy to

implement.
Instead of using the normal string of three sets of three characters, the chmod command takes a different approach. The

following is the format for specifying a permission in symbolic mode:

 [ugoa…][[+-=][rwxXstugo…]
Makes perfectly good sense, doesn't it? The first group of characters defines to whom the new permissions apply:

u for the user
g for the group

www.it-ebooks.info

http://www.it-ebooks.info/

o for others (everyone else)
a for all of the above

Next, a symbol is used to indicate whether you want to add the permission to the existing permissions (+), subtract the

permission from the existing permission (–), or set the permissions to the value (=).
Finally, the third symbol is the permission used for the setting. You may notice that there are more than the normal rwx

values here. The additional settings are:
X to assign execute permissions only if the object is a directory or if it already had execute permissions
s to set the UID or GID on execution
t to save program text
u to set the permissions to the owner's permissions
g to set the permissions to the group's permissions
o to set the permissions to the other's permissions

Using these permissions looks like this:

 $ chmod o+r newfile
 $ ls -l newfile
 -rwxrw-r-- 1 rich rich 0 Sep 20 19:16 newfile
$
The o+r entry adds the read permission to whatever permissions the everyone security level already had.

 $ chmod u-x newfile
 $ ls -l newfile
 -rw-rw-r-- 1 rich rich 0 Sep 20 19:16 newfile
 $
The u-x entry removes the execute permission that the user already had. Note that the settings for the ls command

indicate if a file has execution permissions by adding an asterisk to the file name.
The options parameters provide a few additional features to augment the behavior of the chmod command. The -R

parameter performs the file and directory changes recursively. You can use wildcard characters for the file name specified,

changing the permissions on multiple files with just one command.

Changing Ownership
Sometimes you need to change the owner of a file, such as when someone leaves an organization or a developer creates an
application that needs to be owned by a system account when it's in production. Linux provides two commands for doing
that. The chown command makes it easy to change the owner of a file, and the chgrp command allows you to change the

default group of a file.
The format of the chown command is:

 chown options owner[.group] file
You can specify either the login name or the numeric UID for the new owner of the file:

 # chown dan newfile
 # ls -l newfile
 -rw-rw-r-- 1 dan rich 0 Sep 20 19:16 newfile

Simple. The chown command also allows you to change both the user and group of a file:

 # chown dan.shared newfile
 # ls -l newfile
 -rw-rw-r-- 1 dan shared 0 Sep 20 19:16 newfile

www.it-ebooks.info

http://www.it-ebooks.info/

If you really want to get tricky, you can just change the default group for a file:

 # chown .rich newfile
 # ls -l newfile
 -rw-rw-r-- 1 dan rich 0 Sep 20 19:16 newfile

Finally, if your Linux system uses individual group names that match user login names, you can change both with just one

entry:

 # chown test. newfile
 # ls -l newfile
 -rw-rw-r-- 1 test test 0 Sep 20 19:16 newfile

The chown command uses a few different option parameters. The -R parameter allows you to make changes recursively

through subdirectories and files, using a wildcard character. The -h parameter also changes the ownership of any files that are

symbolically linked to the file.

Note

Only the root user can change the owner of a file. Any user can change the default
group of a file, but the user must be a member of the groups the file is changed
from and to.

The chgrp command provides an easy way to change just the default group for a file or directory:

 $ chgrp shared newfile
 $ ls -l newfile
 -rw-rw-r-- 1 rich shared 0 Sep 20 19:16 newfile
$
Now any member in the shared group can write to the file. This is one way to share files on a Linux system. However,

sharing files among a group of people on the system can get tricky. The next section discusses how to do this.

Sharing Files
As you've probably already figured out, creating groups is the way to share access to files on the Linux system. However, for a

complete file-sharing environment, things are more complicated.
As you've already seen in the “Decoding File Permissions” section, when you create a new file, Linux assigns the file

permissions of the new file using your default UID and GID. To allow others access to the file, you need to either change the

security permissions for the everyone security group or assign the file a different default group that contains other users.
This can be a pain in a large environment if you want to create and share documents among several people. Fortunately,

there's a simple solution for how to solve this problem.
There are three additional bits of information that Linux stores for each file and directory:

The set user id (SUID): When a file is executed by a user, the program runs under the permissions of the file owner.
The set group id (SGID): For a file, the program runs under the permissions of the file group. For a directory, new

files created in the directory use the directory group as the default group.
The sticky bit: The file remains (sticks) in memory after the process ends.

The SGID bit is important for sharing files. By enabling the SGID bit, you can force all new files created in a shared

directory to be owned by the directory's group and now the individual user's group.
The SGID is set using the chmod command. It's added to the beginning of the standard three-digit octal value (making a

four-digit octal value), or you can use the symbol s in symbolic mode.
If you're using octal mode, you'll need to know the arrangement of the bits, shown in Table 6.6.

Table 6.6 The chmod SUID, SGID, and Sticky Bit Octal Values

Binary Octal Description

www.it-ebooks.info

#c06_tbl_0006
#c06_tbl_anc_0006
http://www.it-ebooks.info/

000 0 All bits are cleared.

001 1 The sticky bit is set.

010 2 The SGID bit is set.

011 3 The SGID and sticky bits are set.

100 4 The SUID bit is set.

101 5 The SUID and sticky bits are set.

110 6 The SUID and SGID bits are set.

111 7 All bits are set.

So, to create a shared directory that always sets the directory group for all new files, all you need to do is set the SGID bit

for the directory:

 $ mkdir testdir
 $ ls -l
 drwxrwxr-x 2 rich rich 4096 Sep 20 23:12 testdir/
 $ chgrp shared testdir
 $ chmod g+s testdir
 $ ls -l
 drwxrwsr-x 2 rich shared 4096 Sep 20 23:12 testdir/
 $ umask 002
 $ cd testdir
 $ touch testfile
 $ ls -l
 total 0
 -rw-rw-r-- 1 rich shared 0 Sep 20 23:13 testfile
 $
The first step is to create a directory that you want to share using the mkdir command. Next, the chgrp command is used

to change the default group for the directory to a group that contains the members who need to share files. Finally, the SGID

bit is set for the directory to ensure that any files created in the directory use the shared group name as the default group.
For this environment to work properly, all of the group members need to have their umask values set to make files

writable by group members. In the preceding example, the umask is changed to 002 so that the files are writable by the

group.
After all that's done, any member of the group can go to the shared directory and create a new file. As expected, the new

file uses the default group of the directory, not the user account's default group. Now any user in the shared group can

access this file.

Summary
This chapter discussed the command line commands you need to know to manage the Linux security on your system. Linux
uses a system of user IDs and group IDs to protect access to files, directories, and devices. Linux stores information about
user accounts in the /etc/passwd file and information about groups in the /etc/group file. Each user is assigned a
unique numeric user ID, along with a text login name to identify the user in the system. Groups are also assigned unique
numerical group IDs, and text group names. A group can contain one or more users to allowed shared access to system

resources.
There are several commands available for managing user accounts and groups. The useradd command allows you to

create new user accounts, and the groupadd command allows you to create new group accounts. To modify an existing user

account, use the usermod command. Similarly, the groupmod command is used to modify group account information.
Linux uses a complicated system of bits to determine access permissions for files and directories. Each file contains three

www.it-ebooks.info

http://www.it-ebooks.info/

Linux uses a complicated system of bits to determine access permissions for files and directories. Each file contains three

security levels of protection: the file's owner, a default group that has access to the file, and a level for everyone else on the
system. Each security level is defined by three access bits: read, write, and execute. The combination of three bits is often
referred to by the symbols rwx, for read, write, and execute. If a permission is denied, its symbol is replaced with a dash (such

as r-- for read-only permission).
The symbolic permissions are often referred to as octal values, with the three bits combined into one octal value and

three octal values representing the three security levels. The umask command is used to set the default security settings for
files and directories created on the system. The system administrator normally sets a default umask value in the

/etc/profile file, but you can use the umask command to change your umask value at any time.
The chmod command is used to change security settings for files and directories. Only the file's owner can change

permissions for a file or directory. However, the root user can change the security settings for any file or directory on the

system. The chown and chgrp commands can be used to change the default owner and group of the file.
Finally, the chapter closed out with a discussion on how to use the set GID bit to create a shared directory. The SGID bit

forces any new files or directories created in a directory to use the default group name of the parent directory, not that of

the user who created them. This provides an easy way to share files between users on the system.
Now that you're up to speed with file permissions, it's time to take a closer look at how to work with the actual filesystem

in Linux. The next chapter shows you how to create new partitions in Linux from the command line and then how to format

the new partitions so that they can be used in the Linux virtual directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Managing Filesystems

In This Chapter

What is a filesystem?
Linux filesystems
Filesystem commands

When you're working with your Linux system, one of the decisions you'll need to make is what filesystems to use for the
storage devices. Most Linux distributions kindly provide a default filesystem for you at installation time, and most beginning

Linux users just use that by default without giving the topic another thought.
While using the default filesystem choice isn't necessarily a bad thing, sometimes it helps to know the other options

available to you. This chapter discusses the different filesystem options you have available in the Linux world and shows you

how to create and manage them from the Linux command line.

Exploring Linux Filesystems
Chapter 3 discussed how Linux uses a filesystem to store files and folders on a storage device. The filesystem provides a way
for Linux to bridge the gap between the ones and zeroes stored in the hard drive and the files and folders you work with in

your applications.
Linux supports several types of filesystems to manage files and folders. Each filesystem implements the virtual directory

structure on storage devices using slightly different features. This section walks you through the strengths and weaknesses

of the more common filesystems used in the Linux environment.

The Basic Linux Filesystems
The original Linux system used a simple filesystem that mimicked the functionality of the Unix filesystem. This section

discusses the evolution of that filesystem.

The ext Filesystem
The original filesystem introduced with the Linux operating system is called the extended filesystem (or just ext for short). It
provides a basic Unix-like filesystem for Linux, using virtual directories to handle physical devices, and storing data in fixed-

length blocks on the physical devices.
The ext filesystem uses a system called inodes to track information about the files stored in the virtual directory. The inode

system creates a separate table on each physical device, called the inode table, to store the file information. Each stored file in
the virtual directory has an entry in the inode table. The extended part of the name comes from the additional data that it

tracks on each file, which consists of:
The file name
The file size
The owner of the file
The group the file belongs to
Access permissions for the file
Pointers to each disk block that contains data from the file

Linux references each inode in the inode table using a unique number (called the inode number), assigned by the
filesystem as data files are created. The filesystem uses the inode number to identify the file rather than having to use the full

file name and path.

The ext2 Filesystem
The original ext filesystem had quite a few limitations, such as limiting files to only 2GB in size. Not too long after Linux was

www.it-ebooks.info

http://www.it-ebooks.info/

The original ext filesystem had quite a few limitations, such as limiting files to only 2GB in size. Not too long after Linux was

first introduced, the ext filesystem was upgraded to create the second extended filesystem, called ext2.
As you can guess, the ext2 filesystem is an expansion of the basic abilities of the ext filesystem, but maintains the same

structure. The ext2 filesystem expands the inode table format to track additional information about each file on the system.
The ext2 inode table adds the created, modified, and last accessed time values for files to help system administrators track

file access on the system. The ext2 filesystem also increases the maximum file size allowed to 2TB (then in later versions of

ext2, that was increased to 32TB) to help accommodate large files commonly found in database servers.
In addition to expanding the inode table, the ext2 filesystem also changed the way in which files are stored in the data

blocks. A common problem with the ext filesystem was that as a file is written to the physical device, the blocks used to store
the data tend to be scattered throughout the device (called fragmentation). Fragmentation of data blocks can reduce the

performance of the filesystem, as it takes longer to search the storage device to access all of the blocks for a specific file.
The ext2 filesystem helps reduce fragmentation by allocating disk blocks in groups when you save a file. By grouping the

data blocks for a file, the filesystem doesn't have to search all over the physical device for the data blocks to read the file.
The ext2 filesystem was the default filesystem used in Linux distributions for many years, but it, too, had its limitations.

The inode table, while a nice feature that allows the filesystem to track additional information about files, can cause
problems that can be fatal to the system. Each time the filesystem stores or updates a file, it has to modify the inode table

with the new information. The problem is that this isn't always a fluid action.
If something should happen to the computer system between the file being stored and the inode table being updated,

the two would become out of sync. The ext2 filesystem is notorious for easily becoming corrupted due to system crashes and
power outages. Even if the file data is stored just fine on the physical device, if the inode table entry wasn't completed, the

ext2 filesystem wouldn't even know that the file existed!
It wasn't long before developers were exploring a different avenue of Linux filesystems.

Journaling Filesystems
Journaling filesystems provide a new level of safety to the Linux system. Instead of writing data directly to the storage device
and then updating the inode table, journaling filesystems write file changes into a temporary file (called the journal) first.

After data is successfully written to the storage device and the inode table, the journal entry is deleted.
If the system should crash or suffer a power outage before the data can be written to the storage device, the journaling

filesystem just reads through the journal file and processes any uncommitted data left over.
There are three different methods of journaling commonly used in Linux, each with different levels of protection. These

are shown in Table 7.1.

Table 7.1 Journaling Filesystem Methods

Method Description

Data mode Both inode and file data are journaled. Low risk of losing data, but poor
performance.

Ordered mode Only inode data written to the journal, but not removed until file data is
successfully written. Good compromise between performance and safety.

Writeback mode Only inode data written to the journal, no control over when the file data is
written. Higher risk of losing data, but still better than not using journaling.

The data mode journaling method is by far the safest for protecting data, but it is also the slowest. All of the data written
to a storage device must be written twice, once to the journal, then again to the actual storage device. This can cause poor

performance, especially for systems that do a lot of data writing.
Over the years, a few different journaling filesystems have appeared in Linux. The following sections describe the popular

Linux journaling filesystems available.

The Extended Linux Journaling Filesystems
The same group that developed the ext and ext2 filesystems as part of the Linux project also created journaling versions of
the filesystems. These journaling filesystems are compatible with the ext2 filesystem, and it's easy to convert back and forth

between them. There are currently two separate journaling filesystems based on the ext2 filesystem.

www.it-ebooks.info

#c07_tbl_0001
#c07_tbl_anc_0001
http://www.it-ebooks.info/

The ext3 Filesystem
The ext3 filesystem was added to the Linux kernel in 2001, and up until recently was the default filesystem used by just about
all Linux distributions. It uses the same inode table structure as the ext2 filesystem, but adds a journal file to each storage

device to journal the data written to the storage device.
By default, the ext3 filesystem uses the ordered mode method of journaling, only writing the inode information to the

journal file, but not removing it until the data blocks have been successfully written to the storage device. You can change
the journaling method used in the ext3 filesystem to either data or writeback modes with a simple command line option when

creating the filesystem.
While the ext3 filesystem added basic journaling to the Linux filesystem, there were still a few things it lacked. For

example, the ext3 filesystem doesn't provide any recovery from accidental deletion of files, there's no built-in data
compression available (although there is a patch that can be installed separately that provides this feature), and the ext3
filesystem doesn't support encrypting files. For those reasons developers in the Linux project chose to continue work on

improving the ext3 filesystem.

The ext4 Filesystem
The result of expanding the ext3 filesystem was (as you probably guessed) the ext4 filesystem. The ext4 filesystem was
officially supported in the Linux kernel in 2008, and is now the default filesystem used in most popular Linux distributions,

such as Fedora and Ubuntu.
In addition to supporting compression and encryption, the ext4 filesystem also supports a feature called extents.

Extents allocate space on a storage device in blocks, and only store the starting block location in the inode table. This helps

save space in the inode table by not having to list all of the data blocks used to store data from the file.
The ext4 filesystem also incorporates block preallocation. If you want to reserve space on a storage device for a file that

you know will grow in size, with the ext4 filesystem it's possible to allocate all of the expected blocks for the file, not just the
blocks that physically exist. The ext4 filesystem fills in the reserved data blocks with zeroes, and knows not to allocate them

for any other file.

The Reiser Filesystem
In 2001, Hans Reiser created the first journaling filesystem for Linux, called ReiserFS. The ReiserFS filesystem only supports
writeback journaling mode, writing only the inode table data to the journal file. Because it writes only the inode table data to

the journal, the ReiserFS filesystem is one of the fastest journaling filesystems in Linux.
Two interesting features incorporated into the ReiserFS filesystem are that you can resize an existing filesystem while it's

still active, and that it uses a technique called tailpacking, which stuffs data from one file into empty space in a data block from
another file. The active filesystem resizing feature is great if you have to expand an already created filesystem to

accommodate more data.

Warning

Because Hans Reiser's legal issues, the status of the ReiserFS filesystem is in question.
While the ReiserFS project is an open source project, Hans was the lead developer for the
project and is now in jail. No recent development has been done on the ReiserFS
filesystem, and it's not clear if anyone else will pick up development work for the project.
Given that other alternatives for journaling filesystems are now available, most new Linux
installations don't use the ReiserFS filesystem. However, you may still run into an existing
Linux system that uses it.

The Journaled Filesystem
Possibly one of the oldest journaling filesystems around, the Journaled File System (JFS) was developed by IBM in 1990 for its

AIX flavor of Unix. However, it wasn't until its second version that it was ported to the Linux environment.

Note

The official IBM name of the second version of the JFS filesystem is JFS2, but most
Linux systems refer to it as just JFS.

The JFS filesystem uses the ordered journaling method, storing only the inode table data in the journal, but not
removing it until the actual file data is written to the storage device. This method is a compromise between the speed of the

www.it-ebooks.info

http://www.it-ebooks.info/

removing it until the actual file data is written to the storage device. This method is a compromise between the speed of the

ReiserFS and the integrity of the data mode journaling method.
The JFS filesystem uses extent-based file allocation, allocating a group of blocks for each file written to the storage

device. This method provides for less fragmentation on the storage device.
Outside of the IBM Linux offerings, the JFS filesystem isn't popularly used, but you may run into it in your Linux journey.

The XFS Filesystem
The XFS journaling filesystem is yet another filesystem originally created for a commercial Unix system that made its way into
the Linux world. Silicon Graphics Incorporated (SGI) originally created XFS in 1994 for its commercial IRIX Unix system. It was

released to the Linux environment for common use in 2002.
The XFS filesystem uses the writeback mode of journaling, which provides high performance but does introduce an

amount of risk because the actual data isn't stored in the journal file. The XFS filesystem also allows online resizing of the

filesystem, similar to the ReiserFS filesystem, except XFS filesystems can only be expanded and not shrunk.

Working with Filesystems
Linux provides a few different utilities that make it easier to work with filesystems from the command line. You can add new
filesystems or change existing filesystems from the comfort of your own keyboard. This section walks you through the

commands for interacting with filesystems from a command line environment.

Creating Partitions
To start out, you'll need to create a partition on the storage device to contain the filesystem. The partition can be an entire

disk, or it can be a subset of a disk, that contains a portion of the virtual directory.
The fdisk utility is used to help you organize partitions on any storage device installed on the system. The fdisk

command is an interactive program that allows you to enter commands to walk through the steps of partitioning a hard

drive.
To start the fdisk command, you'll need to specify the device name of the storage device you want to partition:

$ sudo fdisk /dev/sdc
[sudo] password for rich:
Device contains neither a valid DOS partition table, nor Sun, SGI or
OSF disklabel
Building a new DOS disklabel with disk identifier 0x4beedc66.
Changes will remain in memory only, until you decide to write them.
After that, of course, the previous content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected
by w(rite)

WARNING: DOS-compatible mode is deprecated. It's strongly recommended
 To switch off the mode (command ‘c’) and change display
 units to sectors (command ‘u’).

Command (m for help):
If this is the first time you're partitioning the storage device, fdisk will give you a warning that there isn't a partition table

on the device.
The fdisk interactive command prompt uses single letter commands to instruct fdisk what to do. Table 7.2 shows the

commands available at the fdisk command prompt.

Table 7.2 The fdisk Commands

Command Description

www.it-ebooks.info

#c07_tbl_0002
#c07_tbl_anc_0002
http://www.it-ebooks.info/

a Toggles a flag indicating if the partition is bootable

b Edits the disklabel used by BSD Unix systems

c Toggles the DOS compatibility flag

d Deletes the partition

l Lists the available partition types

m Displays the command options

n Adds a new partition

o Creates a DOS partition table

p Displays the current partition table

q Quits without saving changes

s Creates a new disklabel for Sun Unix systems

t Changes the partition system ID

u Changes the storage units used

v Verifies the partition table

w Writes the partition table to the disk

x Advanced functions

While this list may look intimidating, there are usually just a few basic commands that you'll normally use in day-to-day

work.
For starters, you can display the details of a storage device using the p command:

Command (m for help): p

Disk /dev/sdc: 5368 MB, 5368946688 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x4beedc66

 Device Boot Start End Blocks Id System

Command (m for help):
The output shows that the storage device has 5368MB of space on it (5GB). The listing under the storage device details

shows if there are any existing partitions on the device. The listing in this example doesn't show any partitions, so the device is

not partitioned yet.
Next, you'll want to create a new partition on the storage device. Use the n command for that:

Command (m for help): n
Command action

www.it-ebooks.info

http://www.it-ebooks.info/

 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-652, default 1): 1
Last cylinder, +cylinders or +size{K,M,G} (1-652, default 652): +2G

Command (m for help):
Partitions can be created as either a primary partition or an extended partition. Primary partitions can be formatted with a

filesystem directly, whereas extended partitions can only contain other primary partitions. The reason for extended
partitions is that there can only be four partitions on a single storage device. You can extend that by creating multiple
extended partitions, then creating primary partitions inside the extended partitions. This example creates a primary storage
device, assigns it as partition number 1 on the storage device, and then allocates 2GB of the storage device space to it. You can

see the results using the p command again:

Command (m for help): p

Disk /dev/sdc: 5368 MB, 5368946688 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x4beedc66

 Device Boot Start End Blocks Id System
/dev/sdc1 1 262 2104483+ 83 Linux

Command (m for help):
Now in the output there's a partition on the storage device (called /dev/sdc1). The Id entry defines how Linux treats

the partition. There are lots of partition types that fdisk allows you to create. Using the l command lists the different types
available. The default is type 83, which defines a Linux filesystem. If you want to create a partition for a different filesystem

(such as a Windows NTFS partition), just select a different partition type.
You can repeat the process to allocate the remaining space on the storage device to another Linux partition. After you've

created the partitions you want, use the w command to save the changes to the storage device:

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.
$
Now that you have a partition on the storage device, you're ready to format it with a Linux filesystem.

Note

Sometimes the hardest part of creating a new disk partition is trying to find the
physical disk on your Linux system. Linux uses a standard format for assigning
device names to hard drives, but you need to be familiar with the format. For older
IDE drives, Linux uses /dev/hdx, where x is a letter based on the order the drive is
detected (a for the first drive, b for the second, and so on). For both the newer
SATA drives, and SCSI drives, Linux uses /dev/sdx, where x is a letter based on the

www.it-ebooks.info

http://www.it-ebooks.info/

SATA drives, and SCSI drives, Linux uses /dev/sdx, where x is a letter based on the

order the drive is detected (again, a for the first drive, b for the second, and so
on). It's always a good idea to double-check to make sure you are referencing the
correct drive before formatting the partition!

Creating a Filesystem
Before you can store data on the partition, you must format it with a filesystem so that Linux can use it. Each filesystem type
uses its own command line program to format partitions. Table 7.3 lists the utilities used for the different filesystems

discussed in this chapter.

Table 7.3 Command Line Programs to Create Filesystems

Utility Purpose

mkefs Create an ext filesystem.

mke2fs Create an ext2 filesystem.

mkfs.ext3 Create an ext3 filesystem.

mkfs.ext4 Create an ext4 filesystem.

mkreiserfs Create a ReiserFS filesystem.

jfs_mkfs Create a JFS filesystem.

mkfs.xfs Create an XFS filesystem.

Each filesystem command has lots of command line options that allow you to customize just how the filesystem is created
in the partition. To see all of the command line options available, use the man command to display the manual pages for the
filesystem command (see Chapter 2). All of the filesystem commands allow you to create a default filesystem with just the

simple command with no options:

$ sudo mkfs.ext4 /dev/sdc1
[sudo] password for rich:
mke2fs 1.41.11 (14-Mar-2010)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
131648 inodes, 526120 blocks
26306 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=541065216
17 block groups
32768 blocks per group, 32768 fragments per group
7744 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912

Writing inode tables: done

www.it-ebooks.info

#c07_tbl_0003
#c07_tbl_anc_0003
http://www.it-ebooks.info/

Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 34 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
$
The new filesystem uses the ext4 filesystem type, which is the journaling filesystem in Linux. Notice that part of the

creation process was to create the new journal.
After you create the filesystem for the partition, the next step is to mount it on a mount point in the virtual directory so

you can store data in the new filesystem. You can mount the new filesystem anywhere in your virtual directory where you

need the extra space.

$ sudo mkdir /mnt/testing
$ sudo mount -t ext4 /dev/sdb1 /mnt/testing
$ ls -al /mnt/testing
total 24
drwxr-xr-x 3 root root 4096 2010-09-25 19:25 .
drwxr-xr-x 3 root root 4096 2010-09-25 19:38 ..
drwx------ 2 root root 16384 2010-09-25 19:25 lost+found
$
The mkdir command creates the mount point in the virtual directory, and the mount command adds the new hard drive

partition to the mount point. Now you can save new files and folders on the new partition!

Warning

This method of mounting a filesystem only temporarily mounts the filesystem. When you
reboot your Linux system, the filesystem won't be automatically mounted. To force Linux
to automatically mount the new filesystem at boot time, add the new filesystem to the
/etc/fstab file.

This chapter showed how to handle filesystems contained in physical storage devices. Linux also provides a couple of
different ways to create logical storage devices for filesystems. The next section examines how you can use a logical storage

device for your filesystems.

If Things Go Wrong
Even with fancy journaling filesystems, things can go wrong if power is unexpectedly lost, or if a wayward application locks
up the system while file access is in progress. Fortunately, there are some command line tools available to help you make an

attempt to restore the filesystem back to order.
Each filesystem has its own recovery command for interacting with the filesystem. That has the potential of getting ugly,

as more and more filesystems are available in the Linux environment, making for lots of individual commands you have to
know. Fortunately, there's a common front-end program available that can determine the filesystem on the storage device

and use the appropriate filesystem recovery command based on the filesystem being recovered.
The fsck command is used to check and repair any type of Linux filesystem, including all of the ones discussed earlier in

this chapter — ext, ext2, ext3, ext4, ReiserFS, JFS, and XFS. The format of the command is:

fsck options filesystem
You can list multiple filesystem entries on the command line to check. Filesystems can be referenced using either the

device name, the mount point in the virtual directory, or a special Linux UUID value assigned to the filesystem.
The fsck command uses the /etc/fstab file to automatically determine the filesystem on a storage device that's

normally mounted on the system. If the storage device isn't normally mounted (such as if you just created a filesystem on a
new storage device, you'll need to use the -t command line option to specify the filesystem type. Table 7.4 lists the other

command line options available.

Table 7.4 The fsck Command Line Options

www.it-ebooks.info

#c07_tbl_0004
#c07_tbl_anc_0004
http://www.it-ebooks.info/

Option Description

-a Automatically repair the filesystem if errors are detected.

-A Check all of the filesystems listed in the /etc/fstab file.

-C Display a progress bar for filesystems that support that feature (only ext2 and ext3).

-N Don't run the check, only display what checks would be performed.

-r Prompt to fix if errors found.

-R Skip the root filesystem if using the -A option.

-s If checking multiple filesystems, perform the checks one at a time.

-t Specify the filesystem type to check.

-T Don't show the header information when starting.

-V Produce verbose output during the checks.

-y Automatically repair the filesystem if errors detected.

You may notice that some of the command line options are redundant. That's part of the problem of trying to implement
a common front-end for multiple commands. Some of the individual filesystem repair commands have additional options
that can be used. If you need to do more advanced error checking, you'll need to check the man pages for the individual

filesystem repair tool to see if there are extended options specific to that filesystem.

Warning

You can run the fsck command on unmounted filesystems only. For most filesystems, you
can just unmount the filesystem to check it, then remount it when done. However,
because the root filesystem contains all of the core Linux commands and log files, you
can't unmount it on a running system.

This is a time where having a Linux LiveCD comes in handy! Just boot your system with the
LiveCD, and then run the fsck command on the root filesystem!

Logical Volume Managers
If you create your filesystems using standard partitions on hard drives, trying to add additional space to an existing
filesystem can be somewhat of a painful experience. You can only expand a partition to the extent of the available space on
the same physical hard drive. If there isn't any more space available on that hard drive, you're stuck having to get a larger hard

drive and manually moving the existing filesystem to the new drive.
What would come in handy is a way to dynamically add more space to an existing filesystem by just adding a partition

from another hard drive to the existing filesystem. The Linux Logical Volume Manager (LVM) software package allows you to
do just that. It provides an easy way for you to manipulate disk space on a Linux system without having to rebuild entire

filesystems.

The Logical Volume Management Layout
The core of logical volume management is how it handles the physical hard drive partitions installed on the system. In the
logical volume management world, hard drives are called physical volumes (PV). Each PV maps to a specific physical partition

created on a hard drive.
Multiple PV elements are pooled together to create a volume group (VG). The logical volume management system treats

the VG like a physical hard drive, but in reality the VG may consist of multiple physical partitions spread across multiple hard

drives. The VG provides a platform to create the logical partitions, which actually contain the filesystem.
The final layer in the structure is the logical volume (LV). The LV creates the partition environment for Linux to create a

www.it-ebooks.info

http://www.it-ebooks.info/

The final layer in the structure is the logical volume (LV). The LV creates the partition environment for Linux to create a

filesystem, acting similar to a physical hard disk partition as far as Linux is concerned. The Linux system treats the LV just like a
physical partition. You can format the LV using any one of the standard Linux filesystems, and then add it to the Linux virtual

directory at a mount point.
Figure 7.1 shows the basic layout of a typical Linux logical volume management environment.

Figure 7.1 The Logical Volume Management environment

The volume group shown in Figure 7.1 spans across three separate physical hard drives, covering five separate physical

partitions. Inside the volume group are two separate logical volumes. The Linux system treats each logical volume just like a
physical partition. Each logical volume can be formatted as an ext4 filesystem, and then mounted to a specific location in the

virtual directory.
Notice in Figure 7.1 that the third physical hard drive has an unused partition. Using logical volume management, you can

easily assign this unused partition to the existing volume group at a later time, and then either use it to create a new logical

volume or add it to expand one of the existing logical volumes when you need more space.
Likewise, if you add a new hard drive to the system, the local volume management system allows you to add it to the

existing volume group, and then create more space for one of the existing logical volumes, or start a new logical volume to

be mounted. That's a much better way of handling expanding filesystems!

The LVM in Linux
The Linux LVM was developed by Heinz Mauelshagen and released to the Linux community in 1998. It allows you to manage a

complete logical volume management environment in Linux using simple command line commands.
Two versions of Linux LVM are available:

LVM1: The original LVM package released in 1998, and available in only the 2.4 Linux kernels. It provides only basic

Logical Volume Management features.
LVM2: An updated version of the LVM, available in the 2.6 Linux kernels. It provides additional features over the

standard LVM1 features.
Most modern Linux distributions using the 2.6 kernel version provide support for LVM2. Besides the standard logical

volume management features, LVM2 provides a few other nice things for you to use in your Linux system.

Snapshots
The original Linux LVM allows you to copy an existing logical volume to another device while the logical volume is active. This
feature is called a snapshot. Snapshots are great for backing up important data that can't be locked due to high availability
requirements. Traditional backup methods usually lock files as they're being copied to the backup media. The snapshot allows
you to continue running mission critical Web or database servers while performing the copy. Unfortunately, LVM1 allows you

www.it-ebooks.info

#c07_fig_0001
#c07_fig_anc_0001
#c07_fig_0001
#c07_fig_0001
http://www.it-ebooks.info/

you to continue running mission critical Web or database servers while performing the copy. Unfortunately, LVM1 allows you

to create only a read-only snapshot. Once you create the snapshot you can't write to it.
LVM2 allows you to create a read-write snapshot of an active logical volume. With the read-write copy, you can remove

the original logical volume and mount the snapshot as a replacement. This feature is great for fast fail-overs, or for

experimenting with applications that modify data that may need to be restored if something fails.

Striping
Another interesting feature that LVM2 provides is striping. With striping, a logical volume is created across multiple physical
hard drives. When the Linux LVM writes a file to the logical volume, the data blocks in the file are spread across the multiple

hard drives. Each successive block of data is written to the next hard drive.
Striping helps improve disk performance, as Linux can write the multiple data blocks for a file to the multiple hard drives

simultaneously, rather than having to wait for a single hard drive to move the read/write head to different locations. This
improvement also applies to reading sequentially accessed files, as the LVM can read data from the multiple hard drives

simultaneously.

Warning

LVM striping is not the same as RAID striping. LVM striping doesn't provide a parity entry,
which creates the fault-tolerant environment. In fact, LVM striping may increase the
chance of a file being lost due to a hard drive failure. A single disk failure can result in
multiple logical volumes being inaccessible.

Mirroring
Just because you install a filesystem using LVM doesn't mean that things can't still go wrong in the filesystem. Just as in a
physical partition, LVM logical volumes are susceptible to power outages and disk crashes. Once a filesystem becomes

corrupt, there's always a possibility that you won't be able to recover it.
The LVM snapshot process provides some comfort knowing that you can create a backup copy of a logical volume at any

time, but for some environments that may not be enough. Systems that have lots of data changes, such as database servers,

may store hundreds or thousands of records since the last snapshot.
A solution to this problem is the LVM mirror. A mirror is a complete copy of a logical volume that's updated in real time.

When you create the mirror logical volume, LVM synchronizes the original logical volume to the mirror copy. Depending on

the size of the original logical volume, this may take some time to complete.
Once the original synchronization is complete, LVM performs two writes for each write process in the filesystem — one to

the main logical volume and one to the mirrored copy. As you can guess, this process does slow down write performance on
the system. However, if the original logical volume should become corrupt for some reason, you have a complete up-to-date

copy at your fingertips!

Using the Linux LVM
Now that you've seen what the Linux LVM can do, this section discusses how to implement it to help organize the disk space on
your system. The Linux LVM package only provides command line programs for creating and managing all of the
components in the Logical Volume Management system. Some Linux distributions include graphical front-ends to the
command line commands, but for complete control of your LVM environment, it's best to get comfortable working directly

with the commands.

Defining Physical Volumes
The first step in the process is to convert the physical partitions on the hard drive into physical volume extents used by the
Linux LVM. Our friend the fdisk command will help us here. After creating the basic Linux partition, you need to change the

partition type using the t command:

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 8e
Changed system type of partition 1 to 8e (Linux LVM)

www.it-ebooks.info

http://www.it-ebooks.info/

Command (m for help): p

Disk /dev/sdc: 2147 MB, 2147992064 bytes
255 heads, 63 sectors/track, 261 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x4bc26133

 Device Boot Start End Blocks Id System
/dev/sdc1 1 261 2096451 8e Linux LVM

Command (m for help):
The 8e partition type denotes that the partition will be used as part of a Linux LVM system and not as a direct filesystem,

as you saw with the 83 partition type earlier.
The next step is to use the partition to create the actual physical volume. That's done using the pvcreate command:

$ sudo pvcreate /dev/sdc1
 Physical volume “/dev/sdc1” successfully created
$
The pvcreate command defines the physical volume to use for the PV. It simply tags the partition as a physical volume in

the Linux LVM system. You can use the pvdisplay command to display a list of physical volumes you've created if you'd like

to see your progress along the way.

Creating Volume Groups
The next step in the process is to create one or more volume groups from the physical volumes. There are no set rules for
how many volume groups you need to create for your system — you can add all of the available physical volumes to a single

volume group, or you can create multiple volume groups by combining different physical volumes.
To create the volume group from the command line, you need to use the vgcreate command. The vgcreate command

requires a few command line parameters to define the volume group name, as well as the name of the physical volumes

you're using to create the volume group:

$ sudo vgcreate Vol1 /dev/sdc1
 Volume group “Vol1” successfully created
$
That's not all too exciting for output! If you'd like to see some details about the newly created volume group, use the

vgdisplay command:

$ sudo vgdisplay
 --- Volume group ---
 VG Name Vol1
 System ID
 Format lvm2
 Metadata Areas 1
 Metadata Sequence No 1
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 0
 Open LV 0
 Max PV 0

www.it-ebooks.info

http://www.it-ebooks.info/

 Cur PV 1
 Act PV 1
 VG Size 2.00 GB
 PE Size 4.00 MB
 Total PE 511
 Alloc PE / Size 0 / 0
 Free PE / Size 511 / 2.00 GB
 VG UUID CyilHZ-Y840-8TUn-Wvti-4S6Q-bHHT-C113I0

$
This example creates a volume group named Vol1, using the physical volume created on the /dev/sdc1 partition.
Now that you have one or more volume groups created, you're ready to create the logical volume.

Creating Logical Volumes
The logical volume is what the Linux system uses to emulate a physical partition, and holds the filesystem. The Linux system
handles the logical volumes just like a physical partition, allowing you to define filesystems in the logical volume and then

mount the filesystem into the virtual directory.
To create the logical volume, use the lvcreate command. While you can usually get away without using command line

options in the other Linux LVM commands, the lvcreate command requires at least some options to be entered. Table 7.5

shows the available command line options.

Table 7.5 The lvcreate Options

Option Long Option Name Description

-c --chunksize Specify the chunksize of the snapshot logical volume.

-C --contiguous Set or reset the contiguous allocation policy.

-i --stripes Specify the number of stripes.

-I --stripsize Specify the size of each stripe.

-l --extents Specify the number of logical extents to allocate to a new logical
volume, or the percent of the logical extents to use.

-L --size Specify the disk size to allocate to a new logical volume.

--minor Specify the minor number of the device.

-m --mirrors Create a mirrored logical volume.

-M --persistent Make the minor number persistent.

-n --name Specify the name of the new logical volume.

-p --permission Set read/write permission for the logical volume.

-r --readahead Set read ahead sector count.

-R --regionsize Specify the size to divide the mirror regions into.

-s --snapshot Create a snapshot logical volume.

www.it-ebooks.info

#c07_tbl_0005
#c07_tbl_anc_0005
http://www.it-ebooks.info/

-Z --zero Set the first 1KB of data on the new logical volume to zeros.

While the command line options may look intimidating, for most situations you can get by with a minimal amount of

options:

$ sudo lvcreate -l 100%FREE -n lvtest Vol1
 Logical volume “lvtest” created
$
If you want to see the details of what you created, use the lvdisplay command:

$ sudo lvdisplay
 --- Logical volume ---
 LV Name /dev/Vol1/lvtest
 VG Name Vol1
 LV UUID usDxti-pAEj-fEIz-3kWV-LNAu-PFNx-2LGqNv
 LV Write Access read/write
 LV Status available
 # open 0
 LV Size 2.00 GB
 Current LE 511
 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 256
 Block device 253:2

$
Now you can see just what you created! Notice that the volume group name (Vol1) is used to identify the volume group

to use when creating the new logical volume.
The -l parameter defines how much of the available space on the volume group specified to use for the logical volume.

Notice that you can specify the value as a percent of the free space in the volume group. This example used all (100%) of the

free space for the new logical volume.
You can use the -l parameter to specify the size as a percentage of the available space, or the -L parameter to specify the

actual size in bytes, kilobytes (KB), megabytes (MB), or gigabytes (GB). The -n parameter allows you to provide a name for the

logical volume (called lvtest in this example).

Creating the Filesystem
After you run the lvcreate command, the logical volume exists but doesn't have a filesystem. To do that, you'll need to use

the appropriate command line program for the filesystem you want to create:

$ sudo mkfs.ext4 /dev/Vol1/lvtest
mke2fs 1.41.9 (22-Aug-2009)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
130816 inodes, 523264 blocks
26163 blocks (5.00%) reserved for the super user

www.it-ebooks.info

http://www.it-ebooks.info/

First data block=0
Maximum filesystem blocks=536870912
16 block groups
32768 blocks per group, 32768 fragments per group
8176 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912

Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 21 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
$
After you've created the new filesystem, you can mount the volume in the virtual directory using the standard Linux

mount command, just as if it were a physical partition. The only difference is that you use a special path that identifies the

logical volume:

$ sudo mount /dev/Vol1/lvtest test
$ cd test
$ ls -al
total 24
drwxr-xr-x. 3 root root 4096 2010-09-17 17:36 .
drwx------. 33 rich rich 4096 2010-09-17 17:37 ..
drwx------. 2 root root 16384 2010-09-17 17:36 lost+found
$
Notice that the paths used in both the mkfs.ext4 and mount commands is a little odd. Instead of a physical partition

path, the path uses the volume group name, along with the logical volume name. Once the filesystem is mounted, you can

access the new area in the virtual directory.

Modifying the LVM
Because the benefit of using the Linux LVM is to dynamically modify filesystems, you'd expect there to be some tools that
allow you to do that. There are some tools available in Linux that allow you to modify the existing Logical Volume

Management configuration.
If you don't have access to a fancy graphical interface for managing your Linux LVM environment, all is not lost. You've

already seen some of the Linux LVM command line programs in action in this chapter. There are also a host of other command
line programs you can use to manage the LVM setup once you've installed it. Table 7.6 lists the common commands that are

available in the Linux LVM package.

Table 7.6 The Linux LVM Commands

Command Function

vgchange Activate and deactivate a volume group

vgremove Remove a volume group

vgextend Add physical volumes to a volume group

vgreduce Remove physical volumes from a volume group

www.it-ebooks.info

#c07_tbl_0006
#c07_tbl_anc_0006
http://www.it-ebooks.info/

lvexend Increase the size of a logical volume

lvreduce Decrease the size of a logical volume

Using these command line programs, you have full control over your Linux LVM environment.

Warning

Be careful when manually increasing or decreasing the size of a logical volume. The
filesystem stored in the logical volume will need to be manually fixed to handle the change
in size. Most filesystems include command line programs for reformatting the filesystem,
such as the resize2fs program for the ext2 and ext3 filesystems.

Summary
Working with storage devices in Linux requires that you know a little bit about filesystems. Knowing how to create and work
with filesystems from the command line can come in handy as you work on Linux systems. This chapter discussed how to

handle filesystems from the Linux command line.
The Linux system is different from Windows in that it supports lots of different methods for storing files and folders.

Each filesystem method has different features that make it ideal for different situations. Also, each filesystem method uses

different commands for interacting with the storage device.
Before you can install a filesystem on a storage device, you must first prepare the device. The fdisk command is used to

partition storage devices to get them ready for the filesystem. When you partition the storage device you must define what

type of filesystem will be used on it.
After you partition a storage device, you can use one of several different filesystems for the partition. The most popular

Linux filesystems are ext3 and ext4. Both of these filesystems provide journaling filesystem features, making them less prone

to errors and problems if the Linux system should crash.
One limiting factor to creating filesystems directly on a storage device partition is that you can't easily change the size of

the filesystem if you run out of disk space. However, Linux supports logical volume management, a method of creating
virtual partitions across multiple storage devices. This method allows you to easily expand an existing filesystem without
having to completely rebuild it. The Linux LVM package provides command line commands to create logical volumes across

multiple storage devices to build filesystems on.
Now that you've seen the core Linux command line commands, it's close to time to start creating some shell script

programs. However, before you start coding there's one more element we need to discuss: editors. If you plan on writing
shell scripts, you'll need an environment in which to create your masterpieces. The next chapter discusses how to install and

manage software packages from the command line in different Linux environments.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Installing Software

In This Chapter

Installing software
Using Debian packages
Working with Red Hat packages

In the old days of Linux, installing software could be a painful experience. Fortunately, the Linux developers have made life a
little easier for us by bundling software into pre-built packages that are much easier to install. However, there's still a little
work on our part to get the software packages installed, especially if you want to do that from the command line. This
chapter takes a look at the various Package Management Systems available in Linux, and the command line tools used for

software installation, management, and removal.

Package Management Primer
Before diving into the world of Linux software package management, this chapter goes through a few of the basics first. Each
of the major Linux distributions utilizes some form of a Package Management System (PMS) to control installing software

applications and libraries. A PMS utilizes a database that keeps track of:
What software packages are installed on the Linux system
What files have been installed for each package
Versions of each of the software packages installed

Software packages are stored on servers, called repositories, and are accessed across the Internet via PMS utilities running
on your local Linux system. You can use the PMS utilities to search for new software packages or even updates to software

packages already installed on the system.
A software package will often have dependencies or other packages that must be installed first for the software to run

properly. The PMS utilities will detect these dependencies and offer to install any additionally needed software packages

before installing the desired package.
The downside to PMS is that there isn't a single standard utility. Whereas all of the bash shell commands discussed so far in

this book will work no matter which Linux distribution you use, this is not true with software package management.
The PMS utilities and their associated commands are vastly different between the various Linux distributions. The two

primary PMS base utilities commonly used in the Linux world are dpkg and rpm.
Debian-based distributions such as Ubuntu and Linux Mint use, at the base of their PMS utilities, the dpkg command. This

command interacts directly with the PMS on the Linux system and is used for installing, managing, and removing software

packages.
The Red Hat–based distributions, such as Fedora, openSUSE, and Mandriva, use the rpm command at the base of their

PMS. Similar to the dpkg command, the rpm command can list installed packages, install new packages, and remove existing

software.
Note that these two commands are the core of their respective PMS, not the entire PMS itself. Many Linux distributions

that use the dpkg or rpm methods have built additional specialty PMS utilities upon these base commands to help make your
life much easier. The following sections walk through various PMS utility commands you'll run into in the popular Linux

distributions.

The Debian-Based Systems

The dpkg command is at the core of the Debian-based family of PMS tools. Other tools included in this PMS are:
apt-get
apt-cache
aptitude

By far the most common command line tool is aptitude, and for good reason. The aptitude tool is essentially a front-end

for both the apt tools and dpkg. Whereas dpkg is a PMS tool, aptitude is a complete Package Management System.
Using the aptitude command at the command line will help you avoid common software installation problems, such as

www.it-ebooks.info

http://www.it-ebooks.info/

Using the aptitude command at the command line will help you avoid common software installation problems, such as

missing software dependencies, unstable system environments, and just a whole lot of unnecessary hassle. This section takes

a look at how to use the aptitude command tool from the Linux command line.

Managing Packages with aptitude
A common task faced by Linux system administrators is to determine what packages are already installed on the system.

Fortunately, aptitude has a handy interactive interface that makes this task an easy one.
At the shell prompt, type aptitude and press Enter. You will be thrown into aptitude's full-screen mode, as you can see

in Figure 8.1.

Figure 8.1 The aptitude main window

Use the arrow keys to maneuver around the menu. Select the menu option Installed Packages to see what packages are

installed. You will see several groups of software packages, such as editors, and so on. A number in parentheses follows each

group, which indicates the number of packages the group contains.
Use the arrow keys to highlight a group and press Enter to see each subgroup of packages. You will then see the

individual package names and their version numbers. Use the Enter key on individual packages to get very detailed

information, such as the package's description, home page, size, maintainer, and so on.
When you're done viewing the installed packages, press q to quit the display. You can then go back to the arrow keys and

use Enter to toggle open or closed the packages and their subgroups. When you are all done, just press q multiple times

until you receive the pop-up screen “Really quit Aptitude?”
If you already know the packages on your system and want to quickly display detailed information about a particular

package, there is no need to go into aptitude's interactive interface. You can use aptitude as a single command at the

command line:

aptitude show package_name
Here's an example of displaying the details of the package grub2-theme-mint:

$ aptitude show grub2-theme-mint

www.it-ebooks.info

#c08_fig_0001
#c08_fig_anc_0001
http://www.it-ebooks.info/

Package: grub2-theme-mint
New: yes
State: installed
Automatically installed: no
Version: 1.0.3
Priority: optional
Section: misc
Maintainer: Clement Lefebvre <root@linuxmint.com>
Uncompressed Size: 442k
Description: Grub2 theme for Linux Mint
 Grub2 theme for Linux Mint

$

Note

The aptitude show command does not indicate that the package is installed on the
system. It shows only detailed package information from the software repository.

One detail you cannot get with aptitude is a listing of all the files associated with a particular software package. To get

this list, you will need to go to the dpkg tool itself:

dpkg -L package_name
Here's an example of using dpkg to list all of the files installed as part of the grub2-theme-mint package:

$
$ dpkg -L grub2-theme-mint
/.
/boot
/boot/boot
/boot/boot/grub
/boot/boot/grub/linuxmint.png
/boot/grub
/boot/grub/linuxmint.png
/usr
/usr/share
/usr/share/doc
/usr/share/doc/grub2-theme-mint
/usr/share/doc/grub2-theme-mint/changelog.gz
/usr/share/doc/grub2-theme-mint/copyright
/etc
/etc/grub.d
/etc/grub.d/06_mint_theme
$
You can also do the reverse—find what package a particular file belongs to:

dpkg --search absolute_file_name
Note that you need to use an absolute file reference for this to work:

$

www.it-ebooks.info

http://www.it-ebooks.info/

$ dpkg --search /boot/grub/linuxmint.png
grub2-theme-mint: /boot/grub/linuxmint.png
$
The output shows the linuxmint.png file was installed as part of the grub2-theme-mint package.

Installing Software Packages with aptitude
Now that you know more about listing software package information on your system, this section walks through a software
package install. First, you'll want to determine the package name to install. How do you find a particular software package?

Use the aptitude command with the search option:

aptitude search package_name
The beauty of the search option is that you do not need to insert wildcards around package_name. Wildcards are implied.

Here's an example of using aptitude to look for the wine software package:

$
$ aptitude search wine
p gnome-wine-icon-theme - red variation of the GNOME- ...
v libkwineffects1-api -
p libkwineffects1a - library used by effects...
p q4wine - Qt4 GUI for wine (W.I.N.E)
p shiki-wine-theme - red variation of the Shiki- ...
p wine - Microsoft Windows Compatibility ...
p wine-dev - Microsoft Windows Compatibility ...
p wine-gecko - Microsoft Windows Compatibility ...
p wine1.0 - Microsoft Windows Compatibility ...
p wine1.0-dev - Microsoft Windows Compatibility ...
p wine1.0-gecko - Microsoft Windows Compatibility ...
p wine1.2 - Microsoft Windows Compatibility ...
p wine1.2-dbg - Microsoft Windows Compatibility ...
p wine1.2-dev - Microsoft Windows Compatibility ...
p wine1.2-gecko - Microsoft Windows Compatibility ...
p winefish - LaTeX Editor based on Bluefish
$
Notice that before each package name is either a p or an i. If you see an i u that means that the package is currently

installed on your system. If you see a p v that means it is available but not installed. As you can see from the preceding

listing, this system does not have wine currently installed on it, but the package is available from the software repository.
Installing a software package on a system from a repository using aptitude is as easy as this:

aptitude install package_name
Once you find the software package name from the search option, just plug it into the aptitude command using the

install option:

$
$ sudo aptitude install wine
The following NEW packages will be installed:
 cabextract{a} esound-clients{a} esound-common{a} gnome-exe-thumbnailer
{a}
 icoutils{a} imagemagick{a} libaudio2{a} libaudiofile0{a} libcdt4{a}
 libesd0{a} libgraph4{a} libgvc5{a} libilmbase6{a} libmagickcore3-extra

www.it-ebooks.info

http://linuxmint.png
http://www.it-ebooks.info/

{a}
 libmpg123-0{a} libnetpbm10{a} libopenal1{a} libopenexr6{a}
 libpathplan4{a} libxdot4{a} netpbm{a} ttf-mscorefonts-installer{a}
 ttf-symbol-replacement{a} winbind{a} wine wine1.2{a} wine1.2-gecko{a}
0 packages upgraded, 27 newly installed, 0 to remove and 0 not upgraded.
Need to get 0B/27.6MB of archives. After unpacking 121MB will be used.
Do you want to continue? [Y/n/?] Y
Preconfiguring packages ...
...
All done, no errors.
All fonts downloaded and installed.
Updating fontconfig cache for /usr/share/fonts/truetype/msttcorefonts
Setting up winbind (2:3.5.4∼dfsg-1ubuntu7) ...
 * Starting the Winbind daemon winbind
 [OK]
Setting up wine (1.2-0ubuntu5) ...
Setting up gnome-exe-thumbnailer (0.6-0ubuntu1) ...
Processing triggers for libc-bin ...
ldconfig deferred processing now taking place

$

Note

Before the aptitude command in the preceding listing, the sudo command is
used. The sudo command allows you to run a command as the root user. You can
use the sudo command to run administrative tasks, such as installing software.

To check if the installation processed properly, just use the search option again. This time you should see an i u listed in

front of the wine software package, indicating it is installed.
You may also notice that there are additional packages with the i u in front of them. This is because aptitude

automatically resolved any necessary package dependencies for us and installs the needed additional library and software

packages. This is a wonderful feature included in many Package Management Systems.

Updating Software with aptitude
While aptitude helps protect you from problems installing software, trying to coordinate a multiple-package update with
dependencies can get tricky. To safely update all of the software packages on a system with any new versions in the

repository, use the safe-upgrade option:

aptitude safe-upgrade
Notice that this command doesn't take a software package name as an argument. That's because the safe-upgrade

option will upgrade all the installed packages to the most recent version available in the repository, which is safer for system

stabilization.
Here's a sample output from running the aptitude safe-update command:

$
$ sudo aptitude safe-upgrade
The following packages will be upgraded:
 evolution evolution-common evolution-plugins gsfonts libevolution
 xserver-xorg-video-geode

www.it-ebooks.info

http://www.it-ebooks.info/

6 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 9,312kB of archives. After unpacking 0B will be used.
Do you want to continue? [Y/n/?] Y
Get:1 http://us.archive.ubuntu.com/ubuntu/ maverick/main
 libevolution i386 2.30.3-1ubuntu4 [2,096kB]
...
Preparing to replace xserver-xorg-video-geode 2.11.9-2
(using .../xserver-xorg-video-geode_2.11.9-3_i386.deb) ...
Unpacking replacement xserver-xorg-video-geode ...
Processing triggers for man-db ...
Processing triggers for desktop-file-utils ...
Processing triggers for python-gmenu ...
...
Current status: 0 updates [-6].
$
There are also less conservative options for software upgrades that you can use:

aptitude full-upgrade
aptitude dist-upgrade

These options perform the same task, upgrading all of the software packages to the latest versions. Where they differ
from safe-upgrade is that they do not check dependencies between packages. The whole package dependency issue can
get real ugly. If you're not exactly sure of the dependencies for the various packages, then stick with the safe-upgrade

option.

Note

Obviously, running aptitude's safe-upgrade option is something you should do on
a regular basis to keep your system up-to-date. However, it is especially important
to run it after a fresh distribution installation. Usually there are lots of security
patches and updates that are released since the last full release of a distribution.

Uninstalling Software with aptitude
Getting rid of software packages with aptitude is as easy as installing and upgrading them. The only real choice you have to

make is whether or not to keep the software's data and configuration files around afterwards.
To remove a software package, but not the data and configuration files, use the remove option of aptitude. To remove a

software package and the related data and configuration files, use the purge option:

$ sudo aptitude purge wine
[sudo] password for user:
The following packages will be REMOVED:
 cabextract{u} esound-clients{u} esound-common{u} gnome-exe-thumbnailer
{u}
 icoutils{u} imagemagick{u} libaudio2{u} libaudiofile0{u} libcdt4{u}
 libesd0{u} libgraph4{u} libgvc5{u} libilmbase6{u} libmagickcore3-extra
{u}
 libmpg123-0{u} libnetpbm10{u} libopenal1{u} libopenexr6{u}
 libpathplan4{u} libxdot4{u} netpbm{u} ttf-mscorefonts-installer{u}
 ttf-symbol-replacement{u} winbind{u} wine{p} wine1.2{u} wine1.2-gecko
{u}

www.it-ebooks.info

http://www.it-ebooks.info/

0 packages upgraded, 0 newly installed, 27 to remove and 6 not upgraded.
Need to get 0B of archives. After unpacking 121MB will be freed.
Do you want to continue? [Y/n/?] Y
(Reading database ... 120968 files and directories currently installed.)
Removing ttf-mscorefonts-installer ...
...
Processing triggers for fontconfig ...
Processing triggers for ureadahead ...
Processing triggers for python-support ...

$
To see if the package has been removed, you can use the aptitude search option again. If you see a c in front of the

package name, it means the software has been removed, but the configuration files have not been purged from the system. A

p in front indicates the configuration files have also been removed.

The aptitude Repositories
The default software repository locations for aptitude are set up for you when you install your Linux distribution. The

repository locations are stored in the file /etc/apt/sources.list.
In many cases, you will never need to add/remove a software repository so you won't need to touch this file. However,

aptitude will only pull software from these repositories. Also, when searching for software to install or update, aptitude
will only check these repositories. If you need to include some additional software repositories for your PMS, this is the place

to do it.

Tip

The Linux distribution developers work hard to make sure package versions added to the
repositories don't conflict with one another. Usually it's safest to upgrade or install a
software package from the repository. Even if a newer version is available elsewhere, you
may want to hold off installing it until that version is available in your Linux distribution's
repository.

The following is an example of a sources.list file from an Ubuntu system:

$
$ cat /etc/apt/sources.list
#deb cdrom:[Ubuntu 10.10 _Maverick Meerkat_ - Alpha i386
 (20100921.1)]/ maverick main restricted
See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade
 to
newer versions of the distribution.

deb http://us.archive.ubuntu.com/ubuntu/ maverick main restricted
deb-src http://us.archive.ubuntu.com/ubuntu/ maverick main restricted

Major bug fix updates produced after the final release of the
distribution.
deb http://us.archive.ubuntu.com/ubuntu/ maverick-updates main
restricted
deb-src http://us.archive.ubuntu.com/ubuntu/ maverick-updates main

www.it-ebooks.info

http://www.it-ebooks.info/

restricted
...
This software is not part of Ubuntu, but is offered by third-party
developers who want to ship their latest software.
deb http://extras.ubuntu.com/ubuntu maverick main
deb-src http://extras.ubuntu.com/ubuntu maverick main

deb http://security.ubuntu.com/ubuntu maverick-security main restricted
deb-src http://security.ubuntu.com/ubuntu maverick-security main
restricted
deb http://security.ubuntu.com/ubuntu maverick-security universe
deb-src http://security.ubuntu.com/ubuntu maverick-security universe
deb http://security.ubuntu.com/ubuntu maverick-security multiverse
deb-src http://security.ubuntu.com/ubuntu maverick-security multiverse
$
First, notice that the file is full of helpful comments and warnings. The repository sources specified use the following

structure:

deb (or deb-src) address distribution_name package_type_list
The deb or deb-src value indicates the software package type. The deb value indicates it is a source of compiled

programs, whereas the deb-src value indicates it is a source of source code.
The address entry is the software repository's Web address. The distribution_name entry is the name of this

particular software repository's distribution's version. In the example, the distribution name is maverick. This does not
necessarily mean that the distribution you are running is Ubuntu's Maverick Meercat; it just means the Linux distribution is
using the Ubuntu Maverick Meercat software repositories! For example, in Linux Mint's sources.list file, you will see a

mix of Linux Mint and Ubuntu software repositories.
Finally, the package_type_list entry may be more than one word and indicates what type of packages the repository

has in it. For example, you may see values such as main, restricted, universe, or partner.
When you need to add a software repository to your sources file, you can try to wing it yourself, but that more than

likely will cause problems. Often, software repository sites or various package developer sites will have an exact line of text
that you can copy from their Website and paste into your sources.list file. It's best to choose the safer route and just

copy/paste.
The front-end interface, aptitude, provides intelligent command line options for working with the Debian-based dpkg

utility. Now it's time to take a look at the Red Hat–based distributions' rpm utility and its various front-end interfaces.

The Red Hat–Based Systems
Like the Debian-based distributions, the Red Hat–based systems have several different front-end tools that are available. The

common ones are:
yum: Used in Red Hat and Fedora
urpm: Used in Mandriva
zypper: Used in openSUSE

These front-ends are all based on the rpm command line tool. The following section discusses how to manage software
packages using these various rpm-based tools. The focus will be on yum, but information will also be included for zypper

and urpm.

Listing Installed Packages

To find out what is currently installed on your system, at the shell prompt type the following command:

yum list installed
The information will probably whiz by you on the display screen, so it's best to redirect the installed software listing into

a file. You can then use the more or less command (or a GUI editor) to look at the list in a controlled manner.

www.it-ebooks.info

http://www.it-ebooks.info/

yum list installed > installed_software
To list out the installed packages on your openSUSE or Mandriva distribution, see the commands in Table 8.1.

Unfortunately, the urpm tool used in Mandriva cannot produce a currently installed software listing. Thus, you will need to

revert to the underlying rpm tool.

Table 8.1 How to List Installed Software with zypper and urpm

Distribution Front-End Tool Command

Mandriva urpm rpm -qa > installed_software

openSUSE zypper zipper search -I > installed_software

To find out detailed information for a particular software package, yum really shines. Not only will it give you a very

verbose description of the package, but with another simple command, you can see if the package is installed:

yum list xterm
Loaded plugins: langpacks, presto, refresh-packagekit
Adding en_US to language list
Available Packages
xterm.i686 261-2.fc14 fedora

yum list installed xterm
Loaded plugins: refresh-packagekit
Error: No matching Packages to list

The commands to list detailed software package information using urpm and zypper are in Table 8.2. You can acquire an

even more detailed set of package information from the repository, using the info option on the zypper command.

Table 8.2 How to See Various Package Details with zypper and urpm

Detail Type Front-End Tool Command

Package Information urpm urpmq -i package_name

Installed? urpm rpm -q package_name

Package Information zypper zypper search -s package_name

Installed? zypper Same command, but look for an i in the Status column

Finally, if you need to find out what software package provides a particular file on your filesystem, the versatile yum can

do that, too! Just enter the command:

yum provides file_name
Here's an example of trying to find what software provided the configuration file /etc/yum.conf:

yum provides /etc/yum.conf
Loaded plugins: langpacks, presto, refresh-packagekit
Adding en_US to language list
yum-3.2.28-5.fc14.noarch : RPM installer/updater
Repo : fedora
Matched from:

www.it-ebooks.info

#c08_tbl_0001
#c08_tbl_anc_0001
#c08_tbl_0002
#c08_tbl_anc_0002
http://www.it-ebooks.info/

Filename : /etc/yum.conf

yum-3.2.28-5.fc14.noarch : RPM installer/updater
Repo : installed
Matched from:
Other : Provides-match: /etc/yum.conf

yum checked two separate repositories: fedora and installed. From both, the answer is: the yum software package

provides this file!

Installing Software with yum
Installation of a software package using yum is incredibly easy. The following is the basic command for installing a software

package, all its needed libraries, and package dependencies from a repository:

yum install package_name
Here's an example of installing the xterm package:

$ su -
Password:
yum install xterm
Loaded plugins: langpacks, presto, refresh-packagekit
Adding en_US to language list
fedora/metalink | 20 kB 00:00
fedora | 4.3 kB 00:00
fedora/primary_db | 11 MB 01:57
updates/metalink | 16 kB 00:00
updates | 4.7 kB 00:00
updates/primary_db | 3.1 MB 00:30
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package xterm.i686 0:261-2.fc14 set to be installed
...
Installed:
xterm.i686 0:261-2.fc14

Complete!

Note

Before the yum command in the preceding listing, the su - command is used. This
command allows you to switch to the root user. On this Linux system, the # denotes
you are logged in as root. You should only switch to root user temporarily in order
to run administrative tasks, such as installing and updating software. The sudo

www.it-ebooks.info

http://www.it-ebooks.info/

to run administrative tasks, such as installing and updating software. The sudo

command is another option as well.
You can also manually download an rpm installation file and install it using yum. This is called a local installation. The basic

command is:

yum localinstall package_name.rpm
You can begin to see that one of yum's strengths is that it uses very logical and user-friendly commands.
Table 8.3 shows how to perform a package install with urpm and zypper. You should note that if you are not logged in

as root, you will get a “command not found” error message using urpm.

Table 8.3 How to Install Software with zypper and urpm

Front-End Tool Command

urpm urpmi package_name

zypper zypper install package_name

Updating Software with yum
In most Linux distributions, when you're working away in the GUI, you get those nice little notification icons telling you an

update is needed. Here at the command line, it takes a little more work.
To see the list of all the available updates for your installed packages, type the following command:

yum list updates
It's always nice to get no response to this command because it means you have nothing to update! However, if you do

discover a particular software package needs updating, then type in the following command:

yum update package_name
If you'd like to update all the packages listed in the update list, just enter the following command:

yum update
Commands for updating software packages on Mandriva and openSUSE are listed in Table 8.4. When urpm is used, the

repository database will be automatically refreshed as well as software packages updated.

Table 8.4 How to Update Software with zypper & urpm

Front-End Tool Command

urpm urpmi --auto-update --update

zypper zypper update

Uninstalling Software with yum
The yum tool also provides an easy way to uninstall software you no longer want on your system. As with aptitude, you

need to choose whether or not to keep the software package's data and configuration files.
To just remove the software package and keep any configuration and data files, use the following command:

yum remove package_name
To uninstall the software and all its files, use the erase option:

yum erase package_name
You will see it is equally easy to remove software using urpm and zypper in Table 8.5. Both of these tools perform a

function similar to yum's erase option.

www.it-ebooks.info

#c08_tbl_0003
#c08_tbl_anc_0003
#c08_tbl_0004
#c08_tbl_anc_0004
#c08_tbl_0005
http://www.it-ebooks.info/

Table 8.5 How to Uninstall Software with zypper and urpm

Front-End Tool Command

urpm urpme package_name

zypper zypper remove package_name

While life is considerably easier with PMS packages, it's not always problem free. Occasionally things do go wrong.

Fortunately, there's help.

Dealing with Broken Dependencies
Sometimes as multiple software packages get loaded, a software dependency for one package can get overwritten by the

installation of another package. This is called a broken dependency.
If this should happen on your system, first try the following command:

yum clean all
Then try to use the update option in the yum command. Sometimes, just cleaning up any misplaced files can help.
If that doesn't solve the problem, try the following command:

yum deplist package_name
This command displays all the package's library dependencies and what software package provides them. Once you know

the libraries required for a package, you can then install them. Here's an example of determining the dependencies for the

xterm package:

yum deplist xterm
Loaded plugins: langpacks, presto, refresh-packagekit
Adding en_US to language list
Finding dependencies:
package: xterm.i686 261-2.fc14
dependency: libutempter.so.0
provider: libutempter.i686 1.1.5-4.fc12
dependency: rtld(GNU_HASH)
provider: glibc.i686 2.12.90-17
provider: glibc.i686 2.12.90-21
dependency: libc.so.6(GLIBC_2.4)
provider: glibc.i686 2.12.90-17
provider: glibc.i686 2.12.90-21
...
dependency: /bin/sh
provider: bash.i686 4.1.7-3.fc14
dependency: libICE.so.6
provider: libICE.i686 1.0.6-2.fc13
dependency: libXmu.so.6
provider: libXmu.i686 1.0.5-2.fc13
dependency: libc.so.6(GLIBC_2.3)
provider: glibc.i686 2.12.90-17
provider: glibc.i686 2.12.90-21
dependency: libXaw.so.7

www.it-ebooks.info

#c08_tbl_anc_0005
http://www.it-ebooks.info/

provider: libXaw.i686 1.0.6-4.fc12
dependency: libX11.so.6
provider: libX11.i686 1.3.4-3.fc14
dependency: libc.so.6(GLIBC_2.2)
provider: glibc.i686 2.12.90-17
provider: glibc.i686 2.12.90-21

If that doesn't solve your problem, you have one last tool:

yum update --skip-broken
The --skip-broken option allows you to just ignore the package with the broken dependency and update the other

software packages. This may not help the broken package, but at least you can update the remaining packages on the system!
In Table 8.6, the commands to try for broken dependencies with urpm and zypper are listed. With zypper, there is only

the one command to verify and fix a broken dependency. With urpm, if the clean option does not work, you can skip updates

on the offensive package. To do this, you must add the name of the offending package to the file /etc/urpmi/skip.list.

Table 8.6 Broken Dependencies with zypper and urpm

Front End Tool Command

urpm urpmi --clean

zypper zypper verify

Yum Repositories
Just like the aptitude systems, yum has its software repositories set up at installation. For most purposes, these pre-
installed repositories will work just fine for your needs. But if and when the time comes that you need to install software

from a different repository, here are some things you will need to know.

Tip

A wise system administrator sticks with approved repositories. An approved repository is
one that is sanctioned by the distribution's official site. If you start adding unapproved
repositories, you lose the guarantee of stability. And you will be heading into broken
dependencies territory.

To see what repositories you are currently pulling software from, type in the following command:

yum repolist
If you don't find a repository you need software from, then you will need to do a little configuration file editing. The

yum repository definition files are located in /etc/yum.repos.d. You will need to add the proper URL and gain access to

any necessary encryption keys.
Good repository sites such as rpmfusion.org will lay out all the steps necessary to use them. Sometimes these repository

sites will offer an rpm file that you can download and install using the yum localinstall command. The installation of

the rpm file will do all the repository setup work for you. Now that's convenient!
urpm calls its repositories media. The commands for looking at urpm media and zypper's repositories are in Table 8.7.

You will notice with both of these front-end tools that you do not edit a configuration file. Instead, to add media or a

repository, you just type in the command.

Table 8.7 zypper and urpm Repositories

Action Front-End Tool Command

Display repository urpm urpmq --list-media

www.it-ebooks.info

#c08_tbl_0006
#c08_tbl_anc_0006
http://rpmfusion.org
#c08_tbl_0007
#c08_tbl_anc_0007
http://www.it-ebooks.info/

Add repository urpm urpmi.addmedia path_name

Display repository zypper zypper repos

Add repository zipper zypper addrepo path_name

Both Debian- and Red Hat–based systems use Package Management Systems to ease the process of managing software.
Now we are going to step out of the world of Package Management Systems and look at something a little more difficult,

installing directly from source code.

Installing from Source Code
Chapter 4 discussed tarball packages—how to create them using the tar command line command and how to unpack them.

Before the fancy rpm and dpkg tools, administrators had to know how to unpack and install software from tarballs.
If you work in the open source software environment much, there's a good chance you will still find software packed up

as a tarball. This section walks you through the process of unpacking and installing a tarball software package.
For this example, the software package sysstat will be used. The sysstat utility is a very nice software package that

provides a variety of system monitoring tools.
First, you will need to download the sysstat tarball to your Linux system. While you can often find the sysstat package

available on different Linux sites, it's usually best to go straight to the source of the program. In this case, it's the Website

http://sebastien.godard.pagesperso-orange.fr/.
If you click the Download link, you'll go to the page that contains the files for downloading. The current version at the

time of this writing is 9.1.5, and the distribution file name is sysstat-9.1.5.tar.gz.
Click the link to download the file to your Linux system. Once you have downloaded the file, you can unpack it.
To unpack a software tarball, use the standard tar command:

tar -zxvf sysstat-9.1.5.tar.gz
sysstat-9.1.5/
sysstat-9.1.5/sar.c
sysstat-9.1.5/iostat.c
sysstat-9.1.5/sadc.c
sysstat-9.1.5/sa.h
sysstat-9.1.5/iconfig
sysstat-9.1.5/CHANGES
sysstat-9.1.5/COPYING
sysstat-9.1.5/CREDITS
sysstat-9.1.5/sa2.in
sysstat-9.1.5/README
sysstat-9.1.5/crontab.sample
sysstat-9.1.5/nls/
...
sysstat-9.1.5/nfsiostat.c
sysstat-9.1.5/sysstat-9.1.5.lsm
sysstat-9.1.5/cifsiostat.c
sysstat-9.1.5/nfsiostat.h
sysstat-9.1.5/cifsiostat.h
sysstat-9.1.5/sysstat-9.1.5.spec

Now that the tarball is unpacked and the files have neatly put themselves into a directory called sysstat-9.1.5, you

can dive down into that directory and continue.

www.it-ebooks.info

http://sebastien.godard.pagesperso-orange.fr/
http://www.it-ebooks.info/

First, use the cd command to get into the new directory and then list the contents of the directory:

$ cd sysstat-9.1.5
$ ls
activity.c INSTALL prf_stats.h sysconfig.in
build ioconf.c pr_stats.c sysstat-9.1.5.lsm
CHANGES ioconf.h pr_stats.h sysstat-9.1.5.spec
cifsiostat.c iostat.c rd_stats.c sysstat.cron.daily.in
cifsiostat.h iostat.h rd_stats.h sysstat.crond.in
common.c Makefile.in README sysstat.cron.hourly.in
common.h man sa1.in sysstat.in
configure mpstat.c sa2.in sysstat.ioconf
configure.in mpstat.h sa_common.c sysstat.sysconfig.in
contrib nfsiostat.c sadc.c TODO
COPYING nfsiostat.h sadf.c version.in
CREDITS nls sadf.h xml
crontab.sample pidstat.c sa.h
FAQ pidstat.h sar.c
iconfig prf_stats.c sa_wrap.c
$
In the listing out of the directory, you should typically see a README or AAAREADME file. It is very important to read this

file. In the file will be the actual instructions you will need to finish the software's installation.
Following the advice contained in the README file, the next step is to configure sysstat for your system. This checks

your Linux system to ensure it has the proper library dependencies, in addition to the proper compiler to compile the source

code:

./configure
Check programs:
.
checking for gcc... gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
...
checking for ANSI C header files... (cached) yes
checking for dirent.h that defines DIR... yes
checking for library containing opendir... none required
checking ctype.h usability... yes
checking ctype.h presence... yes
checking for ctype.h... yes
checking errno.h usability... yes
...
Check library functions:
.
checking for strchr... yes
checking for strcspn... yes
checking for strspn... yes
checking for strstr... yes

www.it-ebooks.info

http://www.it-ebooks.info/

checking for sensors support... yes
...
Check configuration:
...
config.status: creating Makefile

 Sysstat version: 9.1.5
 Installation prefix: /usr/local
 rc directory: /etc/rc.d
 Init directory: /etc/rc.d/init.d
 Configuration directory: /etc/sysconfig
 Man pages directory: /usr/local/man
 Compiler: gcc
 Compiler flags: -g -O2

If anything does go wrong, the configure step will display an error message explaining what's missing.
The next stage is to build the various binary files using the make command. The make command compiles the source code

and then the linker to create the final executable files for the package. As with the configure command, the make command

produces lots of output as it goes through the steps of compiling and linking all of the source code files:

make
...
gcc -o nfsiostat -g -O2 -Wall -Wstrict-prototypes -pipe
 -O2 nfsiostat.o librdstats.a libsyscom.a -s
gcc -o cifsiostat.o -c -g -O2 -Wall -Wstrict-prototypes -pipe
 -O2 -DSA_DIR=\“/var/log/sa\”
-DSADC_PATH=\“/usr/local/lib/sa/sadc\” cifsiostat.c
gcc -o cifsiostat -g -O2 -Wall -Wstrict-prototypes -pipe
 -O2 cifsiostat.o librdstats.a libsyscom.a -s

When make is finished, you'll have the actual sysstat software program available in the directory! However, it's

somewhat inconvenient to have to run it from that directory. Instead, you'll want to install it in a common location on your
Linux system. To do that, you'll need to log in as the root user account (or use the sudo command if your Linux distribution

prefers), and then use the install option of the make command:

make install
mkdir -p /usr/local/man/man1
mkdir -p /usr/local/man/man8
rm -f /usr/local/man/man8/sa1.8*
install -m 644 -g man man/sa1.8 /usr/local/man/man8
rm -f /usr/local/man/man8/sa2.8*
install -m 644 -g man man/sa2.8 /usr/local/man/man8
rm -f /usr/local/man/man8/sadc.8*
install -m 644 -g man man/sadc.8 /usr/local/man/man8
rm -f /usr/local/man/man1/sar.1*
...

www.it-ebooks.info

http://www.it-ebooks.info/

install -m 644 sysstat.sysconfig /etc/sysconfig/sysstat
install -m 644 CHANGES /usr/local/share/doc/sysstat-9.1.5
install -m 644 COPYING /usr/local/share/doc/sysstat-9.1.5
install -m 644 CREDITS /usr/local/share/doc/sysstat-9.1.5
install -m 644 README /usr/local/share/doc/sysstat-9.1.5
install -m 644 FAQ /usr/local/share/doc/sysstat-9.1.5
install -m 644 *.lsm /usr/local/share/doc/sysstat-9.1.5

Now the sysstat package is installed on the system! While not quite as easy as installing a software package via a PMS,

installing software using tarballs is not that difficult.

Summary
This chapter discussed how to work with a software Package Management Systems (PMS) to install, update, or remove
software from the command line. While most of the Linux distributions use fancy GUI tools for software package

management, you can also perform package management from the command line.
The Debian-based Linux distributions use the dpkg utility to interface with the PMS from the command line. A front-end

to the dpkg utility is aptitude. It provides simple command line options for working with software packages in the dpkg

format.
The Red Hat–based Linux distributions are based on the rpm utility but use different front-end tools at the command

line. Red Hat and Fedora use yum for installing and managing software packages. The openSUSE distribution uses zypper

for managing software, while the Mandriva distribution uses urpm.
The chapter closed with a discussion on how to install software packages that are only distributed in source code tarballs.

The tar command allows you to unpack the source code files from the tarball, and then configure and make allow you to

build the final executable program from the source code.
The next chapter takes a look at the different editors available in Linux distributions. As you get ready to start working on

shell scripts, it will come in handy to know what editors are available to use!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Working with Editors

In This Chapter

Working with the vim editor
Understanding emacs
Getting comfortable with KDE
Using the GNOME editor

Before you can start your shell scripting career, you'll need to know how to use at least one text editor in Linux. The more
you know about how to use these fancy features such as searching, cutting, and pasting, the quicker you'll be able to develop

your shell scripts. This chapter discusses the main text editors you'll see in the Linux world.

The vim Editor
If you're working in command line mode, you may want to become familiar with at least one text editor that operates in the
Linux console. The vi editor is the original editor used on Unix systems. It uses the console graphics mode to emulate a text-

editing window, allowing you to see the lines of your file, move around within the file, and insert, edit, and replace text.
While it is quite possibly the most complicated editor in the world (at least in the opinion of those who hate it), it provides

many features that have made it a staple for Unix administrators for decades.
When the GNU Project ported the vi editor to the open source world, they chose to make some improvements to it.

Because it no longer resembled the original vi editor found in the Unix world, the developers also renamed it, to vi improved,

or vim.
To make life easier, almost all Linux distributions create an alias named (see Chapter 5) vi that points to the vim program:

$ alias vi
alias vi=‘vim’
$
This section walks you through the basics of using the vim editor to edit your text shell script files.

The Basics of vim
The vim editor works with data in a memory buffer. To start the vim editor, just type the vim command (or vi if there's an alias)

and the name of the file you want to edit:

$ vim myprog.c
If you start vim without a filename, or if the file doesn't exist, vim opens a new buffer area for editing. If you specify an

existing file on the command line, vim will read the entire contents of the file into a buffer area, where it is ready for editing,

as shown in Figure 9.1.

Figure 9.1 The vim main window

www.it-ebooks.info

#c09_fig_0001
#c09_fig_anc_0001
http://www.it-ebooks.info/

Figure 9.1 The vim main window

The vim editor detects the terminal type for the session (see Chapter 2) and uses a full-screen mode to use the entire

console window for the editor area.
The initial vim edit window shows the contents of the file (if there are any) along with a message line at the bottom of the

window. If the file contents don't take up the entire screen, vim places a tilde on lines that are not part of the file (as shown in

Figure 9.1).
The message line at the bottom indicates information about the edited file, depending on the status of the file, and the

default settings in your vim installation. If the file is new, the message [New File] appears.
The vim editor has two modes of operation:

Normal mode
Insert mode

When you first open a file (or start a new file) for editing, the vim editor enters normal mode. In normal mode, the vim

editor interprets keystrokes as commands (more on those later).
In insert mode, vim inserts every key you type at the current cursor location in the buffer. To enter insert mode, press the i

key. To get out of insert mode and go back into normal mode, press the Escape key on the keyboard.
In normal mode, you can move the cursor around the text area by using the arrow keys (as long as your terminal type is

detected properly by vim). If you happen to be on a flaky terminal connection that doesn't have the arrow keys defined, all

hope is not lost. The vim commands include commands for moving the cursor:
h to move left one character
j to move down one line (the next line in the text)
k to move up one line (the previous line in the text)
l to move right one character

Moving around within large text files line by line can get tedious. Fortunately, vim provides a few commands to help

speed things along:

www.it-ebooks.info

#c09_fig_anc_0001
#c09_fig_0001
http://www.it-ebooks.info/

PageDown (or Ctrl+F) to move forward one screen of data
PageUp (or Ctrl+B) to move backward one screen of data
G to move to the last line in the buffer
num G to move to the line number num in the buffer
gg to move to the first line in the buffer

The vim editor has a special feature within normal mode called command line mode. The command line mode provides an
interactive command line where you can enter additional commands to control the actions in vim. To get to command line
mode, press the colon key in normal mode. The cursor moves to the message line, and a colon appears, waiting for you to

enter a command.
Within the command line mode are several commands for saving the buffer to the file and exiting vim:

q to quit if no changes have been made to the buffer data
q! to quit and discard any changes made to the buffer data
w filename to save the file under a different filename
wq to save the buffer data to the file and quit

After seeing just a few basic vim commands you might understand why some people absolutely hate the vim editor. To be
able to use vim to its fullest, you must know plenty of obscure commands. However, once you get a few of the basic vim
commands down, you can quickly edit files directly from the command line, no matter what type of environment you're in.
Plus, once you get comfortable typing commands, it almost seems second-nature to type both data and editing commands,

and it becomes odd having to jump back to using a mouse!

Editing Data
While in insert mode, you can insert data into the buffer; however, sometimes you need to add or remove data after you've
already entered it into the buffer. While in normal mode, the vim editor provides several commands for editing the data in the

buffer. Table 9.1 lists some common editing commands for vim.

Table 9.1 vim Editing Commands

Command Description

x Delete the character at the current cursor position.

dd Delete the line at the current cursor position.

dw Delete the word at the current cursor position.

d$ Delete to the end of the line from the current cursor position.

J Delete the line break at the end of the line at the current cursor position (joins
lines).

u Undo the previous edit command.

a Append data after the current cursor position.

A Append data to the end of the line at the current cursor position.

r char Replace a single character at the current cursor position with char.

R text Overwrite the data at the current cursor position with text, until you press Escape.

Some of the editing commands also allow you to use a numeric modifier to indicate how many times to perform the
command. For example, the command 2x deletes two characters, starting from the current cursor position, and the command

5dd deletes five lines, starting at the line from the current cursor position.

Caution

www.it-ebooks.info

#c09_tbl_0001
#c09_tbl_anc_0001
http://www.it-ebooks.info/

Be careful when trying to use the PC keyboard Backspace or Delete keys while in the vim
editor. The vim editor usually recognizes the Delete key as the functionality of the x
command, deleting the character at the current cursor location. Usually, the vim editor
doesn't recognize the Backspace key.

Copy and Paste
A standard feature of modern editors is the ability to cut or copy data, then paste it elsewhere in the document. The vim

editor provides a way to do this.
Cutting and pasting is relatively easy. You've already seen the commands in Table 9.1 that can remove data from the

buffer. However, when vim removes data, it actually keeps it stored in a separate register. You can retrieve that data by using

the p command.
For example, you can use the dd command to delete a line of text, then move the cursor to the location in the buffer

where you want to place it, and then use the p command. The p command inserts the text after the line at the current cursor

position. You can do this with any command that removes text.
Copying text is a little bit trickier. The copy command in vim is y (for yank). You can use the same second character with y as

with the d command (yw to yank a word, y$ to yank to the end of a line). After you yank the text, move the cursor to the

location where you want to place the text, and use the p command. The yanked text now appears at that location.
Yanking is tricky in that you can't see what happened because you're not affecting the text that you yank. You never

know for sure what you yanked until you paste it somewhere. But there's another feature in vim that helps you out with

yanking.
The visual mode highlights text as you move the cursor. You use visual mode to select text to yank for pasting. To enter

visual mode, move the cursor to the location where you want to start yanking, and press v. You'll notice that the text at the
cursor position is now highlighted. Next, move the cursor to cover the text you want to yank (you can even move down lines
to yank more than one line of text). As you move the cursor, vim highlights the text in the yank area. After you've covered the
text you want to copy, press the y key to activate the yank command. Now that you've got the text in the register, just move

the cursor to where you want to paste, and use the p command.

Search and Substitute
You can easily search for data in the buffer using the vim search command. To enter a search string, press the forward slash (/)
key. The cursor goes to the message line, and vim displays a forward slash. Enter the text you want to find, and press the

Enter key. The vim editor responds with one of three actions:
If the word appears after the current cursor location, it jumps to the first location where the text appears.
If the word doesn't appear after the current cursor location, it wraps around the end of the file to the first location

in the file where the text appears (and indicates this with a message).
It produces an error message stating that the text was not found in the file.

To continue searching for the same word, press the forward slash character and then press the Enter key, or you can use

the n key, for next.
The substitute command allows you to quickly replace (substitute) one word for another in the text. To get to the

substitute command you must be in command line mode. The format for the substitute command is:

:s/old/new/
The vim editor jumps to the first occurrence of the text old and replaces it with the text new. There are a few

modifications you can make to the substitute command to substitute more than one occurrence of the text:
:s/old/new/g to replace all occurrences of old in a line
:n,ms/old/new/g to replace all occurrences of old between line numbers n and m
:%s/old/new/g to replace all occurrences of old in the entire file
:%s/old/new/gc to replace all occurrences of old in the entire file, but prompt for each occurrence

As you can see, for a command line text editor, vim contains quite a few advanced features. Because every Linux
distribution includes it, it's a good idea to at least know the basics of the vim editor so that you can always edit scripts, no

matter where you are or what you have available.

The emacs Editor
The emacs editor is an extremely popular editor that appeared before even Unix was around. Developers liked it so much

www.it-ebooks.info

#c09_tbl_0001
http://www.it-ebooks.info/

The emacs editor is an extremely popular editor that appeared before even Unix was around. Developers liked it so much

they ported it to the Unix environment, and now it's been ported to the Linux environment. The emacs editor started out life

as a console editor, much like vi, but has made the migration to the graphical world.
The emacs editor still provides the original console mode editor, but now it also has the ability to use a graphical X

Windows window to allow editing text in a graphical environment. Typically, when you start the emacs editor from a
command line, the editor will determine if you have an available X Window session and start in graphical mode. If you don't, it

will start in console mode.
This section describes both the console mode and graphical mode emacs editors so that you'll know how to use either one

if you want (or need) to.

Using emacs on the Console
The console mode version of emacs is another editor that uses lots of key commands to perform editing functions. The emacs
editor uses key combinations involving the Control key (the Ctrl key on the PC keyboard) and the Meta key. In most PC
terminal emulator packages, the Meta key is mapped to the PC's Alt key. The official emacs documents abbreviate the Ctrl key
as C- and the Meta key as M-, Thus, if you enter a Ctrl-x key combination, the document shows C-x. This chapter will do the

same so as not to confuse you.

The Basics of emacs

To edit a file using emacs, from the command line, enter:

$ emacs myprog.c
The emacs console mode window appears with a short introduction and help screen. Don't be alarmed; as soon as you

press a key, emacs loads the file into the active buffer and displays the text, as shown in Figure 9.2.

Figure 9.2 Editing a file using the emacs editor in console mode

You'll notice that the top of the console mode window shows a typical menu bar. Unfortunately, you won't be able to use

www.it-ebooks.info

#c09_fig_0002
#c09_fig_anc_0002
http://www.it-ebooks.info/

You'll notice that the top of the console mode window shows a typical menu bar. Unfortunately, you won't be able to use

the menu bar in console mode, only in graphical mode.

Note

If you have a graphical desktop but you prefer to use emacs in console mode
instead of X Windows mode, use the -nw option on the command line.

Unlike the vim editor, where you have to move into and out of insert mode to switch between entering commands and
inserting text, the emacs editor has only one mode. If you type a printable character, emacs inserts it at the current cursor

position. If you type a command, emacs executes the command.
To move the cursor around the buffer area, you can use the arrow keys and the PageUp and PageDown keys, assuming

that emacs detected your terminal emulator correctly. If not, there are commands for moving the cursor around:
C-p to move up one line (the previous line in the text).
C-b to move left (back) one character.
C-f to move right (forward) one character.
C-n to move down one line (the next line in the text).

There are also commands for making longer jumps with the cursor within the text:
M-f moves right (forward) to the next word.
M-b moves left (backward) to the previous word.
C-a moves to the beginning of the current line.
C-e moves to the end of the current line.
M-a moves to the beginning of the current sentence.
M-e moves to the end of the current sentence.
M-v moves back one screen of data.
C-v moves forward one screen of data.
M-< to move the first line of the text.
M-> to move to the last line of the text.

There are several commands you should know for saving the editor buffer back into the file, and exiting emacs:
C-x C-s to save the current buffer contents to the file.
C-z to exit emacs but keep it running in your session so that you can come back to it.
C-x C-c to exit emacs and stop the program.

You'll notice that two of these features require two key commands. The C-x command is called the extend command. This

provides yet another whole set of commands to work with.

Editing Data
The emacs editor is pretty robust about inserting and deleting text in the buffer. To insert text, just move the cursor to the
location where you want to insert the text and start typing. To delete text, emacs uses the Backspace key to delete the

character before the current cursor position and the Delete key to delete the character at the current cursor location.
The emacs editor also has commands for killing text. The difference between deleting text and killing text is that when you

kill text, emacs places it in a temporary area where you can retrieve it (see the “Copying and Pasting” section). Deleted text is

gone forever.
There are a few commands for killing text in the buffer:

M-Backspace to kill the word before the current cursor position
M-d to kill the word after the current cursor position
C-k to kill from the current cursor position to the end of the line
M-k to kill from the current cursor position to the end of the sentence

The emacs editor also includes a fancy way of mass-killing text. Just move the cursor to the start of the area you want to
kill and press either the C-@ or C-Spacebar keys. Then move the cursor to the end of the area you want to kill and press the

C-w command keys. All of the text between the two locations is killed.
If you happen to make a mistake when killing text, the C-u command will undo the kill command, and return the data the

www.it-ebooks.info

http://www.it-ebooks.info/

If you happen to make a mistake when killing text, the C-u command will undo the kill command, and return the data the

state it was in before you killed it.

Copying and Pasting
You've seen how to cut data from the emacs buffer area; now it's time to see how to paste it somewhere else. Unfortunately,

if you use the vim editor, this process may confuse you when you use the emacs editor.
In an unfortunate coincidence, pasting data in emacs is called yanking. In the vim editor, copying is called yanking, which is

what makes this a difficult thing to remember if you happen to use both editors.
After you kill data using one of the kill commands, move the cursor to the location where you want to paste the data, and

use the C-y command. This yanks the text out of the temporary area and pastes it at the current cursor position. The C-y
command yanks the text from the last kill command. If you've performed multiple kill commands, you can cycle through

them using the M-y command.
To copy text, just yank it back into the same location you killed it from and then move to the new location and use the C-

y command again. You can yank text back as many times as you desire.

Searching and Replacing
Searching for text in the emacs editor is done by using the C-s and C-r commands. The C-s command performs a forward
search in the buffer area from the current cursor position to the end of the buffer, whereas the C-r command performs a

backward search in the buffer area from the current cursor position to the start of the buffer.
When you enter either the C-s or C-r command, a prompt appears in the bottom line, querying you for the text to

search. There are two types of searches that emacs can perform.
In an incremental search, the emacs editor performs the text search in real-time mode as you type the word. When you

type the first letter, it highlights all of the occurrences of that letter in the buffer. When you type the second letter, it
highlights all of the occurrences of the two-letter combination in the text, and so on until you complete the text you're

searching for.
In a non-incremental search, press the Enter key after the C-s or C-r commands. This locks the search query into the

bottom line area and allows you to type the search text in full before searching.
To replace an existing text string with a new text string, you have to use the M-x command. This command requires a text

command, along with parameters.
The text command is replace-string. After typing the command, press the Enter key, and emacs will query you for the

existing text string. After entering that, press the Enter key again, and emacs will query you for the new replacement text

string.

Using Buffers in emacs
The emacs editor allows you to edit multiple files at the same time by having multiple buffer areas. You can load files into a

buffer and switch between buffers while editing.
To load a new file into a buffer while you're in emacs, use the C-x C-f key combination. This is the emacs Find a File mode.

It takes you to the bottom line in the window and allows you to enter the name of the file you want to start to edit. If you
don't know the name or location of the file, just press the Enter key. This brings up a file browser in the edit window, as shown

in Figure 9.3.

Figure 9.3 The emacs Find a File mode browser

www.it-ebooks.info

#c09_fig_0003
#c09_fig_anc_0003
http://www.it-ebooks.info/

Figure 9.3 The emacs Find a File mode browser

From here, you can browse to the file you want to edit. To traverse up a directory level, go to the double dot entry, and

press the Enter key. To traverse down a directory, go to the directory entry and press the Enter key. When you've found the

file you want to edit, just press the Enter key, and emacs will load it into a new buffer area.
You can list the active buffer areas by pressing the C-x C-b extended command combination. The emacs editor splits the

editor window and displays a list of buffers in the bottom window. There are always two buffers that emacs provides in

addition to your main editing buffer:
A scratch area called *scratch*
A message area called *Messages*

The scratch area allows you to enter LISP programming commands as well as enter notes to yourself. The message area
shows messages generated by emacs while operating. If any errors occur while using emacs, they will appear in the message

area.
There are two ways to switch to a different buffer area in the window:

C-x o to switch to the buffer listing window. Use the arrow keys to move to the buffer area you want and press the

Enter key.
C-x b to type in the name of the buffer area you want to switch to.

When you select the option to switch to the buffer listing window, emacs will open the buffer area in the new window
area. The emacs editor allows you to have multiple windows open in a single session. The following section discusses how to

manage multiple windows in emacs.

Using Windows in Console Mode emacs
The console mode emacs editor was developed many years before the idea of graphical windows appeared. However, it was

advanced for its time, in that it could support multiple editing windows within the main emacs window.
You can split the emacs editing window into multiple windows by using one of two commands:

www.it-ebooks.info

#c09_fig_anc_0003
http://www.it-ebooks.info/

C-x 2 splits the window horizontally into two windows.
C-x 3 splits the window vertically into two windows.

To move from one window to another, use the C-x o command. You'll notice that when you create a new window, emacs
uses the buffer area from the original window in the new window. Once you move into the new window, you can use the C-x
C-f command to load a new file, or one of the commands to switch to a different buffer area in the new window.

To close a window, move to it and use the C-x 0 (that's a zero) command. If you want to close all of the windows except

the one you're in, use the C-x 1 (that's a numerical one) command.

Using emacs in X Windows
If you use emacs from an X Windows environment (such as the KDE or GNOME desktops), it will start in graphical mode, as

shown in Figure 9.4.

Figure 9.4 The emacs graphical window

www.it-ebooks.info

#c09_fig_0004
#c09_fig_anc_0004
http://www.it-ebooks.info/

Figure 9.4 The emacs graphical window

If you've already used emacs in console mode, you should be fairly familiar with the X Windows mode. All of the key

commands are available as menu bar items. The emacs menu bar contains the following items:
File: Allows you to open files in the window, create new windows, close windows, save buffers, and print buffers.
Edit: Allows you to cut and copy selected text to the clipboard, paste clipboard data to the current cursor position,

search for text, and replace text.
Options: Provides settings for many more emacs features, such as highlighting, word wrap, cursor type, and setting

fonts.
Buffers: Lists the current buffers available and allows you to easily switch between buffer areas.
Tools: Provides access to the advanced features in emacs, such as the command line interface access, spell checking,

comparing text between files (called diff), sending an e-mail message, calendar, and the calculator.
Help: Provides the emacs manual online for access to help on specific emacs functions.

In addition to the normal graphical emacs menu bar items, there is often a separate item specific to the file type in the
editor buffer. Figure 9.4 shows opening a C program, so emacs provided a C menu item, allowing advanced settings for

www.it-ebooks.info

#c09_fig_anc_0004
#c09_fig_0004
http://www.it-ebooks.info/

editor buffer. Figure 9.4 shows opening a C program, so emacs provided a C menu item, allowing advanced settings for

highlighting C syntax, and compiling, running, and debugging the code from a command prompt.
The graphical emacs window is an example of an older console application making the migration to the graphical world.

Now that many Linux distributions provide graphical desktops (even on servers that don't need them), graphical editors are
becoming more commonplace. Both of the popular Linux desktop environments (KDE and GNOME) have also provided

graphical text editors specifically for their environments, which are covered in the rest of this chapter.

The KDE Family of Editors
If you're using a Linux distribution that uses the KDE desktop (see Chapter 1), there are a couple of options for you when it

comes to text editors. The KDE project officially supports two different text editors:
KWrite: A single-screen text-editing package
Kate: A full-featured, multi-window text-editing package

Both of these editors are graphical text editors that contain many advanced features. The Kate editor provides more
advanced features, plus extra niceties not often found in standard text editors. This section describes each of the editors and

shows some of the features that you can use to help with your shell script editing.

The KWrite Editor
The basic editor for the KDE environment is KWrite. It provides simple word-processing–style text editing, along with support

for code syntax highlighting and editing. The default KWrite editing window is shown in Figure 9.5.

Figure 9.5 The default KWrite window editing a shell script program

You can't tell from Figure 9.5, but the KWrite editor recognizes several types of programming languages and uses color

coding to distinguish constants, functions, and comments. Also, notice that the for loop has an icon that links the opening

www.it-ebooks.info

#c09_fig_0004
#c09_fig_0005
#c09_fig_anc_0005
#c09_fig_0005
http://www.it-ebooks.info/

coding to distinguish constants, functions, and comments. Also, notice that the for loop has an icon that links the opening

and closing braces. This is called a folding marker. By clicking the icon, you can collapse the function into a single line. This is a

great feature when working through large applications.
The KWrite editing window provides full cut and paste capabilities, using the mouse and the arrow keys. As in a word

processor, you can highlight and cut (or copy) text anywhere in the buffer area and paste it at any other place.
To edit a file using KWrite, you can either select KWrite from the KDE menu system on your desktop (some Linux

distributions even create a Panel icon for it) or start it from the command line prompt:

$ kwrite factorial.sh
The kwrite command has several command line parameters you can use to customize how it starts:

--stdin causes KWrite to read data from the standard input device instead of a file.
--encoding specifies a character encoding type to use for the file.
--line specifies a line number in the file to start at in the editor window.
--column specifies a column number in the file to start at in the editor window.

The KWrite editor provides both a menu bar and a toolbar at the top of the edit window, allowing you to select features

and change configuration settings of the KWrite editor.
The menu bar contains the following items:

File to load, save, print, and export text from files.
Edit to manipulate text in the buffer area.
View to manage how the text appears in the editor window.
Bookmarks for handling pointers to return to specific locations in the text (this option may need to be enabled in

the configurations).
Tools contains specialized features to manipulate the text.
Settings for configuring the way the editor handles text.
Help for getting information about the editor and commands.

The Edit menu bar item provides commands for all of your text-editing needs. Instead of having to remember cryptic key

commands (which by the way, KWrite also supports), you can just select items in the Edit menu bar, as shown in Table 9.2.

Table 9.2 The KWrite Edit Menu Items

Item Description

Undo Reverses the last action or operation

Redo Reverses the last undo action

Cut Deletes the selected text and places it in the clipboard

Copy Copies the selected text to the clipboard

Copy as HTML Copies the selected text to the clipboard as HTML code

Paste Inserts the current contents of the clipboard at the current cursor
position

Select All Selects all text in the editor

Deselect Deselects any text that is currently selected

Overwrite Mode Toggles insert mode to overwrite mode, replacing text with new
typed text instead of just inserting the new text

Find Produces the Find Text dialog box, which allows you to customize a
text search

www.it-ebooks.info

#c09_tbl_0002
#c09_tbl_anc_0002
http://www.it-ebooks.info/

Find Next Repeats the last find operation forward in the buffer area

Find Previous Repeats the last find operation backwards in the buffer area

Replace Produces the Replace With dialog box, which allows you to customize
a text search and replace

Find Selected Finds the next occurrence of the selected text

Find Selected Backwards Finds the previous occurrence of the selected text

Go to Line Produces the Goto dialog box, which allows you to enter a line
number. The cursor moves to the specified line

The Find feature has two modes—a normal mode, which can perform simple text searches, and a power search and replace
mode, where you can do advanced searching and replacing if necessary. You toggle between the two modes using the green

arrow in the Find section, as shown in Figure 9.6.

Figure 9.6 The KWrite Find section

The Find power mode allows you to search not only with words, but with a regular expression (discussed in Chapter 19)

for the search. There are a few other options you can use to customize the search as well, indicating, for example, whether or

not to perform a case-sensitive search, or to look only for whole words instead of finding the text within words.
The Tools menu bar item provides several handy features for working with the text in the buffer area. Table 9.3 describes

www.it-ebooks.info

#c09_fig_0006
#c09_fig_anc_0006
#c09_tbl_0003
http://www.it-ebooks.info/

The Tools menu bar item provides several handy features for working with the text in the buffer area. Table 9.3 describes

the tools available in KWrite.

Table 9.3 The KWrite Tools

Tool Description

Read Only Mode Locks the text so that no changes can be made while in the editor

Encoding Sets the character set encoding used by the text

Spelling Starts the spell-check program at the start of the text

Spelling (from cursor) Starts the spell-check program from the current cursor position

Spellcheck Selection Starts the spell-check program only on the selected section of text

Indent Increases the paragraph indentation by one

Unindent Decreases the paragraph indentation by one

Clean Indentation Returns all paragraph indentation to the original settings

Align Forces the current line or the selected lines to return to the default
indentation settings

Uppercase Sets the selected text, or the character at the current cursor position,
to upper case

Lowercase Sets the selected text, or the character at the current cursor position,
to lower case

Capitalize Capitalizes the first letter of the selected text or the word at the
current cursor position

Join Lines Combines the selected lines, or the line at the current cursor position,
and the next line into one line

Word Wrap Document Enable word wrapping in the text. If a line extends past the editor
window edge, the line continues on the next line

There are lots of tools for a simple text editor!
The Settings menu includes the Configure Editor dialog box, shown in Figure 9.7.

Figure 9.7 The KWrite Configure Editor dialog box

www.it-ebooks.info

#c09_tbl_0003
#c09_tbl_anc_0003
#c09_fig_0007
#c09_fig_anc_0007
http://www.it-ebooks.info/

Figure 9.7 The KWrite Configure Editor dialog box

The Configuration dialog box uses icons on the left side for you to select the feature in KWrite to configure. When you

select an icon, the right side of the dialog box shows the configuration settings for the feature.
The Appearance feature allows you to set several features that control how the text appears in the text editor window.

You can enable word wrap, line numbers (great for programmers), and the folder markers from here. With the Fonts &
Colors feature, you can customize the complete color scheme for the editor, determining what colors to make each category

of text in the program code.

The Kate Editor
The Kate editor is the flagship editor for the KDE Project. It uses the same text editor as the KWrite application (so most of

those features are the same), but it incorporates lots of other features into a single package.
The first thing you'll notice when you start the Kate editor is that the editor doesn't start! Instead, you get a dialog box,

as shown in Figure 9.8.

Figure 9.8 The Kate session dialog box

www.it-ebooks.info

#c09_fig_anc_0007
#c09_fig_0008
#c09_fig_anc_0008
http://www.it-ebooks.info/

Figure 9.8 The Kate session dialog box

The Kate editor handles files in sessions. You can have multiple files open in a session, and you can have multiple sessions

saved. When you start Kate, it provides you with the choice of which session to return to. When you close your Kate session, it
remembers the documents you had open and displays them the next time you start Kate. This allows you to easily manage

files from multiple projects by using separate workspaces for each project.
After selecting a session, you'll see the main Kate editor window, shown in Figure 9.9.

Figure 9.9 The main Kate editing window

www.it-ebooks.info

#c09_fig_anc_0008
#c09_fig_0009
#c09_fig_anc_0009
http://www.it-ebooks.info/

Figure 9.9 The main Kate editing window

The left side frame shows the documents currently open in the session. You can switch between documents just by clicking

the document name. To edit a new file, click the Filesystem Browser tab on the left side. The left frame is now a full graphical

filesystem browser, allowing you to graphically browse to locate your files.
A great feature of the Kate editor is the built-in terminal window, shown in Figure 9.10.

Figure 9.10 The Kate built-in terminal window

www.it-ebooks.info

#c09_fig_anc_0009
#c09_fig_0010
#c09_fig_anc_0010
http://www.it-ebooks.info/

Figure 9.10 The Kate built-in terminal window

The terminal tab at the bottom of the text editor window starts the built-in terminal emulator in Kate (using the KDE

Konsole terminal emulator). This feature horizontally splits the current editing window, creating a new window with Konsole
running in it. You can now enter command line commands, start programs, or check on system settings without having to

leave the editor! To close the terminal window, just type exit at the command prompt.
As you can tell from the terminal feature, Kate also supports multiple windows. The Window menu bar item provides

options to:
Create a new Kate window using the current session
Split the current window vertically to create a new window
Split the current window horizontally to create a new window
Close the current window

To set the configuration settings in Kate, select the Configure Kate item under the Settings menu bar item. The

Configuration dialog box, shown in Figure 9.11, appears.

Figure 9.11 The Kate configuration settings dialog box

www.it-ebooks.info

#c09_fig_anc_0010
#c09_fig_0011
#c09_fig_anc_0011
http://www.it-ebooks.info/

Figure 9.11 The Kate configuration settings dialog box

You'll notice that the Editor settings area is exactly the same as for KWrite. This is because the two editors share the same

text editor engine. The Application settings area allows you to configure settings for the Kate items, such as controlling
sessions (shown in Figure 9.11), the documents list, and the filesystem browser. Kate also supports external plug-in

applications, which can be activated here.

The GNOME Editor
If you're working on a Linux system using the GNOME desktop environment, there's a graphical text editor that you can use
as well. The gedit text editor is a basic text editor, with a few advanced features thrown in just for fun. This section walks you

through the features of gedit and demonstrates how to use it for your shell script programming.

Starting gedit
Most GNOME desktop environments include gedit in the Accessories Panel menu item. If you can't find gedit there, you can

start it from the command line prompt:

$ gedit factorial.sh myprog.c
When you start gedit with multiple files, it loads all of the files into separate buffers and displays each one as a tabbed

www.it-ebooks.info

#c09_fig_anc_0011
#c09_fig_0011
http://www.it-ebooks.info/

When you start gedit with multiple files, it loads all of the files into separate buffers and displays each one as a tabbed

window within the main editor window, as shown in Figure 9.12.

Figure 9.12 The gedit main editor window

The left frame in the gedit main editor window shows the documents you're currently editing. The right side shows the

tabbed windows that contain the buffer text. If you hover your mouse pointer over each tab, a dialog box appears, showing

the full pathname of the file, the MIME type, and the character set encoding it uses.

Basic gedit Features
In addition to the editor windows, gedit uses both a menu bar and toolbar that allow you to set features and configure

settings. The toolbar provides quick access to menu bar items. The menu bar items available are:
File for handling new files, saving existing files, and printing files
Edit to manipulate text in the active buffer area and set the editor preferences
View to set the editor features to display in the window and to set the text highlighting mode
Search to find and replace text in the active editor buffer area
Tools to access plug-in tools installed in gedit
Documents to manage files open in the buffer areas
Help to access the full gedit manual

There shouldn't be anything too surprising here. The File menu provides the option Open Location, which allows you to
open a file from the network using the standard Uniform Resource Identifier (URI) format popular in the World Wide Web

www.it-ebooks.info

#c09_fig_0012
#c09_fig_anc_0012
http://www.it-ebooks.info/

open a file from the network using the standard Uniform Resource Identifier (URI) format popular in the World Wide Web

world. This format identifies the protocol used to access the file (such as HTTP or FTP), the server where the file is located, and

the complete path on the server to access the file.
The Edit menu contains the standard cut, copy, and paste functions, along with a neat feature that allows you to easily

enter the date and time in the text in several different formats. The Search menu provides a standard find function, which
produces a dialog box where you can enter the text to find, along with the capability to select how the find should work
(matching case, matching the whole word, and the search direction). It also provides an incremental search feature, which

works in real-time mode, finding text as you type the characters of the word.

Setting Preferences

The Edit menu contains a Preferences item, which produces the gedit Preferences dialog box, shown in Figure 9.13.

Figure 9.13 The gedit Preferences dialog box

This is where you can customize the operation of the gedit editor. The Preferences dialog box contains five tabbed areas

for setting the features and behavior of the editor.

View

The View tab provides options for how gedit displays the text in the editor window:
Text Wrapping: Determines how to handle long lines of text in the editor. The Enabling text wrapping option wraps
long lines to the next line of the editor. The Do Not Split Words Over Two Lines option prevents the auto-inserting

www.it-ebooks.info

#c09_fig_0013
#c09_fig_anc_0013
http://www.it-ebooks.info/

long lines to the next line of the editor. The Do Not Split Words Over Two Lines option prevents the auto-inserting

of hyphens into long words, to prevent them being split between two lines.
Line Numbers: Displays line numbers in the left margin in the editor window.
Current Line: Highlights the line where the cursor is currently positioned, enabling you to easily find the cursor

position.
Right Margin: Enables the right margin and allows you to set how many columns should be in the editor window.

The default value is 80 columns.
Bracket Matching: When enabled, highlights bracket pairs in programming code, allowing you to easily match

brackets in if-then statements, for and while loops, and other coding elements that use brackets.
The line-numbering and bracket-matching features provide an environment for programmers to troubleshoot code

that's not often found in text editors.

Editor

The Editor tab provides options for how the gedit editor handles tabs and indentation, along with how files are saved:
Tab Stops: Sets the number of spaces skipped when you press the Tab key. The default value is eight. This feature

also includes a checkbox that, when selected, inserts spaces instead of a tab skip.
Automatic Indentation: When enabled, causes gedit to automatically indent lines in the text for paragraphs and

code elements (such as if-then statements and loops).
File Saving: Provides two features for saving files: whether or not to create a backup copy of the file when opened

in the edit window, and whether or not to automatically save the file at a preselected interval.
The auto-save feature is a great way to ensure that your changes are saved on a regular basis to prevent catastrophes

from crashes or power outages.

Font & Colors

The Font & Colors tab allows you to configure (not surprisingly) two items:
Font: Allows you to select the default font of Monospace 10, or to select a customized font and font size from a

dialog box.
Color Scheme: Allows you to select the default color scheme used for text, background, selected text, and

selection colors, or choose a custom color for each category.
The default colors for gedit normally match the standard GNOME desktop theme selected for the desktop. These colors

will change to match the scheme you select for the desktop.

Plug-ins
The Plugins tab provides control over the plug-ins used in gedit. Plug-ins are separate programs that can interface with gedit

to provide additional functionality. The Plugins tab is shown in Figure 9.14.

Figure 9.14 The gedit Plugins Preferences tab

www.it-ebooks.info

#c09_fig_0014
#c09_fig_anc_0014
http://www.it-ebooks.info/

Figure 9.14 The gedit Plugins Preferences tab

Several plug-ins are available for gedit, but not all of them are installed by default. Table 9.4 describes the plug-ins that

are currently available in gedit.

Table 9.4 The gedit Plug-ins

Plug-in Description

Change Case Changes the case of selected text

Document Statistics Reports the number of words, lines, characters, and non-space characters

External Tools Provides a shell environment in the editor to execute commands and
scripts

File Browser Pane Provides a simple file browser to make selecting files for editing easier

Insert Date/Time Inserts the current date and time in several formats at the current cursor
position

Modelines Provides emacs-style message lines at the bottom of the editor window

www.it-ebooks.info

#c09_fig_anc_0014
#c09_tbl_0004
#c09_tbl_anc_0004
http://www.it-ebooks.info/

Python Console Provides an interactive console at the bottom of the editor window for
entering commands using the Python programming language

Quick Open Opens files directly in the gedit edit window

Snippets Allows you to store often-used pieces of text for easy retrieval anywhere
in the text

Sort Quickly sorts the entire file or selected text

Spell Checker Provides dictionary spellchecking for the text file

Tag List Provides a list of commonly used strings you can easily enter into your
text

Plug-ins that are enabled show a checkmark in the checkbox next to their name. Some plug-ins, such as the External Tools
plug-in, also provide additional configuration features after you select them. It allows you to set a shortcut key to start the

terminal, where gedit displays output, and the command to use to start the shell session.
Unfortunately, not all plug-ins are installed in the same place in the gedit menu bar. Some plug-ins appear in the Tools

menu bar item (such as the Spell Checker and External Tools plug-ins), while others appear in the Edit menu bar item (such as

the Change Case and Insert Date/Time plug-ins).

Summary
When it comes to creating shell scripts, you'll need some type of text editor. Several popular text editors are available for the
Linux environment. The most popular editor in the Unix world, vi, has been ported to the Linux world as the vim editor. The
vim editor provides simple text editing from the console, using a rudimentary full-screen graphical mode. The vim editor

provides many advanced editor features, such as text searching and replacement.
Another popular Unix editor, emacs, has also made its way to the Linux world. The Linux version of emacs has both console

and an X Windows graphical mode, making it the bridge between the old world and the new. The emacs editor provides

multiple buffer areas, allowing you to edit multiple files simultaneously.
The KDE Project created two editors for use in the KDE desktop. The KWrite editor is a simple editor that provides the

basic text-editing features, along with a few advanced features such as syntax highlighting for programming code, line
numbering, and code folding. The Kate editor provides more advanced features for programmers. One great feature in Kate
is a built-in terminal window. You can open a command line interface session directly in the Kate editor without having to
open a separate terminal emulator window. The Kate editor also allows you to open multiple files, providing different

windows for each opened file.
The GNOME Project also provides a simple text editor for programmers. The gedit editor is a basic text editor that

provides some advanced features such as code syntax highlighting and line numbering, but it was designed to be a bare-
bones editor. To spruce up the gedit editor, developers created plug-ins, which expand the features available in gedit. Current

plug-ins include a spell-checker, a terminal emulator, and a file browser.
This wraps up the background chapters on working with the command line in Linux. The next part of the book dives into

the shell-scripting world. The next chapter starts off by showing you how to create a shell script file and how to run it on your
Linux system. It will also show you the basics of shell scripts, allowing you to create simple programs by stringing multiple

commands together into a script you can run.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II

Shell Scripting Basics

In This Part
Chapter 10: Basic Script Building

Chapter 11: Using Structured Commands

Chapter 12: More Structured Commands

Chapter 13: Handling User Input

Chapter 14: Presenting Data

Chapter 15: Script Control

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Basic Script Building

In This Chapter

Basic script building
Using multiple commands
Creating a script file

Now that we've covered the basics of the Linux system and the command line, it's time to start coding. This chapter discusses
the basics of writing shell scripts. You'll need to know these basic concepts before you can start writing your own shell script

masterpieces.

Using Multiple Commands
So far you've seen how to use the command line interface (CLI) prompt of the shell to enter commands and view the
command results. The key to shell scripts is the ability to enter multiple commands and process the results from each
command, even possibly passing the results of one command to another. The shell allows you to chain commands together

into a single step.
If you want to run two commands together, you can enter them on the same prompt line, separated with a semicolon:

$ date ; who
Mon Feb 21 15:36:09 EST 2011
Christine tty2 2011-02-21 15:26
Samantha tty3 2011-02-21 15:26
Timothy tty1 2011-02-21 15:26
user tty7 2011-02-19 14:03 (:0)
user pts/0 2011-02-21 15:21 (:0.0)

$
Congratulations, you just wrote a shell script! This simple script uses just two bash shell commands. The date command

runs first, displaying the current date and time, followed by the output of the who command, showing who is currently
logged on to the system. Using this technique, you can string together as many commands as you wish, up to the maximum

command line character count of 255 characters.
While using this technique is fine for small scripts, it has a major drawback in that you have to enter the entire command at

the command prompt every time you want to run it. Instead of having to manually enter the commands onto a command
line, you can combine the commands into a simple text file. When you need to run the commands, just simply run the text file.

Creating a Script File
To place shell commands in a text file, first you'll need to use a text editor (see Chapter 9) to create a file, then enter the

commands into the file.
When creating a shell script file, you must specify the shell you are using in the first line of the file. The format for this is:

#!/bin/bash
In a normal shell script line, the pound sign (#) is used as a comment line. A comment line in a shell script isn't processed by

the shell. However, the first line of a shell script file is a special case, and the pound sign followed by the exclamation point

tells the shell what shell to run the script under (yes, you can be using a bash shell and run your script using another shell).
After indicating the shell, commands are entered onto each line of the file, followed by a carriage return. As mentioned,

comments can be added by using the pound sign. An example looks like this:

#!/bin/bash
This script displays the date and who's logged on

www.it-ebooks.info

http://www.it-ebooks.info/

date
who
And that's all there is to it. You can use the semicolon and put both commands on the same line if you want to, but in a

shell script, you can list commands on separate lines. The shell will process commands in the order in which they appear in the

file.
Also notice that another line was included that starts with the pound symbol and adds a comment. Lines that start with

the pound symbol (other than the first #! line) aren't interpreted by the shell. This is a great way to leave comments for
yourself about what's happening in the script, so when you come back to it two years later you can easily remember what you

did.
Save this script in a file called test1, and you are almost ready. There are still a couple of things to do before you can run

your new shell script file.
If you try running the file now, you'll be somewhat disappointed to see this:

$ test1
bash: test1: command not found
$
The first hurdle to jump is getting the bash shell to find your script file. If you remember from Chapter 5, the shell uses an

environment variable called PATH to find commands. A quick look at the PATH environment variable demonstrates our

problem:

$ echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin
:/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin $
The PATH environment variable is set to look for commands only in a handful of directories. To get the shell to find the

test1 script, we need to do one of two things:
Add the directory where our shell script file is located to the PATH environment variable.
Use an absolute or relative filepath to reference our shell script file in the prompt.

Tip

Some Linux distributions add the $HOME/bin directory to the PATH environment variable.
This creates a place in every user's HOME directory to place files where the shell can find
them to execute.

For this example, we'll use the second method to tell the shell exactly where the script file is located. Remember that to

reference a file in the current directory, you can use the single dot operator in the shell:

$./test1
bash: ./test1: Permission denied
$
Now the shell found the shell script file just fine, but there's another problem. The shell indicated that you don't have

permission to execute the file. A quick look at the file permissions should show what's going on here:

$ ls -l test1
-rw-r--r-- 1 user user 73 Sep 24 19:56 test1
$
When the new test1 file was created, the umask value determined the default permission settings for the new file.

Because the umask variable is set to 022 (see Chapter 6), the system created the file with only read/write permissions for the

file's owner.
The next step is to give the file owner permission to execute the file, using the chmod command (see Chapter 6):

$ chmod u+x test1
$./test1
Mon Feb 21 15:38:19 EST 2011
Christine tty2 2011-02-21 15:26

www.it-ebooks.info

http://www.it-ebooks.info/

Samantha tty3 2011-02-21 15:26
Timothy tty1 2011-02-21 15:26
user tty7 2011-02-19 14:03 (:0)
user pts/0 2011-02-21 15:21 (:0.0) $
Success! Now all of the pieces are in the right places to execute the new shell script file.

Displaying Messages
Most shell commands produce their own output, which is displayed on the console monitor where the script is running. Many
times, however, you will want to add your own text messages to help the script user know what is happening within the script.
You can do this with the echo command. The echo command can display a simple text string if you add the string following

the command:

$ echo This is a test
This is a test
$
Notice that by default you don't need to use quotes to delineate the string you're displaying. However, sometimes this

can get tricky if you are using quotes within your string:

$ echo Let's see if this'll work
Lets see if thisll work
$
The echo command uses either double or single quotes to delineate text strings. If you use them within your string, you

need to use one type of quote within the text and the other type to delineate the string:

$ echo “This is a test to see if you're paying attention”
This is a test to see if you're paying attention
$ echo ‘Rich says “scripting is easy”.’
Rich says “scripting is easy”.
$
Now all of the quotation marks appear properly in the output.
You can add echo statements anywhere in your shell scripts where you need to display additional information:

$ cat test1
#!/bin/bash
This script displays the date and who's logged on
echo The time and date are:
date
echo “Let's see who's logged into the system:”
who
$
When you run this script, it produces the following output:

$./test1
The time and date are:
Mon Feb 21 15:41:13 EST 2011
Let's see who's logged into the system:
Christine tty2 2011-02-21 15:26
Samantha tty3 2011-02-21 15:26
Timothy tty1 2011-02-21 15:26
user tty7 2011-02-19 14:03 (:0)

www.it-ebooks.info

http://www.it-ebooks.info/

user pts/0 2011-02-21 15:21 (:0.0)
$
That's nice, but what if you want to echo a text string on the same line as a command output? You can use the -n

parameter for the echo statement to do that. Just change the first echo statement line to this:

echo -n “The time and date are: ”
You'll need to use quotes around the string to ensure that there's a space at the end of the echoed string. The command

output begins exactly where the string output stops. The output will now look like this:

$./test1
The time and date are: Mon Feb 21 15:42:23 EST 2011
Let's see who's logged into the system:
Christine tty2 2011-02-21 15:26
Samantha tty3 2011-02-21 15:26
Timothy tty1 2011-02-21 15:26
user tty7 2011-02-19 14:03 (:0)
user pts/0 2011-02-21 15:21 (:0.0)
$
Perfect! The echo command is a crucial piece of shell scripts that interact with users. You'll find yourself using it in many

situations, especially when you want to display the values of script variables. Let's look at that next.

Using Variables
Just running individual commands from the shell script is useful, but this has its limitations. Often you'll want to incorporate
other data in your shell commands to process information. You can do this by using variables. Variables allow you to
temporarily store information within the shell script for use with other commands in the script. This section shows how to use

variables in your shell scripts.

Environment Variables
You've already seen one type of Linux variable in action. Chapter 5 described the environment variables available in the Linux

system. You can access these values from your shell scripts as well.
The shell maintains environment variables that track specific system information, such as the name of the system, the name

of the user logged in to the system, the user's system ID (called UID), the default home directory of the user, and the search
path used by the shell to find programs. You can display a complete list of active environment variables available by using

the set command:

$ set
BASH=/bin/bash
...
HOME=/home/Samantha
HOSTNAME=localhost.localdomain
HOSTTYPE=i386
IFS=$‘ \t\n’
IMSETTINGS_INTEGRATE_DESKTOP=yes
IMSETTINGS_MODULE=none
LANG=en_US.utf8
LESSOPEN=‘|/usr/bin/lesspipe.sh %s’
LINES=24
LOGNAME=Samantha
...
You can tap into these environment variables from within your scripts by using the environment variable's name

www.it-ebooks.info

http://www.it-ebooks.info/

You can tap into these environment variables from within your scripts by using the environment variable's name

preceded by a dollar sign. This is demonstrated in the following script:

$ cat test2
#!/bin/bash
display user information from the system.
echo “User info for userid: $USER”
echo UID: $UID
echo HOME: $HOME
$
The $USER, $UID, and $HOME environment variables are used to display the pertinent information about the logged-in

user. The output should look something like this:

$chmod u+x test2
$./test2
User info for userid: Samantha
UID: 1001
HOME: /home/Samantha
$ $
Notice that the environment variables in the echo commands are replaced by their current values when the script is run.

Also notice that we were able to place the $USER system variable within the double quotation marks in the first string, and
the shell script was still able to figure out what we meant. There is a drawback to using this method, however. Look at what

happens in this example:

$ echo “The cost of the item is $15”
The cost of the item is 5
That is obviously not what was intended. Whenever the script sees a dollar sign within quotes, it assumes you're

referencing a variable. In this example the script attempted to display the variable $1 (which was not defined), and then the

number 5. To display an actual dollar sign, you must precede it with a backslash character:

$ echo “The cost of the item is \$15”
The cost of the item is $15
That's better. The backslash allowed the shell script to interpret the dollar sign as an actual dollar sign, and not a variable.

The next section shows how to create your own variables in your scripts.

Note

You may also see variables referenced using the format ${variable}. The extra
braces around the variable name are often used to help identify the variable name
from the dollar sign.

User Variables
In addition to the environment variables, a shell script allows you to set and use your own variables within the script. Setting
variables allows you to temporarily store data and use it throughout the script, making the shell script more like a real

computer program.
User variables can be any text string of up to 20 letters, digits, or an underscore character. User variables are case

sensitive, so the variable Var1 is different from the variable var1. This little rule often gets novice script programmers in

trouble.
Values are assigned to user variables using an equal sign. No spaces can appear between the variable, the equal sign, and

the value (another trouble spot for novices). Here are a few examples of assigning values to user variables:

var1=10
var2=-57
var3=testing

www.it-ebooks.info

http://www.it-ebooks.info/

var4=“still more testing”
The shell script automatically determines the data type used for the variable value. Variables defined within the shell

script maintain their values throughout the life of the shell script but are deleted when the shell script completes.
Just like system variables, user variables can be referenced using the dollar sign:

$ cat test3
#!/bin/bash
testing variables
days=10
guest=“Katie”
echo “$guest checked in $days days ago”
days=5
guest=“Jessica”
echo “$guest checked in $days days ago”
$
Running the script produces the following output:

$ chmod u+x test3
$./test3
Katie checked in 10 days ago
Jessica checked in 5 days ago
$
Each time the variable is referenced, it produces the value currently assigned to it. It's important to remember that when

referencing a variable value you use the dollar sign, but when referencing the variable to assign a value to it, you do not use

the dollar sign. Here's an example of what I mean:

$ cat test4
#!/bin/bash
assigning a variable value to another variable

value1=10
value2=$value1
echo The resulting value is $value2
$
When you use the value of the value1 variable in the assignment statement, you must still use the dollar sign. This code

produces the following output:

$ chmod u+x test4
$./test4
The resulting value is 10
$
If you forget the dollar sign, and make the value2 assignment line look like:

value2=value1
you get the following output:

$./test4
The resulting value is value1
$
Without the dollar sign the shell interprets the variable name as a normal text string, which is most likely not what you

wanted.

www.it-ebooks.info

http://www.it-ebooks.info/

The Backtick
One of the most useful features of shell scripts is the lowly back quote character, usually called the backtick (‘) in the Linux
world. Be careful—this is not the normal single quotation mark character you are used to using for strings. Because it is not
used very often outside of shell scripts, you may not even know where to find it on your keyboard. You should become
familiar with it, because it's a crucial component of many shell scripts. Hint: On a U.S. keyboard, it is usually on the same key as

the tilde symbol (∼).
The backtick allows you to assign the output of a shell command to a variable. While this doesn't seem like much, it is a

major building block in script programming.
You must surround the entire command line command with backtick characters:

testing=‘date’
The shell runs the command within the backticks and assigns the output to the variable testing. Here's an example of

creating a variable using the output from a normal shell command:

$ cat test5
#!/bin/bash
using the backtick character
testing=‘date’
echo “The date and time are: ” $testing
$
The variable testing receives the output from the date command, and it is used in the echo statement to display it.

Running the shell script produces the following output:

$ chmod u+x test5
$./test5
The date and time are: Mon Jan 31 20:23:25 EDT 2011
$
That's not all that exciting in this example (you could just as easily just put the command in the echo statement), but once

you capture the command output in a variable, you can do anything with it.
Here's a popular example of how the backtick is used to capture the current date and use it to create a unique filename in

a script:

#!/bin/bash
copy the /usr/bin directory listing to a log file
today=‘date +%y%m%d’
ls /usr/bin -al > log.$today
The today variable is assigned the output of a formatted date command. This is a common technique used to extract

date information for log filenames. The +%y%m%d format instructs the date command to display the date as a two-digit year,

month, and day:

$ date +%y%m%d
110131
$
The script assigns the value to a variable, which is then used as part of a filename. The file itself contains the redirected

output (discussed later in the “Redirecting Input and Output” section) of a directory listing. After running the script, you

should see a new file in your directory:

-rw-r--r-- 1 user user 769 Jan 31 10:15 log.110131
The log file appears in the directory using the value of the $today variable as part of the filename. The contents of the

log file are the directory listing from the /usr/bin directory. If the script is run the next day, the log filename will be

log.110201, thus creating a new file for the new day.

Redirecting Input and Output
There are times when you'd like to save the output from a command instead of just having it displayed on the monitor. The
bash shell provides a few different operators that allow you to redirect the output of a command to an alternative

www.it-ebooks.info

http://www.it-ebooks.info/

bash shell provides a few different operators that allow you to redirect the output of a command to an alternative

location (such as a file). Redirection can be used for input as well as output, redirecting a file to a command for input. This

section describes what you need to do to use redirection in your shell scripts.

Output Redirection
The most basic type of redirection is sending output from a command to a file. The bash shell uses the greater-than symbol

(>) for this:

command > outputfile
Anything that would appear on the monitor from the command instead is stored in the output file specified:

$ date > test6
$ ls -l test6
-rw-r--r-- 1 user user 29 Feb 10 17:56 test6
$ cat test6
Thu Feb 10 17:56:58 EDT 2011
$
The redirect operator created the file test6 (using the default umask settings) and redirected the output from the date

command to the test6 file. If the output file already exists, the redirect operator overwrites the existing file with the new file

data:

$ who > test6
$ cat test6
user pts/0 Feb 10 17:55
$
Now the contents of the test6 file contain the output from the who command.
Sometimes, instead of overwriting the file's contents, you may need to append output from a command to an existing

file, for example if you're creating a log file to document an action on the system. In this situation, you can use the double

greater-than symbol (>>) to append data:

$ date >> test6
$ cat test6
user pts/0 Feb 10 17:55
Thu Feb 10 18:02:14 EDT 2011
$
The test6 file still contains the original data from the who command processed earlier—plus now it contains the new

output from the date command.

Input Redirection
Input redirection is the opposite of output redirection. Instead of taking the output of a command and redirecting it to a

file, input redirection takes the content of a file and redirects it to a command.
The input redirection symbol is the less-than symbol (<):

command < inputfile
The easy way to remember this is that the command is always listed first in the command line, and the redirection symbol

“points” to the way the data is flowing. The less-than symbol indicates that the data is flowing from the input file to the

command.
Here's an example of using input redirection with the wc command:

$ wc < test6
 2 11 60
$

www.it-ebooks.info

http://www.it-ebooks.info/

The wc command provides a count of text in the data. By default, it produces three values:
The number of lines in the text
The number of words in the text
The number of bytes in the text

By redirecting a text file to the wc command, you can get a quick count of the lines, words, and bytes in the file. The

example shows that there are 2 lines, 11 words, and 60 bytes in the test6 file.
There's another method of input redirection, called inline input redirection. This method allows you to specify the data for

input redirection on the command line instead of in a file. This may seem somewhat odd at first, but there are a few

applications for this process (such as those shown in the “Performing Math” section later).
The inline input redirection symbol is the double less-than symbol (<<). Besides this symbol, you must specify a text

marker that delineates the beginning and end of the data used for input. You can use any string value for the text marker,

but it must be the same at the beginning of the data and the end of the data:

command << marker
data
marker
When using inline input redirection on the command line, the shell will prompt for data using the secondary prompt,

defined in the PS2 environment variable (see Chapter 5). Here's how this looks when you use it:

$ wc << EOF
> test string 1
> test string 2
> test string 3
> EOF
 3 9 42
$
The secondary prompt continues to prompt for more data until you enter the string value for the text marker. The wc

command performs the line, word, and byte counts of the data supplied by the inline input redirection.

Pipes
There are times when you need to send the output of one command to the input of another command. This is possible using

redirection, but somewhat clunky:

$ rpm -qa > rpm.list
$ sort < rpm.list
abrt-1.1.14-1.fc14.i686
abrt-addon-ccpp-1.1.14-1.fc14.i686
abrt-addon-kerneloops-1.1.14-1.fc14.i686
abrt-addon-python-1.1.14-1.fc14.i686
abrt-desktop-1.1.14-1.fc14.i686
abrt-gui-1.1.14-1.fc14.i686
abrt-libs-1.1.14-1.fc14.i686
abrt-plugin-bugzilla-1.1.14-1.fc14.i686
abrt-plugin-logger-1.1.14-1.fc14.i686
abrt-plugin-runapp-1.1.14-1.fc14.i686
acl-2.2.49-8.fc14.i686

...
The rpm command manages the software packages installed on systems using the Red Hat Package Management system

(RPM), such as the Fedora system as shown. When used with the -qa parameters, it produces a list of the existing packages
installed, but not necessarily in any specific order. If you're looking for a specific package, or group of packages, it can be

www.it-ebooks.info

http://www.it-ebooks.info/

installed, but not necessarily in any specific order. If you're looking for a specific package, or group of packages, it can be

difficult to find it using the output of the rpm command.
Using the standard output redirection, the output was redirected from the rpm command to a file, called rpm.list.

After the command finished, the rpm.list file contained a list of all the installed software packages on my system. Next,
input redirection was used to send the contents of the rpm.list file to the sort command to sort the package names

alphabetically.
That was useful, but again, a somewhat clunky way of producing the information. Instead of redirecting the output of a

command to a file, you can redirect the output to another command. This process is called piping.
Like the backtick (‘), the symbol for piping is not used often outside of shell scripting. The symbol is two vertical lines, one

above the other. However, the pipe symbol often looks like a single vertical line in print (|). On a U.S. keyboard, it is usually

on the same key as the backslash (\). The pipe is put between the commands to redirect the output from one to the other:

command1 | command2
Don't think of piping as running two commands back to back. The Linux system actually runs both commands at the same

time, linking them together internally in the system. As the first command produces output, it's sent immediately to the

second command. No intermediate files or buffer areas are used to transfer the data.
Now, using piping you can easily pipe the output of the rpm command directly to the sort command to produce your

results:

$ rpm -qa | sort
abrt-1.1.14-1.fc14.i686
abrt-addon-ccpp-1.1.14-1.fc14.i686
abrt-addon-kerneloops-1.1.14-1.fc14.i686
abrt-addon-python-1.1.14-1.fc14.i686
abrt-desktop-1.1.14-1.fc14.i686
abrt-gui-1.1.14-1.fc14.i686
abrt-libs-1.1.14-1.fc14.i686
abrt-plugin-bugzilla-1.1.14-1.fc14.i686
abrt-plugin-logger-1.1.14-1.fc14.i686
abrt-plugin-runapp-1.1.14-1.fc14.i686
acl-2.2.49-8.fc14.i686

...
Unless you're a (very) quick reader, you probably couldn't keep up with the output generated by this command. Because

the piping feature operates in real time, as soon as the rpm command produces data, the sort command gets busy sorting it.
By the time the rpm command finishes outputting data, the sort command already has the data sorted and starts displaying

it on the monitor.
There's no limit to the number of pipes you can use in a command . You can continue piping the output of commands to

other commands to refine your operation.
In this case, because the output of the sort command zooms by so quickly, you can use one of the text paging

commands (such as less or more) to force the output to stop at every screen of data:

$ rpm -qa | sort | more
This command sequence runs the rpm command, pipes the output to the sort command, and then pipes that output

to the more command to display the data, stopping after every screen of information. This now lets you pause and read

what's on the display before continuing, as shown in Figure 10.1.

Figure 10.1 Using piping to send data to the more command

www.it-ebooks.info

#c10_fig_0001
#c10_fig_anc_0001
http://www.it-ebooks.info/

Figure 10.1 Using piping to send data to the more command

To get even fancier, you can use redirection along with piping to save your output to a file:

$ rpm -qa | sort > rpm.list
$ more rpm.list
abrt-1.1.14-1.fc14.i686
abrt-addon-ccpp-1.1.14-1.fc14.i686
abrt-addon-kerneloops-1.1.14-1.fc14.i686
abrt-addon-python-1.1.14-1.fc14.i686
abrt-desktop-1.1.14-1.fc14.i686
abrt-gui-1.1.14-1.fc14.i686
abrt-libs-1.1.14-1.fc14.i686
abrt-plugin-bugzilla-1.1.14-1.fc14.i686
abrt-plugin-logger-1.1.14-1.fc14.i686
abrt-plugin-runapp-1.1.14-1.fc14.i686
acl-2.2.49-8.fc14.i686
...
As expected, the data in the rpm.list file is now sorted!
By far one of the most popular uses of piping is piping the results of commands that produce long output to the more

command. This is especially common with the ls command, as shown in Figure 10.2.

Figure 10.2 Using the more command with the ls command

www.it-ebooks.info

#c10_fig_anc_0001
#c10_fig_0002
#c10_fig_anc_0002
http://www.it-ebooks.info/

Figure 10.2 Using the more command with the ls command

The ls -l command produces a long listing of all the files in the directory. For directories with lots of files, this can be

quite a listing. By piping the output to the more command, you force the output to stop at the end of every screen of data.

Performing Math
Another feature crucial to any programming language is the ability to manipulate numbers. Unfortunately, for shell scripts

this process is a bit awkward. There a two different ways to perform mathematical operations in your shell scripts.

The expr Command
Originally, the Bourne shell provided a special command that was used for processing mathematical equations. The expr

command allowed the processing of equations from the command line, but it is extremely clunky:

$ expr 1 + 5
6
The expr command recognizes a few different mathematical and string operators, shown in Table 10.1.

Table 10.1 The expr Command Operators

Operator Description

ARG1 | ARG2 Return ARG1 if neither argument is null or zero; otherwise,
return ARG2.

ARG1 & ARG2 Return ARG1 if neither argument is null or zero; otherwise,
return 0.

www.it-ebooks.info

#c10_fig_anc_0002
#c10_tbl_0001
#c10_tbl_anc_0001
http://www.it-ebooks.info/

ARG1 < ARG2 Return 1 if ARG1 is less than ARG2; otherwise, return 0.

ARG1 <= ARG2 Return 1 if ARG1 is less than or equal to ARG2; otherwise,
return 0.

ARG1 = ARG2 Return 1 if ARG1 is equal to ARG2; otherwise, return 0.

ARG1 != ARG2 Return 1 if ARG1 is not equal to ARG2; otherwise, return 0.

ARG1 >= ARG2 Return 1 if ARG1 is greater than or equal to ARG2; otherwise,
return 0.

ARG1 > ARG2 Return 1 if ARG1 is greater than ARG2; otherwise, return 0.

ARG1 + ARG2 Return the arithmetic sum of ARG1 and ARG2.

ARG1 - ARG2 Return the arithmetic difference of ARG1 and ARG2.

ARG1 * ARG2 Return the arithmetic product of ARG1 and ARG2.

ARG1 / ARG2 Return the arithmetic quotient of ARG1 divided by ARG2.

ARG1 % ARG2 Return the arithmetic remainder of ARG1 divided by ARG2.

STRING : REGEXP Return the pattern match if REGEXP matches a pattern in
STRING.

match STRING REGEXP Return the pattern match if REGEXP matches a pattern in
STRING.

substr STRING POS LENGTH Return the substring LENGTH characters in length, starting at
position POS (starting at 1).

index STRING CHARS Return position in STRING where CHARS is found; otherwise,
return 0.

length STRING Return the numeric length of the string STRING.

+ TOKEN Interpret TOKEN as a string, even if it's a keyword.

(EXPRESSION) Return the value of EXPRESSION.

While the standard operators work fine in the expr command, the problem occurs when using them from a script or the
command line. Many of the expr command operators have other meanings in the shell (such as the asterisk). Using them in

the expr command produces odd results:

$ expr 5 * 2
expr: syntax error
$
To solve this problem, you need to use the shell escape character (the backslash) to identify any characters that may be

misinterpreted by the shell before being passed to the expr command:

$ expr 5 * 2
10
$
Now that's really starting to get ugly! Using the expr command in a shell script is equally cumbersome:

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat test6
#!/bin/bash
An example of using the expr command
var1=10
var2=20
var3=‘expr $var2 / $var1’
echo The result is $var3
To assign the result of a mathematical equation to a variable, you have to use the backtick character to extract the output

from the expr command:

$ chmod u+x test6
$./test6
The result is 2
$
Fortunately, the bash shell has an improvement for processing mathematical operators as you shall see in the next

section.

Using Brackets
The bash shell includes the expr command to stay compatible with the Bourne shell; however, it also provides a much easier
way of performing mathematical equations. In bash, when assigning a mathematical value to a variable, you can enclose the

mathematical equation using a dollar sign and square brackets ($[operation]):

$ var1=$[1 + 5]
$ echo $var1
6
$ var2 = $[$var1 * 2]
$ echo $var2
12
$
Using brackets makes shell math much easier than with the expr command. This same technique also works in shell scripts:

$ cat test7
#!/bin/bash
var1=100
var2=50
var3=45
var4=$[$var1 * ($var2 - $var3)]
echo The final result is $var4
$
Running this script produces the output:

$ chmod u+x test7
$./test7
The final result is 500
$
Also, notice that when using the square brackets method for calculating equations you don't need to worry about the

multiplication symbol, or any other characters, being misinterpreted by the shell. The shell knows that it's not a wildcard

character because it is within the square brackets.
There's one major limitation to performing math in the bash shell script. Take a look at this example:

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat test8
#!/bin/bash
var1=100
var2=45
var3=$[$var1 / $var2]
echo The final result is $var3
$
Now run it and see what happens:

$ chmod u+x test8
$./test8
The final result is 2
$
The bash shell mathematical operators support only integer arithmetic. This is a huge limitation if you're trying to do any

sort of real-world mathematical calculations.

Note

The z shell (zsh) provides full floating-point arithmetic operations. If you require
floating-point calculations in your shell scripts, you might consider checking out
the z shell (discussed in Chapter 22).

A Floating-Point Solution
There are several solutions for overcoming the bash integer limitation. The most popular solution uses the built-in bash

calculator, called bc.

The Basics of bc
The bash calculator is actually a programming language that allows you to enter floating-point expressions at a command

line and then interprets the expressions, calculates them, and returns the result. The bash calculator recognizes:
Numbers (both integer and floating point)
Variables (both simple variables and arrays)
Comments (lines starting with a pound sign or the C language /* */ pair
Expressions
Programming statements (such as if-then statements)
Functions

You can access the bash calculator from the shell prompt using the bc command:

$ bc
bc 1.06.95
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundatio
n, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
12 * 5.4
64.8
3.156 * (3 + 5)
25.248
quit

www.it-ebooks.info

http://www.it-ebooks.info/

$
The example starts out by entering the expression 12 * 5.4. The bash calculator returns the answer. Each subsequent

expression entered into the calculator is evaluated, and the result is displayed. To exit the bash calculator, you must enter

quit.
The floating-point arithmetic is controlled by a built-in variable called scale. You must set this value to the desired

number of decimal places you want in your answers or you won't get what you were looking for:

$ bc -q
3.44 / 5
0
scale=4
3.44 / 5
.6880
quit
$
The default value for the scale variable is zero. Before the scale value is set, the bash calculator provides the answer to

zero decimal places. After you set the scale variable value to four, the bash calculator displays the answer to four decimal

places. The -q command line parameter suppresses the lengthy welcome banner from the bash calculator.
In addition to normal numbers, the bash calculator also understands variables:

$ bc -q
var1=10
var1 * 4
40
var2 = var1 / 5
print var2
2
quit
$
Once a variable value is defined, you can use the variable throughout the bash calculator session. The print statement

allows you to print variables and numbers.

Using bc in Scripts
Now you may be wondering how the bash calculator is going to help you with floating-point arithmetic in your shell scripts.
Do you remember your friend the backtick character? Yes, you can use the backtick character to run a bc command and assign

the output to a variable! The basic format to use is this:

variable=‘echo “options; expression” | bc’
The first portion, options, allows you to set variables. If you need to set more than one variable, separate them using

the semicolon. The expression parameter defines the mathematical expression to evaluate using bc. Here's a quick example of

doing this in a script:

$ cat test9
#!/bin/bash
var1=‘echo “ scale=4; 3.44 / 5” | bc’
echo The answer is $var1
$
This example sets the scale variable to four decimal places and then specifies a specific calculation for the expression.

Running this script produces the following output:

$ chmod u+x test9

www.it-ebooks.info

http://www.it-ebooks.info/

$./test9
The answer is .6880
$
Now that's fancy! You aren't limited to just using numbers for the expression value. You can also use variables defined in

the shell script:

$ cat test10
#!/bin/bash
var1=100
var2=45
var3=‘echo “scale=4; $var1 / $var2” | bc’
echo The answer for this is $var3
$
The script defines two variables, which are used within the expression sent to the bc command. Remember to use the

dollar sign to signify the value for the variables and not the variables themselves. The output of this script is as follows:

$./test10
The answer for this is 2.2222
$
And of course, once a value is assigned to a variable, that variable can be used in yet another calculation:

$ cat test11
#!/bin/bash
var1=20
var2=3.14159
var3=‘echo “scale=4; $var1 * $var1” | bc’
var4=‘echo “scale=4; $var3 * $var2” | bc’
echo The final result is $var4
$
This method works fine for short calculations, but sometimes you need to get more involved with your numbers. If you

have more than just a couple of calculations, it gets confusing trying to list multiple expressions on the same command line.
There's a solution to this problem. The bc command recognizes input redirection, allowing you to redirect a file to the bc

command for processing. However, this also can get confusing, as you'd need to store your expressions in a file.
The best method is to use inline input redirection, which allows you to redirect data directly from the command line. In the

shell script, you assign the output to a variable:

variable=‘bc << EOF
options
statements
expressions
EOF
’
The EOF text string indicates the beginning and end of the inline redirection data. Remember that the backtick characters

are still needed to assign the output of the bc command to the variable.
Now you can place all of the individual bash calculator elements on separate lines in the script file. Here's an example of

using this technique in a script:

$ cat test12
#!/bin/bash

www.it-ebooks.info

http://www.it-ebooks.info/

var1=10.46
var2=43.67
var3=33.2
var4=71

var5=‘bc << EOF
scale = 4
a1 = ($var1 * $var2)
b1 = ($var3 * $var4)
a1 + b1
EOF
’

echo The final answer for this mess is $var5
$
Placing each option and expression on a separate line in your script makes things cleaner and easier to read and follow.

The EOF string indicates the start and end of the data to redirect to the bc command. Of course, you need to use the backtick

characters to indicate the command to assign to the variable.
You'll also notice in this example that you can assign variables within the bash calculator. It's important to remember that

any variables created within the bash calculator are valid only within the bash calculator and can't be used in the shell script.

Exiting the Script
So far in our sample scripts, we terminated things pretty abruptly. When we were done with our last command, we just ended

the script. There's a more elegant way of completing things available to us.
Every command that runs in the shell uses an exit status to indicate to the shell that it's done processing. The exit

status is an integer value between 0 and 255 that's passed by the command to the shell when the command finishes running.

You can capture this value and use it in your scripts.

Checking the exit Status
Linux provides the $? special variable that holds the exit status value from the last command that executed. You must view or
use the $? variable immediately after the command you want to check. It changes values to the exit status of the last

command executed by the shell:

$ date
Sat Jan 15 10:01:30 EDT 2011
$ echo $?
0
$
By convention, the exit status of a command that successfully completes is zero. If a command completes with an error,

then a positive integer value is placed in the exit status:

$ asdfg
-bash: asdfg: command not found
$ echo $?
127
$
The invalid command returns an exit status of 127. There's not much of a standard convention to Linux error exit status

codes. However, there are a few guidelines you can use, as shown in Table 10.2.

Table 10.2 Linux Exit Status Codes

www.it-ebooks.info

#c10_tbl_0002
#c10_tbl_anc_0002
http://www.it-ebooks.info/

Code Description

0 Successful completion of the command

1 General unknown error

2 Misuse of shell command

126 The command can't execute

127 Command not found

128 Invalid exit argument

128+x Fatal error with Linux signal x

130 Command terminated with Ctrl+C

255 Exit status out of range

An exit status value of 126 indicates that the user didn't have the proper permissions set to execute the command:

$./myprog.c
-bash: ./myprog.c: Permission denied
$ echo $?
126
$
Another common error you'll encounter occurs if you supply an invalid parameter to a command:

$ date %t
date: invalid date ‘%t’
$ echo $?
1
$
This generates the general exit status code of one, indicating an unknown error occurred in the command.

The exit Command

By default, your shell script will exit with the exit status of the last command in your script:

$./test6
The result is 2
$ echo $?
0
$
You can change that to return your own exit status code. The exit command allows you to specify an exit status when

your script ends:

$ cat test13
#!/bin/bash
testing the exit status
var1=10
var2=30

www.it-ebooks.info

http://www.it-ebooks.info/

var3=$[$var1 + var2]
echo The answer is $var3
exit 5
$
When you check the exit status of the script, you'll get the value used as the parameter of the exit command:

$ chmod u+x test13
$./test13
The answer is 40
$ echo $?
5
$
You can also use variables in the exit command parameter:

$ cat test14
#!/bin/bash
testing the exit status
var1=10
var2=30
var3=$[$var1 + var2]
exit $var3
$
When you run this command, it produces the following exit status:

$ chmod u+x test14
$./test14
$ echo $?
40
$
You should be careful with this feature, however, as the exit status codes can only go up to 255. Watch what happens in

this example:

$ cat test14b
#!/bin/bash
testing the exit status
var1=10
var2=30
var3=$[$var1 * var2]
echo The value is $var3
exit $var3
$
Now when you run it, you get the following:

$./test14b
The value is 300
$ echo $?
44
$
The exit status code is reduced to fit in the 0 to 255 range. The shell does this by using modulo arithmetic. The modulo of a

www.it-ebooks.info

http://www.it-ebooks.info/

The exit status code is reduced to fit in the 0 to 255 range. The shell does this by using modulo arithmetic. The modulo of a

value is the remainder after a division. The resulting number is the remainder of the specified number divided by 256. In the

case of 300 (the result value), the remainder is 44, which is what appears as the exit status code.
In Chapter 11, you'll see how you can use the if-then statement to check the error status returned by a command to see

if the command was successful or not.

Summary
The bash shell script allows you to string commands together into a script. The most basic way to create a script is to separate
multiple commands on the command line using a semicolon. The shell executes each command in order, displaying the output

of each command on the monitor.
You can also create a shell script file, placing multiple commands in the file for the shell to execute in order. The shell

script file must define the shell used to run the script. This is done in the first line of the script file, using the #! symbol,

followed by the full path of the shell.
Within the shell script you can reference environment variable values by using a dollar sign in front of the variable. You

can also define your own variables for use within the script, and assign values and even the output of a command by using

the backtick character. The variable value can be used within the script by placing a dollar sign in front of the variable name.
The bash shell allows you to redirect both the input and output of a command from the standard behavior. You can

redirect the output of any command from the monitor display to a file by using the greater-than symbol, followed by the
name of the file to capture the output. You can append output data to an existing file by using two greater-than symbols.

The less-than symbol is used to redirect input to a command. You can redirect input from a file to a command.
The Linux pipe command (the broken bar symbol) allows you to redirect the output of a command directly to the input

of another command. The Linux system runs both commands at the same time, sending the output of the first command to

the input of the second command without using any redirect files.
The bash shell provides a couple of ways for you to perform mathematical operations in your shell scripts. The expr

command is a simple way to perform integer math. In the bash shell, you can also perform basic math calculations by
enclosing equations in square brackets, preceded by a dollar sign. To perform floating-point arithmetic, you need to utilize

the bc calculator command, redirecting input from inline data and storing the output in a user variable.
Finally, the chapter discussed how to use the exit status in your shell script. Every command that runs in the shell produces

an exit status. The exit status is an integer value between 0 and 255 that indicates if the command completed successfully, and
if not, what the reason may have been. An exit status of 0 indicates that the command completed successfully. You can use the

exit command in your shell script to declare a specific exit status upon the completion of your script.
So far in your shell scripts, things have proceeded in an orderly fashion from one command to the next. In the next

chapter, you'll see how you can use some logic flow control to alter which commands are executed within the script.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Using Structured Commands

In This Chapter

Working with the if-then statement
The if-then-else statement
Nesting ifs
The test command
Compound condition testing
Advanced if-then features
The code command
Managing user accounts

In the shell scripts presented in Chapter 10, the shell processed each individual command in the shell script in the order it
appeared. This works out fine for sequential operations, where you want all of the commands to process in the proper order.

However, this isn't how all programs operate.
Many programs require some sort of logic flow control between the commands in the script. This means that the shell

executes certain commands given one set of circumstances, but it has the ability to execute other commands given a different
set of circumstances. There is a whole class of commands that allows the script to skip over or loop through commands based
on conditions of variable values or the result of other commands. These commands are generally referred to as structured

commands.
The structured commands allow you to alter the flow of operation of a program, executing some commands under some

conditions while skipping others under other conditions. There are quite a few structured commands available in the bash

shell, so we'll look at them individually. In this chapter, we look at the if-then statement.

Working with the if-then Statement

The most basic type of structured command is the if-then statement. The if-then statement has the following format:

if command
then
 commands
fi
If you're using if-then statements in other programming languages, this format may be somewhat confusing. In other

programming languages, the object after the if statement is an equation that is evaluated for a TRUE or FALSE value.

That's not how the bash shell if statement works.
The bash shell if statement runs the command defined on the if line. If the exit status of the command (see Chapter 10)

is zero (the command completed successfully), the commands listed under the then section are executed. If the exit status of
the command is anything else, the then commands aren't executed, and the bash shell moves on to the next command in the

script.
Here's a simple example to demonstrate this concept:

$ cat test1
#!/bin/bash
testing the if statement
if date
then
 echo “it worked”
fi

www.it-ebooks.info

http://www.it-ebooks.info/

This script uses the date command on the if line. If the command completes successfully, the echo statement should

display the text string. When you run this script from the command line, you'll get the following results:

$./test1
Sat Jan 23 14:09:24 EDT 2011
it worked
$
The shell executed the date command listed on the if line. Since the exit status was zero, it also executed the echo

statement listed in the then section.
Here's another example:

$ cat test2
#!/bin/bash
testing a bad command
if asdfg
then
 echo “it did not work”
fi
echo “we are outside of the if statement”
$
$./test2
./test2: line 3: asdfg: command not found
we are outside of the if statement
$
In this example, a command was deliberately used that will not work in the if statement line. Because this is a bad

command, it will produce an exit status that's non-zero, and the bash shell skips the echo statement in the then section. Also
notice that the error message generated from running the command in the if statement still appears in the output of the

script. There will be times when you won't want this to happen. Chapter 14 discusses how this can be avoided.
You are not limited to just one command in the then section. You can list commands just as in the rest of the shell script.

The bash shell treats the commands as a block, executing all of them when the command in the if statement line returns a

zero exit status or skipping all of them when the command returns a non-zero exit status:

$ cat test3
#!/bin/bash
testing multiple commands in the then section
testuser=rich
if grep $testuser /etc/passwd
then
 echo The bash files for user $testuser are:
 ls -a /home/$testuser/.b*
fi
The if statement line uses the grep comment to search the /etc/passwd file to see if a specific username is currently

used on the system. If there's a user with that logon name, the script displays some text, and then lists the bash files in the

user's HOME directory:

$./test3
rich:x:500:500:Rich Blum:/home/rich:/bin/bash
The files for user rich are:
/home/rich/.bash_history /home/rich/.bash_profile
/home/rich/.bash_logout /home/rich/.bashrc

www.it-ebooks.info

http://www.it-ebooks.info/

$
However, if you set the testuser variable to a user that doesn't exist on the system, nothing happens:

$./test3
$
That's not all that exciting. It would be nice if we could display a little message saying that the username wasn't found on

the system. Well, we can, using another feature of the if-then statement.

Note

You might see an alternative form of the if-then statement used in some scripts:

if command; then
 commands
fi

By putting a semicolon at the end of the command to evaluate, you can include the
then statement on the same line, which looks more like how if-then statements
are handled in some other programming languages.

The if-then-else Statement
In the if-then statement, you have only one option of whether or not a command is successful. If the command returns a
non-zero exit status code, the bash shell just moves on to the next command in the script. In this situation, it would be nice to

be able to execute an alternate set of commands. That's exactly what the if-then-else statement is for.
The if-then-else statement provides another group of commands in the statement:

if command
then
 commands
else
 commands
fi
When the command in the if statement line returns with an exit status code of zero, the commands listed in the then

section are executed, just as in a normal if-then statement. When the command in the if statement line returns a non-

zero exit status code, the bash shell executes the commands in the else section.
Now you can modify the test script to look like this:

$ cat test4
#!/bin/bash
testing the else section
testuser=badtest
if grep $testuser /etc/passwd
then
 echo The files for user $testuser are:
 ls -a /home/$testuser/.b*
else
 echo “The user name $testuser does not exist on this system”
fi
$
$./test4
The user name badtest does not exist on this system
$

www.it-ebooks.info

http://www.it-ebooks.info/

That's more user-friendly. Just like the then section, the else section can contain multiple commands. The fi statement

delineates the end of the else section.

Nesting ifs
Sometimes you must check for several situations in your script code. Instead of having to write separate if-then

statements, you can use an alternative version of the else section, called elif.
The elif continues an else section with another if-then statement:

if command1
then
 commands
elif command2
then
 more commands
fi
The elif statement line provides another command to evaluate, similar to the original if statement line. If the exit

status code from the elif command is zero, bash executes the commands in the second then statement section.
You can continue to string elif statements together, creating one huge if-then-elif conglomeration:

if command1
then
 command set 1
elif command2
then
 command set 2
elif command3
then
 command set 3
elif command4
then
 command set 4
fi
Each block of commands is executed depending on which command returns the zero exit status code. Remember, the bash

shell will execute the if statements in order, and only the first one that returns a zero exit status will result in the then
section being executed. Later on in “The case Command” section, you'll see how to use the case command instead of having

to nest lots of if-then statements.

The test Command
So far, all you've seen in the if statement line are normal shell commands. You might be wondering if the bash if-then

statement has the ability to evaluate any condition other than the exit status code of a command.
The answer is no, it can't. However, there's a neat utility available in the bash shell that helps you evaluate other things,

using the if-then statement.
The test command provides a way to test different conditions in an if-then statement. If the condition listed in the

test command evaluates to true, the test command exits with a zero exit status code, making the if-then statement
behave in much the same way that if-then statements work in other programming languages. If the condition is false, the

test command exits with a1, which causes the if-then statement to fail.
The format of the test command is pretty simple:

test condition
The condition is a series of parameters and values that the test command evaluates. When used in an if-then

statement, the test command looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

if test condition
then
 commands
fi
The bash shell provides an alternative way of declaring the test command in an if-then statement:

if [condition]
then
 commands
fi
The square brackets define the condition that's used in the test command. Be careful; you must have a space after the

first bracket and a space before the last bracket or you'll get an error message.
The test command can evaluate three classes of conditions:

Numeric comparisons
String comparisons
File comparisons

The next sections describe how to use each of these classes of tests in your if-then statements.

Numeric Comparisons
The most common method for using the test command is to perform a comparison of two numeric values. Table 11.1 shows

the list of condition parameters used for testing two values.

Table 11.1 The test Numeric Comparisons

Comparison Description

n1 -eq n2 Check if n1 is equal to n2.

n1 -ge n2 Check if n1 is greater than or equal to n2.

n1 -gt n2 Check if n1 is greater than n2.

n1 -le n2 Check if n1 is less than or equal to n2.

n1 -lt n2 Check if n1 is less than n2.

n1 -ne n2 Check if n1 is not equal to n2.

The numeric test conditions can be used to evaluate both numbers and variables. Here's an example of doing that:

$ cat test5
#!/bin/bash
using numeric test comparisons
val1=10
val2=11

if [$val1 -gt 5]
then
 echo “The test value $val1 is greater than 5”
fi

www.it-ebooks.info

#c11_tbl_0001
#c11_tbl_anc_0001
http://www.it-ebooks.info/

if [$val1 -eq $val2]
then
 echo “The values are equal”
else
 echo “The values are different”
fi
The first test condition:

if [$val1 -gt 5]
tests if the value of the variable val1 is greater than 5. The second test condition:

if [$val1 -eq $val2]
tests if the value of the variable val1 is equal to the value of the variable val2. Run the script and watch the results:

$./test5
The test value 10 is greater than 5
The values are different
$
Both of the numeric test conditions evaluated as expected.
There is a limitation to the test numeric conditions, however. Try this script:

$ cat test6
#!/bin/bash
testing floating point numbers
val1=’ echo “scale=4; 10 / 3 ” | bc‘
echo “The test value is $val1”
if [$val1 -gt 3]
then
 echo “The result is larger than 3”
fi
$
$./test6
The test value is 3.3333
./test6: line 5: [: 3.3333: integer expression expected
$
This example uses the bash calculator to produce a floating-point value, stored in the val1 variable. Next, it uses the test

command to evaluate the value. Something obviously went wrong here.
In Chapter 10, you learned how to trick the bash shell into handling floating-point values; there's still a problem in this

script. The test command wasn't able to handle the floating-point value that was stored in the val1 variable.
Remember that the only numbers the bash shell can handle are integers. When you utilize the bash calculator, you just

fool the shell into storing a floating-point value in a variable as a string value. This works perfectly fine if all you need to do is
display the result, using an echo statement, but this doesn't work in numeric-oriented functions, such as our numeric test

condition. The bottom line is that you're not able to use floating-point values in the test command.

String Comparisons
The test command also allows you to perform comparisons on string values. Performing comparisons on strings can get

tricky, as you'll see. Table 11.2 shows the comparison functions you can use to evaluate two string values.

www.it-ebooks.info

#c11_tbl_0002
http://www.it-ebooks.info/

Table 11.2 The test Command String Comparisons

Comparison Description

str1 = str2 Check if str1 is the same as string str2.

str1 != str2 Check if str1 is not the same as str2.

str1 < str2 Check if str1 is less than str2.

str1 > str2 Check if str1 is greater than str2.

-n str1 Check if str1 has a length greater than zero.

-z str1 Check if str1 has a length of zero.

The following sections describe the different string comparisons available.

String Equality
The equal and not equal conditions are fairly self-explanatory with strings. It's pretty easy to know when two string values

are the same or not:

$cat test7
#!/bin/bash
testing string equality
testuser=rich

if [$USER = $testuser]
then
 echo “Welcome $testuser”
fi
$
$./test7
Welcome rich
$
Also, using the not equals string comparison, will allow you to determine if two strings have the same value or not:

$ cat test8
#!/bin/bash
testing string equality
testuser=baduser

if [$USER != $testuser]
then
 echo “This is not $testuser”
else
 echo “Welcome $testuser”
fi
$
$./test8

www.it-ebooks.info

#c11_tbl_anc_0002
http://www.it-ebooks.info/

This is not baduser
$
The test comparison takes all punctuation and capitalization into account when comparing strings for equality.

String Order
Trying to determine if one string is less than or greater than another is where things start getting tricky. There are two
problems that often plague shell programmers when trying to use the greater-than or less-than features of the test

command:
The greater-than and less-than symbols must be escaped, or the shell will use them as redirection symbols, with the

string values as filenames.
The greater-than and less-than order is not the same as that used with the sort command.

The first item can result in a huge problem that often goes undetected when programming your scripts. Here's a typical

example of what sometimes happens to novice shell script programmers:

$ cat badtest
#!/bin/bash
mis-using string comparisons

val1=baseball
val2=hockey

if [$val1 > $val2]
then
 echo “$val1 is greater than $val2”
else
 echo “$val1 is less than $val2”
fi
$
$./badtest
baseball is greater than hockey
$ ls -l hockey
-rw-r--r-- 1 rich rich 0 Sep 30 19:08 hockey
$
By just using the greater-than symbol itself in the script, no errors are generated, but the results are wrong. The script

interpreted the greater-than symbol as an output redirection. Thus, it created a file called hockey. Because the redirection
completed successfully, the test command returns a zero exit status code, which the if statement evaluates as though

things completed successfully!
To fix this problem, you need to properly escape the greater-than symbol:

$ cat test9
#!/bin/bash
mis-using string comparisons

val1=baseball
val2=hockey

if [$val1 \> $val2]
then

www.it-ebooks.info

http://www.it-ebooks.info/

 echo “$val1 is greater than $val2”
else
 echo “$val1 is less than $val2”
fi
$
$./test9
baseball is less than hockey
$
Now that answer is more along the lines of what you would expect from the string comparison.
The second issue is a little more subtle, and you may not even run across it unless you are working with uppercase and

lowercase letters. The sort command handles uppercase letters opposite to the way the test command considers them.

Let's test this feature in a script:

$ cat test9b
#!/bin/bash
testing string sort order
val1=Testing
val2=testing

if [$val1 \> $val2]
then
 echo “$val1 is greater than $val2”
else
 echo “$val1 is less than $val2”
fi
$
$./test9b
Testing is less than testing
$ sort testfile
testing
Testing
$
Capitalized letters are treated as less than lowercase letters in the test command. However, when you put the same

strings in a file and use the sort command, the lowercase letters appear first. This is due to the ordering technique each
command uses. The test command uses standard ASCII ordering, using each character's ASCII numeric value to determine
the sort order. The sort command uses the sorting order defined for the system locale language settings. For the English

language, the locale settings specify that lowercase letters appear before uppercase letters in sorted order.

Caution

Notice that the test command uses the standard mathematical comparison symbols for
string comparisons and text codes for numerical comparisons. This is a subtle feature that
many programmers manage to get reversed. If you use the mathematical comparison
symbols for numeric values, the shell interprets them as string values and may not produce
the correct results.

String Size

The -n and -z comparisons are handy when trying to evaluate if a variable contains data or not:

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat test10
#!/bin/bash
testing string length
val1=testing
val2=‘’

if [-n $val1]
then
 echo “The string ‘$val1’ is not empty”
else
 echo “The string ‘$val1’ is empty”
fi

if [-z $val2]
then
 echo “The string ‘$val2’ is empty”
else
 echo “The string ‘$val2’ is not empty”
fi

if [-z $val3]
then
 echo “The string ‘$val3’ is empty”
else
 echo “The string ‘$val3’ is not empty”
fi
$
$./test10
The string ‘testing’ is not empty
The string ‘’ is empty
The string ‘’ is empty
$
This example creates two string variables. The val1 variable contains a string, and the val2 variable is created as an

empty string. The following comparisons are made as shown below:

if [-n $val1]
determines if the val1 variable is non-zero in length, which it is, so the then section is processed:

if [-z $var2]
determines if the val2 variable is zero in length, which it is, so the then section is processed:

if [-z $val3]
determines if the val3 variable is zero in length. This variable was never defined in the shell script, so it indicates that the string

length is still zero, even though it wasn't defined.

Caution

Empty and uninitialized variables can have catastrophic effects on your shell script tests. If
you're not sure of the contents of a variable, it's always best to test if the variable

www.it-ebooks.info

http://www.it-ebooks.info/

you're not sure of the contents of a variable, it's always best to test if the variable

contains a value using -n or -z before using it in a numeric or string comparison.

File Comparisons
The last category of test comparisons is quite possibly the most powerful and most used comparisons in shell scripting. The
test command allows you to test the status of files and directories on the Linux filesystem. Table 11.3 lists these

comparisons.

Table 11.3 The test Command File Comparisons

Comparison Description

-d file Check if file exists and is a directory.

-e file Checks if file exists.

-f file Checks if file exists and is a file.

-r file Checks if file exists and is readable.

-s file Checks if file exists and is not empty.

-w file Checks if file exists and is writable.

-x file Checks if file exists and is executable.

-O file Checks if file exists and is owned by the current user.

-G file Checks if file exists and the default group is the same as the current
user.

file1 -nt file2 Checks if file1 is newer than file2.

file1 -ot file2 Checks if file1 is older than file2.

These conditions give you the ability to check files in your filesystem within your shell scripts, and they are often used in

scripts that access files. Because they're used so much, let's look at each of these individually.

Checking Directories
The -d test checks if a specified filename exists as a directory on the system. This is usually a good thing to do if you're trying

to write a file to a directory, or before you try to change to a directory location:

$ cat test11
#!/bin/bash
look before you leap
if [-d $HOME]
then
 echo “Your HOME directory exists”
 cd $HOME
 ls -a
else
 echo “There is a problem with your HOME directory”
fi
$

www.it-ebooks.info

#c11_tbl_0003
#c11_tbl_anc_0003
http://www.it-ebooks.info/

$./test11
“Your HOME directory exists”
. Documents .gvfs .pulse-cookie
.. Downloads .ICEauthority .recently-used.xbel
.aptitude .esd_auth .local
.sudo_as_admin_successful
.bash_history examples .desktop .mozilla Templates
.bash_logout .fontconfig Music test11
.bashrc .gconf .nautilus Videos
.cache .gconfd .openoffice.org
.xsession-errors
.config .gksu.lock Pictures
.xsession-errors.old
.dbus .gnome2 .profile
Desktop .gnome2_private Public
.dmrc .gtk-bookmarks .pulse
$
The sample code uses the -d test condition to see if the $HOME directory exists for the user. If it does, it proceeds to use

the cd command to change to the $HOME directory and performs a directory listing.

Checking If an Object Exists

The -e comparison allows you to check if a file or directory object exists before you attempt to use it in your script:

$ cat test12
#!/bin/bash
checking if a directory exists
if [-e $HOME]
then
 echo “OK on the directory, now to check the file”
 # checking if a file exists
 if [-e $HOME/testing]
 then
 # the file exists, append data to it
 echo “Appending date to existing file”
 date >> $HOME/testing
 else
 # the file does not exist, create a new file
 echo “Creating new file”
 date > $HOME/testing
 fi
else
 echo “Sorry, you do not have a HOME directory”
fi
$
$./test12

www.it-ebooks.info

http://www.it-ebooks.info/

OK on the directory, now to check the file
Creating new file
$./test12
OK on the directory, now to check the file
Appending date to existing file
$
The first check uses the -e comparison to determine if the user has a $HOME directory. If so, the next -e comparison checks

to determine if the testing file exists in the $HOME directory. If the file doesn't exist, the shell script uses the single greater-
than redirect symbol, creating a new file with the output from the date command. The second time you run the shell script, it

uses the double greater-than symbol, so it just appends the date output to the existing file.

Checking for a File
The -e comparison works for both files and directories. To be sure that the object specified is a file, you must use the -f

comparison:

$ cat test13
#!/bin/bash
check if a file
if [-e $HOME]
then
 echo “The object exists, is it a file?”
 if [-f $HOME]
 then
 echo “Yes, it is a file!”
 else
 echo “No, it is not a file!”
 if [-f $HOME/.bash_history]
 then
 echo “But this is a file!”
 fi
 fi
else
 echo “Sorry, the object does not exist”
fi
$
$./test13
The object exists, is it a file?
No, it is not a file!
But this is a file!
$
This little script does a whole lot of checking! First, it uses the -e comparison to test if $HOME exists. If it does, it uses -f to

test if it's a file. If it isn't a file (which of course it isn't), we use the -f comparison to test if it's a file, which it is.

Can You Read It?
Before trying to read data from a file, it's usually a good idea to test if you can read from the file first. You do this with the -r

comparison:

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat test14
#!/bin/bash
testing if you can read a file
pwfile=/etc/shadow

first, test if the file exists, and is a file
if [-f $pwfile]
then
 # now test if you can read it
 if [-r $pwfile]
 then
 tail $pwfile
 else
 echo “Sorry, I am unable to read the $pwfile file”
 fi
else
 echo “Sorry, the file $file does not exist”
fi
$
$./test14
Sorry, I am unable to read the /etc/shadow file
$
The /etc/shadow file contains the encrypted passwords for system users, so it's not readable by normal users on the

system. The -r comparison determined that I didn't have read access to the file, so the test command failed and the bash shell

executed the else section of the if-then statement.

Checking for Empty Files
You should use -s comparison to check if a file is empty, especially if you're trying to remove a file. Be careful because when

the -s comparison succeeds, it indicates that a file has data in it:

$ cat test15
#!/bin/bash
testing if a file is empty
file=t15test
touch $file

if [-s $file]
then
 echo “The $file file exists and has data in it”
else
 echo “The $file exists and is empty”
fi
date > $file
if [-s $file]
then
 echo “The $file file has data in it”

www.it-ebooks.info

http://www.it-ebooks.info/

else
 echo “The $file is still empty”
fi
$
$./test15
The t15test exists and is empty
The t15test file has data in it
$
The touch command creates the file but doesn't put any data in it. After we use the date command and redirect the

output to the file, the -s comparison indicates that there's data in the file.

Checking If You Can Write to a File

The -w comparison determines if you have permission to write to a file:

$ cat test16
#!/bin/bash
checking if a file is writeable

logfile=$HOME/t16test
touch $logfile
chmod u-w $logfile
now=‘date +%Y%m%d-%H%M’

if [-w $logfile]
then
 echo “The program ran at: $now” > $logfile
 echo “The first attempt succeeded”
else
 echo “The first attempt failed”
fi

chmod u+w $logfile
if [-w $logfile]
then
 echo “The program ran at: $now” > $logfile
 echo “The second attempt succeeded”
else
 echo “The second attempt failed”
fi
$
$./test16
The first attempt failed
The second attempt succeeded
$ cat $HOME/t16test
The program ran at: 20110124-1602

www.it-ebooks.info

http://www.it-ebooks.info/

$
This is a pretty busy shell script! First, it defines a log file in your $HOME directory, stores the filename of it in the variable

logfile, creates the file, and then removes the write permission for the user, using the chmod command. Next, it creates the
variable now and stores a timestamp, using the date command. After all of that, it checks if you have write permission to the

new log file (which you just took away). Because you don't have write permission, you should see the failed message appear.
After that, the script uses the chmod command again to grant the write permission back for the user, and tries to write to

the file again. This time the write is successful.

Checking If You Can Run a File
The -x comparison is a handy way to determine if you have execute permission for a specific file. While this may not be needed

for most commands, if you run a lot of scripts from your shell scripts, it could come in handy:

$ cat test17
#!/bin/bash
testing file execution
if [-x test16]
then
 echo “You can run the script: ”
 ./test16
else
 echo “Sorry, you are unable to execute the script”
fi
$
$./test17
You can run the script:
The first attempt failed
The second attempt succeeded
$
$ chmod u-x test16
$
$./test17
Sorry, you are unable to execute the script
$
This example shell script uses the -x comparison to test if you have permission to execute the test16 script. If so, it runs

the script (notice that even in a shell script, you must have the proper path to execute a script that's not located in your
$PATH). After successfully running the test16 script the first time, change the permissions on it and try again. This time, the -
x comparison fails, as you don't have execute permission for the test16 script.

Checking Ownership

The -O comparison allows you to easily test if you're the owner of a file:

$ cat test18
#!/bin/bash
check file ownership

if [-O /etc/passwd]
then

www.it-ebooks.info

http://www.it-ebooks.info/

 echo “You are the owner of the /etc/passwd file”
else
 echo “Sorry, you are not the owner of the /etc/passwd file”
fi
$
$./test18
Sorry, you are not the owner of the /etc/passwd file
$
$ su
Password:
$
./test18
You are the owner of the /etc/passwd file

The script uses the -O comparison to test if the user running the script is the owner of the /etc/passwd file. The first

time the script is run under a normal user account, so the test fails. The second time, we used the su command to become the

root user, and the test succeeded.

Checking Default Group Membership
The -G comparison checks the default group of a file, and it succeeds if it matches the group of the default group for the
user. This can be somewhat confusing because the -G comparison checks the default groups only and not all the groups the

user belongs to. Here's an example of this:

$ cat test19
#!/bin/bash# check file group test

if [-G $HOME/testing]
then
 echo “You are in the same group as the file”
else
 echo “The file is not owned by your group”
fi
$
$ ls -l $HOME/testing
-rw-rw-r-- 1 rich rich 58 2011-01-30 15:51 /home/rich/testing
$
$./test19
You are in the same group as the file
$
$ chgrp sharing $HOME/testing
$
$./test19
The file is not owned by your group
$
The first time the script is run, the $HOME/testing file is in the rich group, and the -G comparison succeeds. Next, the

group is changed to the sharing group, which the user is also a member of. However, the -G comparison failed, since it only

compares the default groups, not any additional group memberships.

www.it-ebooks.info

http://www.it-ebooks.info/

Checking File Date
The last set of comparisons deal with comparing the creation times of two files. This comes in handy when writing scripts to

install software. Sometimes you don't want to install a file that is older than a file already installed on the system.
The -nt comparison determines if a file is newer than another file. If a file is newer, it will have a more recent file creation

time. The -ot comparison determines if a file is older than another file. If the file is older, it will have an older file creation

time:

$ cat test20
#!/bin/bash
testing file dates

if [./test19 -nt ./test18]
then
 echo “The test19 file is newer than test18”
else
 echo “The test18 file is newer than test19”
fi
if [./test17 -ot ./test19]
then
 echo “The test17 file is older than the test19 file”
fi
$
$./test20
The test19 file is newer than test18
The test17 file is older than the test19 file
$
$ ls -l test17 test18 test19
-rwxrw-r-- 1 rich rich 167 2011-01-30 16:31 test17
-rwxrw-r-- 1 rich rich 185 2011-01-30 17:46 test18
-rwxrw-r-- 1 rich rich 167 2011-01-30 17:50 test19
$
The filepaths used in the comparisons are relative to the directory from where you run the script. This can cause problems

if the files you're checking can be moved around. Another problem is that neither of these comparisons check if the file exists

first. Try this test:

$ cat test21
#!/bin/bash
testing file dates

if [./badfile1 -nt ./badfile2]
then
 echo “The badfile1 file is newer than badfile2”
else
 echo “The badfile2 file is newer than badfile1”
fi
$
$./test21

www.it-ebooks.info

http://www.it-ebooks.info/

The badfile2 file is newer than badfile1
$
This little example demonstrates that if the files don't exist, the -nt comparison just returns a failed condition. It's

imperative that you ensure the files exist before trying to use them in the -nt or -ot comparison.

Compound Condition Testing

The if-then statement allows you to use Boolean logic to combine tests. There are two Boolean operators you can use:
[condition1] && [condition2]
[condition1] || [condition2]

The first Boolean operation uses the AND Boolean operator to combine two conditions. Both conditions must be met for

the then section to execute.
The second Boolean operation uses the OR Boolean operator to combine two conditions. If either condition evaluates to

a true condition, the then section is executed.

$ cat test22
#!/bin/bash
testing compound comparisons

if [-d $HOME] && [-w $HOME/testing]
then
 echo “The file exists and you can write to it”
else
 echo “I cannot write to the file”
fi
$
$./test22
I cannot write to the file
$ touch $HOME/testing
$
$./test22
The file exists and you can write to it
$
Using the AND Boolean operator, both of the comparisons must be met. The first comparison checks to see if the $HOME

directory exists for the user. The second comparison checks to see if there's a file called testing in the user's $HOME
directory, and if the user has write permissions for the file. If either of these comparisons fails, the if statement fails and the
shell executes the else section. If both of the comparisons succeed, the if statement succeeds and the shell executes the

then section.

Advanced if-then Features
There are two relatively recent additions to the bash shell that provide advanced features that you can use in if-then

statements:
Double parentheses for mathematical expressions
Double square brackets for advanced string handling functions

The following sections describe each of these features in more detail.

Using Double Parentheses
The double parentheses command allows you to incorporate advanced mathematical formulas in your comparisons. The test
command only allows for simple arithmetic operations in the comparison. The double parentheses command provides more
mathematical symbols, which programmers, who have used other programming languages, may be used to using. The format

www.it-ebooks.info

http://www.it-ebooks.info/

mathematical symbols, which programmers, who have used other programming languages, may be used to using. The format

of the double parentheses command is:

((expression))
The expression term can be any mathematical assignment or comparison expression. Besides the standard mathematical

operators that the test command uses, Table 11.4 shows the list of additional operators available for use in the double

parentheses command.

Table 11.4 The Double Parentheses Command Symbols

Symbol Description

val++ Post-increment

val-- Post-decrement

++val Pre-increment

--val Pre-decrement

! Logical negation

∼ Bitwise negation

** Exponentiation

<< Left bitwise shift

>> Right bitwise shift

& Bitwise Boolean AND

| Bitwise Boolean OR

&& Logical AND

|| Logical OR

You can use the double parentheses command in an if statement, as well as a normal command in the script for

assigning values:

$ cat test23
#!/bin/bash
using double parenthesis

val1=10

if (($val1 ** 2 > 90))
then
 ((val2 = $val1 ** 2))
 echo “The square of $val1 is $val2”
fi
$
$./test23
The square of 10 is 100
$

www.it-ebooks.info

#c11_tbl_0004
#c11_tbl_anc_0004
http://www.it-ebooks.info/

Notice that you don't need to escape the greater-than symbol in the expression within the double parentheses. This is yet

another advanced feature provided by the double parentheses command.

Using Double Brackets

The double bracket command provides advanced features for string comparisons. The double bracket command format is:

[[expression]]
The double bracketed expression uses the standard string comparison used in the test command. However, it provides an

additional feature that the test command doesn't, pattern matching.
In pattern matching, you can define a regular expression (discussed in detail in Chapter 19) that's matched against the

string value:

$ cat test24
#!/bin/bash
using pattern matching

if [[$USER == r*]]
then
 echo “Hello $USER”
else
 echo “Sorry, I do not know you”
fi
$
$./test24
Hello rich
$
The double bracket command matches the $USER environment variable to see if it starts with the letter r. If so, the

comparison succeeds, and the shell executes the then section commands.

The case Command
Often you'll find yourself trying to evaluate the value of a variable, looking for a specific value within a set of possible

values. In this scenario, you end up having to write a lengthy if-then-else statement, like this:

$ cat test25
#!/bin/bash
looking for a possible value

if [$USER = “rich”]
then
 echo “Welcome $USER”
 echo “Please enjoy your visit”
elif [$USER = barbara]
then
 echo “Welcome $USER”
 echo “Please enjoy your visit”
elif [$USER = testing]
then
 echo “Special testing account”

www.it-ebooks.info

http://www.it-ebooks.info/

elif [$USER = jessica]
then
 echo “Do not forget to logout when you're done”
else
 echo “Sorry, you are not allowed here”
fi
$
$./test25
Welcome rich
Please enjoy your visit
$
The elif statements continue the if-then checking, looking for a specific value for the single comparison variable.
Instead of having to write all of the elif statements to continue checking the same variable value, you can use the case

command. The case command checks multiple values of a single variable in a list-oriented format:

case variable in
pattern1 | pattern2) commands1;;
pattern3) commands2;;
*) default commands;;
esac
The case command compares the variable specified against the different patterns. If the variable matches the pattern, the

shell executes the commands specified for the pattern. You can list more than one pattern on a line, using the bar operator
to separate each pattern. The asterisk symbol is the catch-all for values that don't match any of the listed patterns. Here's an

example of converting the if-then-else program to using the case command:

$ cat test26
#!/bin/bash
using the case command

case $USER in
rich | barbara)
 echo “Welcome, $USER”
 echo “Please enjoy your visit”;;
testing)
 echo “Special testing account”;;
jessica)
 echo “Do not forget to log off when you're done”;;
*)
 echo “Sorry, you are not allowed here”;;
esac
$
$./test26
Welcome, rich
Please enjoy your visit
$
The case command provides a much cleaner way of specifying the various options for each possible variable value.

Summary

www.it-ebooks.info

http://www.it-ebooks.info/

Structured commands allow you to alter the normal flow of execution on the shell script. The most basic structured
command is the if-then statement. This statement allows you to evaluate a command, and perform other commands based

on the outcome of the command you evaluated.
You can expand the if-then statement to include a set of commands the bash shell executes if the specified command

fails as well. The if-then-else statement allows you to execute commands only if the command being evaluated returns a

non-zero exit status code.
You can also link if-then-else statements together, using the elif statement. The elif is equivalent to using an

else if statement, providing for additional checking if the original command that was evaluated failed.
In most scripts, instead of evaluating a command, you'll want to evaluate a condition, such as a numeric value, the

contents of a string, or the status of a file or directory. The test command provides an easy way for you to evaluate all of
these conditions. If the condition evaluates to a true condition, the test command produces a zero exit status code for the
if-then statement. If the condition evaluates to a false condition, the test command produces a non-zero exit status

code for the if-then statement.
The square bracket is a special bash command that is a synonym for the test command. You can enclose a test condition

in square brackets in the if-then statement to test for numeric, string, and file conditions.
The double parentheses command allows you to perform advanced mathematical evaluations using additional

operators, and the double square bracket command allows you to perform advanced string pattern-matching evaluations.
Finally, the chapter discussed the case command, which is a shorthand way of performing multiple if-then-else

commands, checking the value of a single variable against a list of values.
The next chapter continues the discussion of structured commands by examining the shell looping commands. The for

and while commands allow you to create loops that iterate through commands for a given period of time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

More Structured Commands

In This Chapter

Looping with the for statement
Iterating with the until statement
Using the while statement
Combining loops
Redirecting loop output

In the previous chapter, you saw how to manipulate the flow of a shell script program by checking the output of commands
and the values of variables. In this chapter, we'll continue to look at structured commands that control the flow of your shell
scripts. You'll see how you can perform repeating processes, commands that can loop through a set of commands until an
indicated condition has been met. This chapter discusses and demonstrates the for, while, and until bash shell looping

commands.

The for Command
Iterating through a series of commands is a common programming practice. Often you need to repeat a set of commands
until a specific condition has been met, such as processing all of the files in a directory, all of the users on a system, or all of

the lines in a text file.
The bash shell provides the for command to allow you to create a loop that iterates through a series of values. Each

iteration performs a defined set of commands using one of the values in the series. The following is the basic format of the

bash shell for command:

 for var in list
 do
 commands
 done
You supply the series of values used in the iterations in the list parameter. There are several different ways that you can

specify the values in the list.
In each iteration, the variable var contains the current value in the list. The first iteration uses the first item in the list, the

second iteration the second item, and so on until all of the items in the list have been used.
The commands entered between the do and done statements can be one or more standard bash shell commands. Within

the commands, the $var variable contains the current list item value for the iteration.

Note

If you prefer, you can include the do statement on the same line as the for
statement, but you must separate it from the list items using a semicolon: for var
in list; do.

We mentioned that there are several different ways to specify the values in the list. The following sections show the

various ways to do that.

Reading Values in a List

The most basic use of the for command is to iterate through a list of values defined within the for command itself:

 $ cat test1
 #!/bin/bash
 # basic for command

www.it-ebooks.info

http://www.it-ebooks.info/

 for test in Alabama Alaska Arizona Arkansas California Colorado
 do
 echo The next state is $test
 done
 $./test1
 The next state is Alabama
 The next state is Alaska
 The next state is Arizona
 The next state is Arkansas
 The next state is California
 The next state is Colorado
 $
Each time the for command iterates through the list of values provided, it assigns the $test variable the next value in

the list. The $test variable can be used just like any other script variable within the for command statements. After the last
iteration, the $test variable remains valid throughout the remainder of the shell script. It retains the last iteration value

(unless you change its value):

 $ cat test1b
 #!/bin/bash
 # testing the for variable after the looping

 for test in Alabama Alaska Arizona Arkansas California Colorado
 do
 echo “The next state is $test”
 done
 echo “The last state we visited was $test”
 test=Connecticut
 echo “Wait, now we're visiting $test”
 $./test1b
 The next state is Alabama
 The next state is Alaska
 The next state is Arizona
 The next state is Arkansas
 The next state is California
 The next state is Colorado
 The last state we visited was Colorado
 Wait, now we're visiting Connecticut
 $
The $test variable retained its value and also allowed us to change the value and use it outside of the for command

loop, as any other variable would.

Reading Complex Values in a List
Things aren't always as easy as they seem with the for loop. There are times when you run into data that causes problems.

Here's a classic example of what can cause problems for shell script programmers:

 $ cat badtest1

www.it-ebooks.info

http://www.it-ebooks.info/

 #!/bin/bash
 # another example of how not to use the for command

 for test in I don't know if this'll work
 do
 echo “word:$test”
 done
 $./badtest1
 word:I
 word:dont know if thisll
 word:work
 $
Ouch, that hurts. The shell saw the single quotation marks within the list values and attempted to use them to define a

single data value, and it really messed things up in the process.
There are two ways to solve this problem:

Use the escape character (the backslash) to escape the single quotation mark.
Use double quotation marks to define the values that use single quotation marks.

Neither solution is all that fantastic, but each one does help solve the problem:

 $ cat test2
 #!/bin/bash
 # another example of how not to use the for command

 for test in I don\'t know if “this'll” work
 do
 echo “word:$test”
 done
 $./test2
 word:I
 word:don't
 word:know
 word:if
 word:this'll
 word:work
 $
In the first problem value, you added the backslash character to escape the single quotation mark in the don't value. In

the second problem value, you enclosed the this'll value in double quotation marks. Both methods worked fine to

distinguish the value.
Yet another problem you may run into is multi-word values. Remember that the for loop assumes that each value is

separated with a space. If you have data values that contain spaces, you'll run into yet another problem:

 $ cat badtest2
 #!/bin/bash
 # another example of how not to use the for command

 for test in Nevada New Hampshire New Mexico New York North Carolina
 do

www.it-ebooks.info

http://www.it-ebooks.info/

 echo “Now going to $test”
 done
 $./badtest1
 Now going to Nevada
 Now going to New
 Now going to Hampshire
 Now going to New
 Now going to Mexico
 Now going to New
 Now going to York
 Now going to North
 Now going to Carolina
 $
Oops, that's not exactly what we wanted. The for command separates each value in the list with a space. If there are spaces

in the individual data values, you must accommodate them using double quotation marks:

 $ cat test3
 #!/bin/bash
 # an example of how to properly define values

 for test in Nevada “New Hampshire” “New Mexico” “New York”
 do
 echo “Now going to $test”
 done
 $./test3
 Now going to Nevada
 Now going to New Hampshire
 Now going to New Mexico
 Now going to New York
 $
Now the for command can properly distinguish between the different values. Also, notice that when you use double

quotation marks around a value, the shell doesn't include the quotation marks as part of the value.

Reading a List from a Variable
Often what happens in a shell script is that you accumulate a list of values stored in a variable and then need to iterate

through the list. You can do this using the for command as well:

 $ cat test4
 #!/bin/bash
 # using a variable to hold the list

 list=“Alabama Alaska Arizona Arkansas Colorado”
 list=$list“ Connecticut”

 for state in $list
 do

www.it-ebooks.info

http://www.it-ebooks.info/

 echo “Have you ever visited $state?”
 done
 $./test4
 Have you ever visited Alabama?
 Have you ever visited Alaska?
 Have you ever visited Arizona?
 Have you ever visited Arkansas?
 Have you ever visited Colorado?
 Have you ever visited Connecticut?
 $
The $list variable contains the standard text list of values to use for the iterations. Notice that the code also uses

another assignment statement to add (or concatenate) an item to the existing list contained in the $list variable. This is a

common method for adding text to the end of an existing text string stored in a variable.

Reading Values from a Command
Yet another way to generate values for use in the list is to use the output of a command. You use the backtick characters to

execute any command that produces output, and then use the output of the command in the for command:

 $ cat test5
 #!/bin/bash
 # reading values from a file

 file=“states”

 for state in ‘cat $file’
 do
 echo “Visit beautiful $state”
 done
 $ cat states
 Alabama
 Alaska
 Arizona
 Arkansas
 Colorado
 Connecticut
 Delaware
 Florida
 Georgia
 $./test5
 Visit beautiful Alabama
 Visit beautiful Alaska
 Visit beautiful Arizona
 Visit beautiful Arkansas
 Visit beautiful Colorado
 Visit beautiful Connecticut

www.it-ebooks.info

http://www.it-ebooks.info/

 Visit beautiful Delaware
 Visit beautiful Florida
 Visit beautiful Georgia
 $
This example uses the cat command in tick marks to display the contents of the file states. You'll notice that the states file

includes each state on a separate line, not separated by spaces. The for command still iterates through the output of the cat
command one line at a time, assuming that each state is on a separate line. However, this doesn't solve the problem of having
spaces in data. If you list a state with a space in it, the for command will still take each word as a separate value. There's a

reason for this, which we look at in the next section.

Note

The test5 code example assigned the filename to the variable using just the
filename without a path. This requires that the file be in the same directory as the
script. If this isn't the case, you'll need to use a full pathname (either absolute or
relative) to reference the file location.

Changing the Field Separator
The cause of this problem is the special environment variable IFS, called the internal field separator. The IFS environment
variable defines a list of characters the bash shell uses as field separators. By default, the bash shell considers the following

characters as field separators:
A space
A tab
A newline

If the bash shell sees any of these characters in the data, it will assume that you're starting a new data field in the list. When

working with data that can contain spaces (such as filenames), this can be annoying, as you saw in the previous script example.
To solve this problem, you can temporarily change the IFS environment variable values in your shell script to restrict the

characters the bash shell recognizes as field separators. However, there is somewhat of an odd way of doing this. For example,

if you want to change the IFS value to recognize only the newline character, you need to do this:

 IFS=$‘\n’
Adding this statement to your script tells the bash shell to ignore spaces and tabs in data values. Applying this to the

previous script yields the following:

 $ cat test5b
 #!/bin/bash
 # reading values from a file

 file=“states”

 IFS=$‘\n’
 for state in ‘cat $file’
 do
 echo “Visit beautiful $state”
 done
 $./test5b
 Visit beautiful Alabama
 Visit beautiful Alaska
 Visit beautiful Arizona
 Visit beautiful Arkansas

www.it-ebooks.info

http://www.it-ebooks.info/

 Visit beautiful Colorado
 Visit beautiful Connecticut
 Visit beautiful Delaware
 Visit beautiful Florida
 Visit beautiful Georgia
 Visit beautiful New York
 Visit beautiful New Hampshire
 Visit beautiful North Carolina
 $
Now the shell script is able to use values in the list that contain spaces.

Caution

When working on long scripts, it's possible to change the IFS value in one place, and then
forget about it and assume the default value elsewhere in the script. A safe practice to
get into is to save the original IFS value before changing it and then restore it when you're
done.

This technique can be coded like this:

 IFS.OLD=$IFS
 IFS=$‘\n’
 <use the new IFS value in code>
 IFS=$IFS.OLD

This ensures that the IFS value is returned to the default value for future operations
within the script.

There are other excellent applications of the IFS environment variable. Say that you want to iterate through values in a

file that are separated by a colon (such as in the /etc/passwd file). All you need to do is set the IFS value to a colon:

 IFS=:
If you want to specify more than one IFS character, just string them together on the assignment line:

 IFS=$‘\n’:;”
This assignment uses the newline, colon, semicolon, and double quotation mark characters as field separators. There's no

limit to how you can parse your data using the IFS characters.

Reading a Directory Using Wildcards
Finally, you can use the for command to automatically iterate through a directory of files. To do this, you must use a wildcard
character in the file or pathname. This forces the shell to use file globbing. File globbing is the process of producing file or path

names that match a specified wildcard character.
This feature is great for processing files in a directory when you don't know all of the filenames:

 $ cat test6
 #!/bin/bash
 # iterate through all the files in a directory

 for file in /home/rich/test/*
 do

 if [-d “$file”]
 then

www.it-ebooks.info

http://www.it-ebooks.info/

 echo “$file is a directory”
 elif [-f “$file”]
 then
 echo “$file is a file”
 fi
 done
 $./test6
 /home/rich/test/dir1 is a directory
 /home/rich/test/myprog.c is a file
 /home/rich/test/myprog is a file
 /home/rich/test/myscript is a file
 /home/rich/test/newdir is a directory
 /home/rich/test/newfile is a file
 /home/rich/test/newfile2 is a file
 /home/rich/test/testdir is a directory
 /home/rich/test/testing is a file
 /home/rich/test/testprog is a file
 /home/rich/test/testprog.c is a file
 $
The for command iterates through the results of the /home/rich/test/* listing. The code tests each entry using the

test command (using the square bracket method) to see if it's a directory, using the -d parameter, or a file, using the -f

parameter (See Chapter 11).
Notice in this example that we did something different in the if statement tests:

 if [-d “$file”]
In Linux, it's perfectly legal to have directory and filenames that contain spaces. To accommodate that, you should

enclose the $file variable in double quotation marks. If you don't, you'll get an error if you run into a directory or

filename that contains spaces:

 ./test6: line 6: [: too many arguments
 ./test6: line 9: [: too many arguments
The bash shell interprets the additional words as arguments within the test command, causing an error.
You can also combine both the directory search method and the list method in the same for statement by listing a series

of directory wildcards in the for command:

 $ cat test7
 #!/bin/bash
 # iterating through multiple directories

 for file in /home/rich/.b* /home/rich/badtest
 do
 if [-d “$file”]
 then
 echo “$file is a directory”
 elif [-f “$file”]
 then
 echo “$file is a file”
 else

www.it-ebooks.info

http://www.it-ebooks.info/

 echo “$file doesn't exist”
 fi
 done
 $./test7
 /home/rich/.backup.timestamp is a file
 /home/rich/.bash_history is a file
 /home/rich/.bash_logout is a file
 /home/rich/.bash_profile is a file
 /home/rich/.bashrc is a file
 /home/rich/badtest doesn't exist
 $
The for statement first uses file globbing to iterate through the list of files that result from the wildcard character; then

it iterates through the next file in the list. You can combine any number of wildcard entries in the list to iterate through.

Caution

Notice that you can enter anything in the list data. Even if the file or directory doesn't
exist, the for statement attempts to process whatever you place in the list. This can be a
problem when working with files and directories. You have no way of knowing if you're
trying to iterate through a nonexistent directory: It's always a good idea to test each file
or directory before trying to process it.

The C-Style for Command
If you've done any programming using the C programming language, you're probably surprised by the way the bash shell
uses the for command. In the C language, a for loop normally defines a variable, which it then alters automatically during
each iteration. Typically, programmers use this variable as a counter and either increment or decrement the counter by one in
each iteration. The bash for command can also provide this functionality. This section shows you how you can use a C-style

for command in a bash shell script.

The C Language for Command
The C language for command has a specific method for specifying a variable, a condition that must remain true for the
iterations to continue, and a method for altering the variable for each iteration. When the specified condition becomes false,
the for loop stops. The condition equation is defined using standard mathematical symbols. For example, consider the

following C language code:

 for (i = 0; i < 10; i++)
 {
 printf(“The next number is %d\n”, i);
 }
This code produces a simple iteration loop, where the variable i is used as a counter. The first section assigns a default

value to the variable. The middle section defines the condition under which the loop will iterate. When the defined condition
becomes false, the for loop stops iterations. The last section defines the iteration process. After each iteration, the expression

defined in the last section is executed. In this example, the i variable is incremented by one after each iteration.
The bash shell also supports a version of the for loop that looks similar to the C-style for loop, although it does have

some subtle differences, including a couple of things that will confuse shell script programmers. Here's the basic format of

the C-style bash for loop:

 for ((
variable
assignment ;
condition ;
iteration

www.it-ebooks.info

http://www.it-ebooks.info/

process))
The format of the C-style for loop can be confusing for bash shell script programmers, as it uses C-style variable

references instead of the shell-style variable references. Here's what a C-style for command looks like:

 for ((a = 1; a < 10; a++))
Notice that there are a couple of things that don't follow the standard bash shell for method:

The assignment of the variable value can contain spaces.
The variable in the condition isn't preceded with a dollar sign.
The equation for the iteration process doesn't use the expr command format.

The shell developers created this format to more closely resemble the C-style for command. While this is great for C
programmers, it can throw even expert shell programmers into a tizzy. Be careful when using the C-style for loop in your

scripts.
Here's an example of using the C-style for command in a bash shell program:

 $ cat test8
 #!/bin/bash
 # testing the C-style for loop

 for ((i=1; i <= 10; i++))
 do
 echo “The next number is $i”
 done
 $./test8
 The next number is 1
 The next number is 2
 The next number is 3
 The next number is 4
 The next number is 5
 The next number is 6
 The next number is 7
 The next number is 8
 The next number is 9
 The next number is 10
 $
The for loop iterates through the commands using the variable defined in the for loop (the letter i in this example). In

each iteration, the $i variable contains the value assigned in the for loop. After each iteration, the loop iteration process is

applied to the variable, which in this example, increments the variable by one.

Using Multiple Variables
The C-style for command also allows you to use multiple variables for the iteration. The loop handles each variable
separately, allowing you to define a different iteration process for each variable. While you can have multiple variables, you

can only define one condition in the for loop:

 $ cat test9
 #!/bin/bash
 # multiple variables

 for ((a=1, b=10; a <= 10; a++, b--))

www.it-ebooks.info

http://www.it-ebooks.info/

 do
 echo “$a - $b”
 done
 $./test9
 1 - 10
 2 - 9
 3 - 8
 4 - 7
 5 - 6
 6 - 5
 7 - 4
 8 - 3
 9 - 2
 10 - 1
 $
The a and b variables are each initialized with different values and different iteration processes are defined. While the

loop increases the a variable, it decreases the b variable for each iteration.

The while Command
The while command is somewhat of a cross between the if-then statement and the for loop. The while command allows
you to define a command to test and then loop through a set of commands for as long as the defined test command returns
a zero exit status. It tests the test command at the start of each iteration. When the test command returns a non-zero exit

status, the while command stops executing the set of commands.

Basic while Format

The format of the while command is:

 while
test
command
 do

other
commands
 done
The test command defined in the while command is the exact same format as in if-then statements (see Chapter 11).

As in the if-then statement, you can use any normal bash shell command, or you can use the test command to test for

conditions, such as variable values.
The key to the while command is that the exit status of the test command specified must change, based on the

commands run during the loop. If the exit status never changes, the while loop will get stuck in an infinite loop.
The most common use of the test command is to use brackets to check a value of a shell variable that's used in the loop

commands:

 $ cat test10
 #!/bin/bash
 # while command test

 var1=10

www.it-ebooks.info

http://www.it-ebooks.info/

 while [$var1 -gt 0]
 do
 echo $var1
 var1=$[$var1 - 1]
 done
 $./test10
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 $
The while command defines the test condition to check for each iteration:

 while [$var1 -gt 0]

As long as the test condition is true, the while command continues to loop through the commands defined. Within the

commands, the variable used in the test condition must be modified, or else you'll have an infinite loop. In this example, we

use shell arithmetic to decrease the variable value by one:

 var1=$[$var1 - 1]
The while loop stops when the test condition is no longer true.

Using Multiple Test Commands
In somewhat of an odd situation, the while command allows you to define multiple test commands on the while statement
line. Only the exit status of the last test command is used to determine when the loop stops. This can cause some interesting

results if you're not careful. Here's an example of what we mean:

 $ cat test11
 #!/bin/bash
 # testing a multicommand while loop

 var1=10

 while echo $var1
 [$var1 -ge 0]
 do
 echo “This is inside the loop”
 var1=$[$var1 - 1]
 done
 $./test11
 10

www.it-ebooks.info

http://www.it-ebooks.info/

 This is inside the loop
 9
 This is inside the loop
 8
 This is inside the loop
 7
 This is inside the loop
 6
 This is inside the loop
 5
 This is inside the loop
 4
 This is inside the loop
 3
 This is inside the loop
 2
 This is inside the loop
 1
 This is inside the loop
 0
 This is inside the loop
 -1
 $
Pay close attention to what happened in this example. There were two test commands defined in the while statement:

 while echo $var1
 [$var1 -ge 0]
The first test simply displays the current value of the var1 variable. The second test uses brackets to determine the value

of the var1 variable. Inside the loop, an echo statement displays a simple message, indicating that the loop was processed.

Notice when you run the example how the output ends:

 This is inside the loop
 -1
 $

The while loop executed the echo statement when the var1 variable was equal to zero, and then decreased the var1

variable value. Next, the test commands were executed for the next iteration. The echo test command was executed,
displaying the value of the var1 variable, which is now less than zero. It's not until the shell executes the test test command

that the while loop terminates.
This demonstrates that in a multi-command while statement, all of the test commands are executed in each iteration,

including the last iteration when the last test command fails. Be careful of this. Another thing to be careful of is how you

specify the multiple test commands. Note that each test command is on a separate line!

The until Command
The until command works in exactly the opposite way from the while command. The until command requires that you
specify a test command that normally produces a non-zero exit status. As long as the exit status of the test command is non-
zero, the bash shell executes the commands listed in the loop. Once the test command returns a zero exit status, the loop

stops.
As you would expect, the format of the until command is:

www.it-ebooks.info

http://www.it-ebooks.info/

 until test
commands
 do

other commands
 done
Similar to the while command, you can have more than one test command in the until command statement. Only the

exit status of the last command determines if the bash shell executes the other commands defined.
The following is an example of using the until command:

 $ cat test12
 #!/bin/bash
 # using the until command

 var1=100

 until [$var1 -eq 0]
 do
 echo $var1
 var1=$[$var1 - 25]
 done
 $./test12
 100
 75
 50
 25
 $
This example tests the var1 variable to determine when the until loop should stop. As soon as the value of the variable

is equal to zero, the until command stops the loop. The same caution as for the while command applies when you use

multiple test commands with the until command:

 $ cat test13
 #!/bin/bash
 # using the until command

 var1=100

 until echo $var1
 [$var1 -eq 0]
 do
 echo Inside the loop: $var1
 var1=$[$var1 - 25]
 done
 $./test13
 100
 Inside the loop: 100
 75

www.it-ebooks.info

http://www.it-ebooks.info/

 Inside the loop: 75
 50
 Inside the loop: 50
 25
 Inside the loop: 25
 0
 $
The shell executes the test commands specified and stops only when the last command is true.

Nesting Loops
A loop statement can use any other type of command within the loop, including other loop commands. This is called a nested
loop. Care should be taken when using nested loops, as you're performing an iteration within an iteration, which multiplies

the number of times commands are being run. Not paying close attention to this can cause problems in your scripts.
Here's a simple example of nesting a for loop inside another for loop:

 $ cat test14
 #!/bin/bash
 # nesting for loops

 for ((a = 1; a <= 3; a++))
 do
 echo “Starting loop $a:”
 for ((b = 1; b <= 3; b++))
 do
 echo “ Inside loop: $b”
 done
 done
 $./test14
 Starting loop 1:
 Inside loop: 1
 Inside loop: 2
 Inside loop: 3
 Starting loop 2:
 Inside loop: 1
 Inside loop: 2
 Inside loop: 3
 Starting loop 3:
 Inside loop: 1
 Inside loop: 2
 Inside loop: 3
 $
The nested loop (also called the inner loop) iterates through its values for each iteration of the outer loop. Notice that

there's no difference between the do and done commands for the two loops. The bash shell knows when the first done

command is executed that it refers to the inner loop and not the outer loop.
The same applies when you mix loop commands, such as placing a for loop inside a while loop:

 $ cat test15
 #!/bin/bash

www.it-ebooks.info

http://www.it-ebooks.info/

 # placing a for loop inside a while loop

 var1=5

 while [$var1 -ge 0]
 do
 echo “Outer loop: $var1”
 for ((var2 = 1; $var2 < 3; var2++))
 do
 var3=$[$var1 * $var2]
 echo “ Inner loop: $var1 * $var2 = $var3”
 done
 var1=$[$var1 - 1]
 done
 $./test15
 Outer loop: 5
 Inner loop: 5 * 1 = 5
 Inner loop: 5 * 2 = 10
 Outer loop: 4
 Inner loop: 4 * 1 = 4
 Inner loop: 4 * 2 = 8
 Outer loop: 3
 Inner loop: 3 * 1 = 3
 Inner loop: 3 * 2 = 6
 Outer loop: 2
 Inner loop: 2 * 1 = 2
 Inner loop: 2 * 2 = 4
 Outer loop: 1
 Inner loop: 1 * 1 = 1
 Inner loop: 1 * 2 = 2
 Outer loop: 0
 Inner loop: 0 * 1 = 0
 Inner loop: 0 * 2 = 0
 $
Again, the shell was able to distinguish between the do and done commands of the inner for loop from the same

commands in the outer while loop.
If you really want to test your brain, you can even combine until and while loops:

 $ cat test16
 #!/bin/bash
 # using until and while loops

 var1=3

 until [$var1 -eq 0]

www.it-ebooks.info

http://www.it-ebooks.info/

 do
 echo “Outer loop: $var1”
 var2=1
 while [$var2 -lt 5]
 do
 var3=‘echo “scale=4; $var1 / $var2” | bc’
 echo “ Inner loop: $var1 / $var2 = $var3”
 var2=$[$var2 + 1]
 done
 var1=$[$var1 - 1]
 done
 $./test16
 Outer loop: 3
 Inner loop: 3 / 1 = 3.0000
 Inner loop: 3 / 2 = 1.5000
 Inner loop: 3 / 3 = 1.0000
 Inner loop: 3 / 4 = .7500
 Outer loop: 2
 Inner loop: 2 / 1 = 2.0000
 Inner loop: 2 / 2 = 1.0000
 Inner loop: 2 / 3 = .6666
 Inner loop: 2 / 4 = .5000
 Outer loop: 1
 Inner loop: 1 / 1 = 1.0000
 Inner loop: 1 / 2 = .5000
 Inner loop: 1 / 3 = .3333
 Inner loop: 1 / 4 = .2500
 $
The outer until loop starts with a value of 3 and continues until the value equals 0. The inner while loop starts with a

value of 1 and continues as long as the value is less than 5. Each loop must change the value used in the test condition, or the

loop will get stuck infinitely.

Looping on File Data

Often, you must iterate through items stored inside a file. This requires combining two of the techniques covered:
Using nested loops
Changing the IFS environment variable

By changing the IFS environment variable, you can force the for command to handle each line in the file as a separate
item for processing, even if the data contains spaces. Once you've extracted an individual line in the file, you may have to loop

again to extract data contained within it.
The classic example of this is processing data in the /etc/passwd file. This requires that you iterate through the

/etc/passwd file line by line and then change the IFS variable value to a colon so that you can separate out the individual

components in each line.
The following is an example of doing just that:

 #!/bin/bash
 # changing the IFS value

 IFS.OLD=$IFS

www.it-ebooks.info

http://www.it-ebooks.info/

 IFS=$‘\n’
 for entry in ‘cat /etc/passwd’
 do
 echo “Values in $entry –”
 IFS=:
 for value in $entry
 do
 echo “ $value”
 done
 done
 $
This script uses two different IFS values to parse the data. The first IFS value parses the individual lines in the

/etc/passwd file. The inner for loop next changes the IFS value to the colon, which allows you to parse the individual

values within the /etc/passwd lines.
When you run this script, you'll get output something like this:

 Values in rich:x:501:501:Rich Blum:/home/rich:/bin/bash -
 rich
 x
 501
 501
 Rich Blum
 /home/rich
 /bin/bash
 Values in katie:x:502:502:Katie Blum:/home/katie:/bin/bash -
 katie
 x
 506
 509
 Katie Blum
 /home/katie
 /bin/bash
The inner loop parses each individual value in the /etc/passwd entry. This is also a great way to process comma-

separated data, a common way to import spreadsheet data.

Controlling the Loop
You might be tempted to think that once you start a loop, you're stuck until the loop finishes all of its iterations. This is not

true. There are a couple of commands that help us control what happens inside of a loop:
The break command
The continue command

Each command has a different use in how to control the operation of a loop. The following sections describe how you can

use these commands to control the operation of your loops.

The break Command
The break command is a simple way to escape out of a loop in progress. You can use the break command to exit out of any

type of loop, including while and until loops.
There are several situations in which you can use the break command. This section shows each of these methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Breaking Out of a Single Loop

When the shell executes a break command, it attempts to break out of the loop that's currently processing:

 $ cat test17
 #!/bin/bash
 # breaking out of a for loop

 for var1 in 1 2 3 4 5 6 7 8 9 10
 do
 if [$var1 -eq 5]
 then
 break
 fi
 echo “Iteration number: $var1”
 done
 echo “The for loop is completed”
 $./test17
 Iteration number: 1
 Iteration number: 2
 Iteration number: 3
 Iteration number: 4
 The for loop is completed
 $
The for loop should normally have iterated through all of the values specified in the list. However, when the if-then

condition was satisfied, the shell executed the break command, which stopped the for loop.
This technique also works for while and until loops:

 $ cat test18
 #!/bin/bash
 # breaking out of a while loop

 var1=1

 while [$var1 -lt 10]
 do
 if [$var1 -eq 5]
 then
 break
 fi
 echo “Iteration: $var1”
 var1=$[$var1 + 1]
 done
 echo “The while loop is completed”
 $./test18
 Iteration: 1
 Iteration: 2

www.it-ebooks.info

http://www.it-ebooks.info/

 Iteration: 3
 Iteration: 4
 The while loop is completed
 $
The while loop terminated when the if-then condition was met, executing the break command.

Breaking Out of an Inner Loop

When you're working with multiple loops, the break command automatically terminates the innermost loop you're in:

 $ cat test19
 #!/bin/bash
 # breaking out of an inner loop

 for ((a = 1; a < 4; a++))
 do
 echo “Outer loop: $a”
 for ((b = 1; b < 100; b++))
 do
 if [$b -eq 5]
 then
 break
 fi
 echo “ Inner loop: $b”
 done
 done
 $./test19
 Outer loop: 1
 Inner loop: 1
 Inner loop: 2
 Inner loop: 3
 Inner loop: 4
 Outer loop: 2
 Inner loop: 1
 Inner loop: 2
 Inner loop: 3
 Inner loop: 4
 Outer loop: 3
 Inner loop: 1
 Inner loop: 2
 Inner loop: 3
 Inner loop: 4
 $
The for statement in the inner loop specifies to iterate until the b variable is equal to 100. However, the if-then

statement in the inner loop specifies that when the b variable value is equal to five, the break command is executed. Notice

that even though the inner loop is terminated with the break command, the outer loop continues working as specified.

www.it-ebooks.info

http://www.it-ebooks.info/

Breaking Out of an Outer Loop
There may be times when you're in an inner loop but need to stop the outer loop. The break command includes a single

command line parameter value:

 break
n

where n indicates the level of the loop to break out of. By default, n is 1, indicating to break out of the current loop. If you set

n to a value of 2, the break command will stop the next level of the outer loop:

 $ cat test20
 #!/bin/bash
 # breaking out of an outer loop

 for ((a = 1; a < 4; a++))
 do
 echo “Outer loop: $a”
 for ((b = 1; b < 100; b++))
 do
 if [$b -gt 4]
 then
 break 2
 fi
 echo “ Inner loop: $b”
 done
 done
 $./test20
 Outer loop: 1
 Inner loop: 1
 Inner loop: 2
 Inner loop: 3
 Inner loop: 4
 $
Now when the shell executes the break command, the outer loop stops.

The continue Command
The continue command is a way to prematurely stop processing commands inside of a loop but not terminate the loop
completely. This allows you to set conditions within a loop where the shell won't execute commands. Here's a simple example

of using the continue command in a for loop:

 $ cat test21
 #!/bin/bash
 # using the continue command

 for ((var1 = 1; var1 < 15; var1++))
 do
 if [$var1 -gt 5] && [$var1 -lt 10]
 then

www.it-ebooks.info

http://www.it-ebooks.info/

 continue
 fi
 echo “Iteration number: $var1”
 done
 $./test21
 Iteration number: 1
 Iteration number: 2
 Iteration number: 3
 Iteration number: 4
 Iteration number: 5
 Iteration number: 10
 Iteration number: 11
 Iteration number: 12
 Iteration number: 13
 Iteration number: 14
 $
When the conditions of the if-then statement are met (the value is greater than five and less than 10), the shell executes

the continue command, which skips the rest of the commands in the loop, but keeps the loop going. When the if-then

condition is no longer met, things return back to normal.
You can use the continue command in while and until loops, but be extremely careful with what you're doing.

Remember, when the shell executes the continue command, it skips the remaining commands. If you're incrementing your

test condition variable in one of those conditions, bad things will happen:

 $ cat badtest3
 #!/bin/bash
 # improperly using the continue command in a while loop

 var1=0

 while echo “while iteration: $var1”
 [$var1 -lt 15]
 do
 if [$var1 -gt 5] && [$var1 -lt 10]
 then
 continue
 fi
 echo “ Inside iteration number: $var1”
 var1=$[$var1 + 1]
 done
 $./badtest3 | more
 while iteration: 0
 Inside iteration number: 0
 while iteration: 1
 Inside iteration number: 1
 while iteration: 2
 Inside iteration number: 2

www.it-ebooks.info

http://www.it-ebooks.info/

 while iteration: 3
 Inside iteration number: 3
 while iteration: 4
 Inside iteration number: 4
 while iteration: 5
 Inside iteration number: 5
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 while iteration: 6
 $
You'll want to make sure you redirect the output of this script to the more command so you can stop things. Everything

seems to be going just fine until the if-then condition is met, and the shell executes the continue command. When the
shell executes the continue command, it skips the remaining commands in the while loop. Unfortunately, that's where the
$var1 counter variable that is tested in the while test command is incremented. That meant that the variable wasn't

incremented, as you can see from the continually displaying output.
As with the break command, the continue command allows you to specify what level of loop to continue with a

command line parameter:

 continue
n

where n defines the loop level to continue. Here's an example of continuing an outer for loop:

 $ cat test22
 #!/bin/bash
 # continuing an outer loop

 for ((a = 1; a <= 5; a++))
 do
 echo “Iteration $a:”
 for ((b = 1; b < 3; b++))
 do
 if [$a -gt 2] && [$a -lt 4]
 then
 continue 2
 fi
 var3=$[$a * $b]
 echo “ The result of $a * $b is $var3”
 done
 done

www.it-ebooks.info

http://www.it-ebooks.info/

 $./test22
 Iteration 1:
 The result of 1 * 1 is 1
 The result of 1 * 2 is 2
 Iteration 2:
 The result of 2 * 1 is 2
 The result of 2 * 2 is 4
 Iteration 3:
 Iteration 4:
 The result of 4 * 1 is 4
 The result of 4 * 2 is 8
 Iteration 5:
 The result of 5 * 1 is 5
 The result of 5 * 2 is 10
 $
The if-then statement:

 if [$a -gt 2] && [$a -lt 4]
 then
 continue 2
 fi

uses the continue command to stop processing the commands inside the loop but continue the outer loop. Notice in the
script output that the iteration for the value 3 doesn't process any inner loop statements, as the continue command

stopped the processing, but continues with the outer loop processing.

Processing the Output of a Loop
Finally, you can either pipe or redirect the output of a loop within your shell script. You do this by adding the processing

command to the end of the done command:

 for file in /home/rich*
 do
 if [-d “$file”]
 then
 echo “$file is a directory”
 elif
 echo “$file is a file”
 fi
 done > output.txt
Instead of displaying the results on the monitor, the shell redirects the results of the for command to the file

output.txt.
Consider the following example of redirecting the output of a for command to a file:

 $ cat test23
 #!/bin/bash
 # redirecting the for output to a file

 for ((a = 1; a < 10; a++))
 do
 echo “The number is $a”

www.it-ebooks.info

http://www.it-ebooks.info/

 done > test23.txt
 echo “The command is finished.”
 $./test23
 The command is finished.
 $ cat test23.txt
 The number is 1
 The number is 2
 The number is 3
 The number is 4
 The number is 5
 The number is 6
 The number is 7
 The number is 8
 The number is 9
 $
The shell creates the file test23.txt and redirects the output of the for command only to the file. The shell displays

the echo statement after the for command just as normal.
This same technique also works for piping the output of a loop to another command:

 $ cat test24
 #!/bin/bash
 # piping a loop to another command

 for state in “North Dakota” Connecticut Illinois Alabama Tennessee
 do
 echo “$state is the next place to go”
 done | sort
 echo “This completes our travels”
 $./test24
 Alabama is the next place to go
 Connecticut is the next place to go
 Illinois is the next place to go
 North Dakota is the next place to go
 Tennessee is the next place to go
 This completes our travels
 $
The state values aren't listed in any particular order in the for command list. The output of the for command is piped to

the sort command, which will change the order of the for command output. Running the script indeed shows that the

output was properly sorted within the script.

Summary
Looping is an integral part of programming. The bash shell provides three different looping commands that you can use in
your scripts. The for command allows you to iterate through a list of values, either supplied within the command line,

contained in a variable, or obtained by using file globbing, to extract file and directory names from a wildcard character.
The while command provides a method to loop based on the condition of a command, using either ordinary commands

or the test command, which allows you to test conditions of variables. As long as the command (or condition) produces a zero

exit status, the while loop will continue to iterate through the specified set of commands.
The until command also provides a method to iterate through commands, but it bases its iterations on a command (or

www.it-ebooks.info

http://www.it-ebooks.info/

The until command also provides a method to iterate through commands, but it bases its iterations on a command (or

condition) producing a non-zero exit status. This feature allows you to set a condition that must be met before the iteration

stops.
You can combine loops in shell scripts, producing multiple layers of loops. The bash shell provides the continue and

break commands, which allow you to alter the flow of the normal loop process based on different values within the loop.
The bash shell also allows you to use standard command redirection and piping to alter the output of a loop. You can

use redirection to redirect the output of a loop to a file or piping to redirect the output of a loop to another command. This

provides a wealth of features with which you can control your shell script execution.
The next chapter discusses how to interact with your shell script user. Often, shell scripts aren't completely self-contained.

They require some sort of external data that must be supplied at the time you run them. The next chapter discusses different

methods with which you can provide real-time data to your shell scripts for processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

Handling User Input

In This Chapter

Command line parameters
Special parameter variables
Being shifty
Working with options
Standardizing options
Getting user input

So far you've seen how to write scripts that interact with data, variables, and files on the Linux system. Sometimes, you need
to write a script that has to interact with the person running the script. The bash shell provides a few different methods for
retrieving data from people, including command line parameters (data values added after the command), command line
options (single-letter values that modify the behavior of the command), and the capability to read input directly from the
keyboard. This chapter discusses how to incorporate these different methods into your bash shell scripts to obtain data from

the person running your script.

Command Line Parameters
The most basic method of passing data to your shell script is to use command line parameters. Command line parameters

allow you to add data values to the command line when you execute the script:

$./addem 10 30
This example passes two command line parameters (10 and 30) to the script addem. The script handles the command line

parameters using special variables. The following sections describe how to use command line parameters in your bash shell

scripts.

Reading Parameters
The bash shell assigns special variables, called positional parameters, to all of the parameters entered in a command line. This
even includes the name of the program the shell executes. The positional parameter variables are standard numbers, with $0
being the name of the program, $1 being the first parameter, $2 being the second parameter, and so on, up to $9 for the

ninth parameter.
Here's a simple example of using one command line parameter in a shell script:

$ cat test1
#!/bin/bash
using one command line parameter

factorial=1
for ((number = 1; number <= $1 ; number++))
do
 factorial=$[$factorial * $number]
done
echo The factorial of $1 is $factorial
$
$./test1 5
The factorial of 5 is 120

www.it-ebooks.info

http://www.it-ebooks.info/

$
You can use the $1 variable just like any other variable in the shell script. The shell script automatically assigns the value

from the command line parameter to the variable; you don't need to do anything with it.
If you need to enter more command line parameters, each parameter must be separated by a space on the command line:

$ cat test2
#!/bin/bash
testing two command line parameters

total=$[$1 * $2]
echo The first parameter is $1.
echo The second parameter is $2.
echo The total value is $total.
$
$./test2 2 5
The first parameter is 2.
The second parameter is 5.
The total value is 10.
$
The shell assigns each parameter to the appropriate variable.
In this example, the command line parameters used were both numerical values. You can also use text strings in the

command line:

$ cat test3
#!/bin/bash
testing string parameters

echo Hello $1, glad to meet you.
$
$./test3 Rich
Hello Rich, glad to meet you.
$
The shell passes the string value entered into the command line to the script. However, you'll have a problem if you try to

do this with a text string that contains spaces:

$./test3 Rich Blum
Hello Rich, glad to meet you.
$
Remember that each of the parameters is separated by a space, so the shell interpreted the space as just separating the

two values. To include a space as a parameter value, you must use quotation marks (either single or double quotation marks):

$./test3 ‘Rich Blum’
Hello Rich Blum, glad to meet you.
$
$./test3 “Rich Blum”
Hello Rich Blum, glad to meet you.
$

Note

www.it-ebooks.info

http://www.it-ebooks.info/

The quotation marks used when you pass text strings as parameters are not part of
the data. They just delineate the beginning and the end of the data.

If your script needs more than nine command line parameters, you can continue, but the variable names change slightly.

After the ninth variable, you must use braces around the variable number, such as ${10}. Here's an example of doing that:

$ cat test4
#!/bin/bash
handling lots of parameters

total=$[${10} * ${11}]
echo The tenth parameter is ${10}
echo The eleventh parameter is ${11}
echo The total is $total
$
$./test4 1 2 3 4 5 6 7 8 9 10 11 12
The tenth parameter is 10
The eleventh parameter is 11
The total is 110
$
This technique allows you to add as many command line parameters to your scripts as you could possibly need.

Reading the Program Name
You can use the $0 parameter to determine the name of the program that the shell started from the command line. This can
come in handy if you're writing a utility that can have multiple functions. However, there's a small problem that you'll have to

deal with. Look what happens in this simple example:

$ cat test5
#!/bin/bash
testing the $0 parameter

echo The command entered is: $0
$
$./test5
The command entered is: ./test5
$
$ /home/rich/test5
The command entered is: /home/rich/test5
$
When the actual string passed in the $0 variable is the entire script path, then the entire path will be used for the program,

and not just the program name.
If you want to write a script that performs different functions based on the name of the script run from the command

line, you'll have to do a little work. You need to be able to strip off whatever path is used to run the script from the command

line.
Fortunately, there's a handy little command available for you that does just that. The basename command returns just

the program name without the path. Let's modify the example script and see how this works:

$ cat test5b
#!/bin/bash

www.it-ebooks.info

http://www.it-ebooks.info/

using basename with the $0 parameter

name=‘basename $0’
echo The command entered is: $name
$
$./test5b
The command entered is: test5b
$
$ /home/rich/test5b
The command entered is: test5b
$
Now that's much better. You can now use this technique to write scripts that perform different functions based on the

script name used. Here's a simple example to demonstrate this:

$ cat test6
#!/bin/bash
testing a multi-function script

name=‘basename $0’

if [$name = “addem”]
then
 total=$[$1 + $2]
elif [$name = “multem”]
then
 total=$[$1 * $2]
fi
echo The calculated value is $total
$
$ chmod u+x test6
$ cp test6 addem
$ ln -s test6 multem
$ ls -l
-rwxr--r-- 1 rich rich 211 Oct 15 18:00 addem
lrwxrwxrwx 1 rich rich 5 Oct 15 18:01 multem -> test6
-rwxr--r-- 1 rich rich 211 Oct 15 18:00 test6
$
$./addem 2 5
The calculated value is 7
$
$./multem 2 5
The calculated value is 10
$
The example creates two separate filenames from the test6 code, one by just copying the file and the other by using a

link to create the new file. In both cases, the script determines the base name of the script and performs the appropriate

function based on that value.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Parameters
You need to be careful when using command line parameters in your shell scripts. If the script runs without the parameters,

bad things can happen:

$./addem 2
./addem: line 8: 2 + : syntax error: operand expected (error
 token is “ ”)
The calculated value is
$
When the script assumes there is data in a parameter variable, and there isn't, most likely you'll get an error message from

your script. This is a poor way to write scripts. It's always a good idea to check your parameters to make sure the data is there

before using it:

$ cat test7
#!/bin/bash
testing parameters before use

if [-n “$1”]
then
 echo Hello $1, glad to meet you.
else
 echo “Sorry, you did not identify yourself. ”
fi
$
$./test7 Rich
Hello Rich, glad to meet you.
$
$./test7
Sorry, you did not identify yourself.
$
In this example, the -n parameter was used in the test command to check if there was data in the command line

parameter. In the next section, you'll see there is yet another way to check for command line parameters.

Special Parameter Variables
There are a few special variables available in the bash shell, which track command line parameters. This section describes what

they are, and how to use them.

Counting Parameters
As you saw in the last section, it's often a good idea to verify command line parameters before using them in your script. For

scripts that use multiple command line parameters, this can get tedious.
Instead of testing each parameter, you can just count how many parameters were entered on the command line. The bash

shell provides a special variable for this purpose.
The special $# variable contains the number of command line parameters included when the script was run. You can use

this special variable anywhere in the script, just like a normal variable:

$ cat test8
#!/bin/bash
getting the number of parameters

www.it-ebooks.info

http://www.it-ebooks.info/

echo There were $# parameters supplied.
$
$./test8
There were 0 parameters supplied.
$
$./test8 1 2 3 4 5
There were 5 parameters supplied.
$
$./test8 1 2 3 4 5 6 7 8 9 10
There were 10 parameters supplied.
$
$./test8 “Rich Blum”
There were 1 parameters supplied.
$
Now you have the ability to test the number of parameters present before trying to use them:

$ cat test9
#!/bin/bash
testing parameters

if [$# -ne 2]
then
 echo Usage: test9 a b
else
 total=$[$1 + $2]
 echo The total is $total
fi
$
$./test9
Usage: test9 a b
$
$./test9 10
Usage: test9 a b
$
$./test9 10 15
The total is 25
$
$./test9 10 15 20
Usage: test9 a b
$
The if-then statement uses the test command to perform a numeric test of the number of parameters supplied on

the command line. If the correct number of parameters isn't present, you can print an error message that shows the correct

usage of the script.
This variable also provides a cool way of grabbing the last parameter on the command line, without having to know how

many parameters were used. However, you need to use a little trick to get there.
If you think this through, you might think that because the $# variable contains the value of the number of parameters,

then using the variable ${$#} would represent the last command line parameter variable. Try that out and see what

www.it-ebooks.info

http://www.it-ebooks.info/

then using the variable ${$#} would represent the last command line parameter variable. Try that out and see what

happens:

$ cat badtest1
#!/bin/bash
testing grabbing last parameter

echo The last parameter was ${$#}
$
$./badtest1 10
The last parameter was 15354
$
Wow, what happened here? Obviously, something wrong happened. It turns out that you can't use the dollar sign within

the braces. Instead, you must replace the dollar sign with an exclamation mark. Odd, but it works:

$ cat test10
#!/bin/bash
grabbing the last parameter

params=$#
echo The last parameter is $params
echo The last parameter is ${!#}
$
$./test10 1 2 3 4 5
The last parameter is 5
The last parameter is 5
$
$./test10
The last parameter is 0
The last parameter is ./test10
$
Perfect. This test also assigned the $# variable value to the variable params and then used that variable within the special

command line parameter variable format as well. Both versions worked. It's also important to notice that, when there weren't
any parameters on the command line, the $# value was zero, which is what appears in the params variable, but the ${!#}

variable returns the script name used on the command line.

Grabbing All the Data
There are situations where you'll want to just grab all of the parameters provided on the command line and iterate through
all of them. Instead of having to mess with using the $# variable to determine how many parameters are on the command

line, then having to loop through all of them, you can use a couple of other special variables.
The $* and $@ variables provide easy access to all of your parameters. Both of these variables include all of the command

line parameters within a single variable.
The $* variable takes all of the parameters supplied on the command line as a single word. The word contains each of the

values as they appear on the command line. Basically, instead of treating the parameters as multiple objects, the $* variable

treats them all as one parameter.
The $@ variable, on the other hand, takes all of the parameters supplied on the command line as separate words in the

same string. It allows you to iterate through the value, separating out each parameter supplied. This is most often

accomplished using the for command.
It can easily get confusing to figure out how these two variables operate. Let's take a look, so you can see the difference

between the two:

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat test11
#!/bin/bash
testing $* and $@

echo “Using the \$* method: $*”
echo “Using the \$@ method: $@”
$
$./test11 rich barbara katie jessica
Using the $* method: rich barbara katie jessica
Using the $@ method: rich barbara katie jessica
$
Notice that on the surface, both variables produce the same output, showing all of the command line parameters

provided at once.
The following example demonstrates where the differences are:

$ cat test12
#!/bin/bash
testing $* and $@

count=1
for param in “$*”
do
 echo “\$* Parameter #$count = $param”
 count=$[$count + 1]
done

count=1
for param in “$@”
do
 echo “\$@ Parameter #$count = $param”
 count=$[$count + 1]
done
$
$./test12 rich barbara katie jessica
$* Parameter #1 = rich barbara katie jessica
$@ Parameter #1 = rich
$@ Parameter #2 = barbara
$@ Parameter #3 = katie
$@ Parameter #4 = jessica
$
Now we're getting somewhere. By using the for command to iterate through the special variables, you can see how they

each treat the command line parameters differently. The $* variable treated all of the parameters as a single parameter, while

the $@ variable treated each parameter separately. This is a great way to iterate through command line parameters.

Being Shifty
Another tool you have in your bash shell tool belt is the shift command. The bash shell provides the shift command to
help you manipulate command line parameters. The shift command literally shifts the command line parameters in their

www.it-ebooks.info

http://www.it-ebooks.info/

help you manipulate command line parameters. The shift command literally shifts the command line parameters in their

relative positions.
When you use the shift command, it “downgrades” each parameter variable one position by default. Thus, the value for

variable $3 is moved to $2, the value for variable $2 is moved to $1, and the value for variable $1 is discarded (note that the

value for variable $0, the program name, remains unchanged).
This is another great way to iterate through command line parameters, especially if you don't know how many parameters

are available. You can just operate on the first parameter, shift the parameters over, and then operate on the first parameter

again.
Here's a short demonstration of how this works:

$ cat test13
#!/bin/bash
demonstrating the shift command

count=1
while [-n “$1”]
do
 echo “Parameter #$count = $1”
 count=$[$count + 1]
 shift
done
$
$./test13 rich barbara katie jessica
Parameter #1 = rich
Parameter #2 = barbara
Parameter #3 = katie
Parameter #4 = jessica
$
The script performs a while loop, testing the length of the first parameter's value. When the first parameter's length is

zero, the loop ends.
After testing the first parameter, the shift command is used to shift all of the parameters one position.
Alternatively, you can perform a multiple location shift by providing a parameter to the shift command. Just provide

the number of places you want to shift:

$ cat test14
#!/bin/bash
demonstrating a multi-position shift

echo “The original parameters: $*”
shift 2
echo “Here's the new first parameter: $1”
$
$./test14 1 2 3 4 5
The original parameters: 1 2 3 4 5
Here's the new first parameter: 3
$
By using values in the shift command, you can easily skip over parameters you don't need.

Caution

www.it-ebooks.info

http://www.it-ebooks.info/

Be careful when working with the shift command. When a parameter is shifted out, its
value is lost and can't be recovered.

Working with Options
If you've been following along in the book, you've seen several bash commands that provide both parameters and options.
Options are single letters preceded by a dash that alter the behavior of a command. This section shows three different

methods for working with options in your shell scripts.

Finding Your Options
On the surface, there's nothing all that special about command line options. They appear on the command line immediately
after the script name, just the same as command line parameters. In fact, if you want, you can process command line options

the same way that you process command line parameters.

Processing Simple Options
In the test13 script earlier, you saw how to use the shift command to work your way down the command line parameters

provided with the script program. You can use this same technique to process command line options.
As you extract each individual parameter, use the case statement to determine when a parameter is formatted as an

option:

$ cat test15
#!/bin/bash
extracting command line options as parameters

while [-n “$1”]
do
 case “$1” in
 -a) echo “Found the -a option” ;;
 -b) echo vFound the -b option”;;
 -c) echo “Found the -c option” ;;
 *) echo “$1 is not an option”;;
 esac
 shift
done
$
$./test15 -a -b -c -d
Found the -a option
Found the -b option
Found the -c option
-d is not an option
$
The case statement checks each parameter for valid options. When one is found, the appropriate commands are run in

the case statement.
This method works, no matter what order the options are presented on the command line:

$./test15 -d -c -a
-d is not an option
Found the -c option
Found the -a option

www.it-ebooks.info

http://www.it-ebooks.info/

$
The case statement processes each option as it finds it in the command line parameters. If any other parameters are

included on the command line, you can include commands in the catch-all part of the case statement to process them.

Separating Options from Parameters
Often you'll run into situations where you'll want to use both options and parameters for a shell script. The standard way to
do this in Linux is to separate the two with a special character code that tells the script when the options are done and when

the normal parameters start.
For Linux, this special character is the double dash (--). The shell uses the double dash to indicate the end of the option

list. After seeing the double dash, your script can safely process the remaining command line parameters as parameters and

not options.
To check for the double dash, simply add another entry in the case statement:

$ cat test16
#!/bin/bash
extracting options and parameters

while [-n “$1”]
do
 case “$1” in
 -a) echo “Found the -a option” ;;
 -b) echo “Found the -b option”;;
 -c) echo “Found the -c option” ;;
 --) shift
 break ;;
 *) echo “$1 is not an option”;;
 esac
 shift
done

count=1
for param in $@
do
 echo “Parameter #$count: $param”
 count=$[$count + 1]
done
$
This script uses the break command to break out of the while loop when it encounters the double dash. Because we're

breaking out prematurely, we need to ensure that we stick in another shift command to get the double dash out of the

parameter variables.
For the first test, try running the script using a normal set of options and parameters:

$./test16 -c -a -b test1 test2 test3
Found the -c option
Found the -a option
Found the -b option
test1 is not an option
test2 is not an option

www.it-ebooks.info

http://www.it-ebooks.info/

test3 is not an option
$
The results show that the script assumed that all the command line parameters were options when it processed them.

Next, try the same thing, only this time using the double dash to separate the options from the parameters on the command

line:

$./test16 -c -a -b -- test1 test2 test3
Found the -c option
Found the -a option
Found the -b option
Parameter #1: test1
Parameter #2: test2
Parameter #3: test3
$
When the script reaches the double dash, it stops processing options and assumes that any remaining parameters are

command line parameters.

Processing Options with Values

Some options require an additional parameter value. In these situations, the command line looks something like this:

$./testing -a test1 -b -c -d test2
Your script must be able to detect when your command line option requires an additional parameter and be able to

process it appropriately. Here's an example of how to do that:

$ cat test17
#!/bin/bash
extracting command line options and values

while [-n “$1”]
do
 case “$1” in
 -a) echo “Found the -a option”;;
 -b) param=“$2”
 echo “Found the -b option, with parameter value $param”
 shift 2;;
 -c) echo “Found the -c option”;;
 --) shift
 break;;
 *) echo “$1 is not an option”;;
 esac
 shift
done

count=1
for param in “$@”
do
 echo “Parameter #$count: $param”
 count=$[$count + 1]

www.it-ebooks.info

http://www.it-ebooks.info/

done
$
$./test17 -a -b test1 -d
Found the -a option
Found the -b option, with parameter value test1
-d is not an option
$
In this example, the case statement defines three options that it processes. The -b option also requires an additional

parameter value. Since the parameter being processed is $1, you know that the additional parameter value is located in $2
(because all of the parameters are shifted after they are processed). Just extract the parameter value from the $2 variable. Of
course, because we used two parameter spots for this option, you also need to set the shift command to shift two

positions.
Just as with the basic feature, this process works no matter what order you place the options in (just remember to include

the appropriate option parameter with the each option):

$./test17 -b test1 -a -d
Found the -b option, with parameter value test1
Found the -a option
-d is not an option
$
Now you have the basic ability to process command line options in your shell scripts, but there are limitations. For

example, this won't work if you try to combine multiple options in one parameter:

$./test17 -ac
-ac is not an option
$
It is a common practice in Linux to combine options, and if your script is going to be user-friendly, you'll want to offer this

feature for your users as well. Fortunately, there's another method for processing options that can help you.

Using the getopt Command
The getopt command is a great tool to have handy when processing command line options and parameters. It reorganizes

the command line parameters to make parsing them in your script easier.

The Command Format
The getopt command can take a list of command line options and parameters, in any form, and automatically turn them

into the proper format. It uses the following command format:

getopt options optstring parameters
The optstring is the key to the process. It defines the valid option letters used in the command line. It also defines which

option letters require a parameter value.
First, list each command line option letter you're going to use in your script in the optstring. Then, place a colon after

each option letter that requires a parameter value. The getopt command parses the supplied parameters based on the

optstring you define.
Here's a simple example of how getopt works:

$ getopt ab:cd -a -b test1 -cd test2 test3
 -a -b test1 -c -d -- test2 test3
$
The optstring defines four valid option letters, a, b, c, and d. It also defines that the option letter b requires a

parameter value. When the getopt command runs, it examines the provided parameter list and parses it based on the
supplied optstring. Notice that it automatically separated the -cd options into two separate options and inserted the

www.it-ebooks.info

http://www.it-ebooks.info/

supplied optstring. Notice that it automatically separated the -cd options into two separate options and inserted the

double dash to separate the additional parameters on the line.
If you specify an option not in the optstring, by default the getopt command produces an error message:

$ getopt ab:cd -a -b test1 -cde test2 test3
getopt: invalid option -- e
 -a -b test1 -c -d -- test2 test3
$
If you prefer to just ignore the error messages, use the -q option with the command:

$ getopt -q ab:cd -a -b test1 -cde test2 test3
 -a -b ‘test1’ -c -d -- ‘test2’ ‘test3’
$
Note that the getopt command options must be listed before the optstring. Now you should be ready to use this

command in your scripts to process command line options.

Using getopt in Your Scripts
You can use the getopt command in your scripts to format any command line options or parameters entered for your

script. It's a little tricky, however, to use.
The trick is to replace the existing command line options and parameters with the formatted version produced by the

getopt command. The way to do that is to use the set command.
You saw the set command back in Chapter 5. The set command works with the different variables in the shell. Chapter 5

showed how to use the set command to display all of the system environment variables.
One of the options of the set command is the double dash, which instructs it to replace the command line parameter

variables with the values on the set command's command line.
The trick then is to feed the original script command line parameters to the getopt command, and then feed the output

of the getopt command to the set command to replace the original command line parameters with the nicely formatted

ones from getopt. This looks something like this:

set -- ‘getopts -q ab:cd “$@”‘
Now the values of the original command line parameter variables are replaced with the output from the getopt

command, which formats the command line parameters for us.
Using this technique, we can now write scripts that handle our command line parameters for us:

$ cat test18
#!/bin/bash
extracting command line options and values with getopt

set -- ‘getopt -q ab:c “$@”‘
while [-n “$1”]
do
 case “$1” in
 -a) echo “Found the -a option” ;;
 -b) param=“$2”
 echo “Found the -b option, with parameter value $param”
 shift ;;
 -c) echo “Found the -c option” ;;
 --) shift
 break;;
 *) echo “$1 is not an option”;;

www.it-ebooks.info

http://www.it-ebooks.info/

 esac
 shift
done

count=1
for param in “$@”
do
 echo “Parameter #$count: $param”
 count=$[$count + 1]
done
$
You'll notice this is basically the same script as in test17. The only thing that changed is the addition of the getopt

command to help format our command line parameters.
Now when you run the script with complex options, things work much better:

$./test18 -ac
Found the -a option
Found the -c option
$
And of course, all of the original features work just fine as well:

$./test18 -a -b test1 -cd test2 test3 test4
Found the -a option
Found the -b option, with parameter value ‘test1’
Found the -c option
Parameter #1: ‘test2’
Parameter #2: ‘test3’
Parameter #3: ‘test4’
$
Now things are looking pretty fancy. However, there's still one small bug that lurks in the getopt command. Check out

this example:

$./test18 -a -b test1 -cd “test2 test3” test4
Found the -a option
Found the -b option, with parameter value ‘test1’
Found the -c option
Parameter #1: ‘test2’
Parameter #2: ‘test3’
Parameter #3: ‘test4’
$
The getopt command isn't good at dealing with parameter values with spaces. It interpreted the space as the parameter

separator, instead of following the double quotation marks and combining the two values into one parameter. Fortunately,

there's yet another solution that solves this problem.

The More Advanced getopts
The getopts command (notice that it is plural) is built into the bash shell. It looks a lot like its getopt cousin, but has some

expanded features.
Unlike getopt, which produces one output for all of the processed options and parameters found in the command line,

www.it-ebooks.info

http://www.it-ebooks.info/

Unlike getopt, which produces one output for all of the processed options and parameters found in the command line,

the getopts command works on the existing shell parameter variables sequentially.
It processes the parameters it detects in the command line one at a time each time it's called. When it runs out of

parameters, it exits with an exit status greater than zero. This makes it great for using in loops to parse all of the parameters

on the command line.
The format of the getopts command is:

getopts optstring variable
The optstring value is similar to the one used in the getopt command. Valid option letters are listed in the

optstring, along with a colon if the option letter requires a parameter value. To suppress error messages, start the

optstring with a colon. The getopts command places the current parameter in the variable defined in the command line.
There are two environment variables that the getopts command uses. The OPTARG environment variable contains the

value to be used if an option requires a parameter value. The OPTIND environment variable contains the value of the current
location within the parameter list where getopts left off. This allows you to continue processing other command line

parameters after finishing the options.
Let's take a look at a simple example that uses the getopts command:

$ cat test19
#!/bin/bash
simple demonstration of the getopts command

while getopts :ab:c opt
do
 case “$opt” in
 a) echo “Found the -a option” ;;
 b) echo “Found the -b option, with value $OPTARG”;;
 c) echo “Found the -c option” ;;
 *) echo “Unknown option: $opt”;;
 esac
done
$
$./test19 -ab test1 -c
Found the -a option
Found the -b option, with value test1
Found the -c option
$
The while statement defines the getopts command, specifying what command line options to look for, along with the

variable name to store them in for each iteration.
You'll notice something different about the case statement in this example. When the getopts command parses the

command line options, it also strips off the leading dash, so you don't need them in the case definitions.
There are several nice features in the getopts command. For starters, you can now include spaces in your parameter

values:

$./test19 -b “test1 test2” -a
Found the -b option, with value test1 test2
Found the -a option
$
Another nice feature is that you can run the option letter and the parameter value together without a space:

$./test19 -abtest1
Found the -a option

www.it-ebooks.info

http://www.it-ebooks.info/

Found the -b option, with value test1
$
The getopts command correctly parsed the test1 value from the -b option. Yet another nice feature of the getopts

command is that it bundles any undefined option that it finds in the command line into a single output, the question mark:

$./test19 -d
Unknown option: ?
$
$./test19 -acde
Found the -a option
Found the -c option
Unknown option: ?
Unknown option: ?
$
Any option letter not defined in the optstring value is sent to your code as a question mark.
The getopts command knows when to stop processing options, and leave the parameters for you to process. As

getopts processes each option, it increments the OPTIND environment variable by one. When you've reached the end of the

getopts processing, you can just use the OPTIND value with the shift command to move to the parameters:

$ cat test20
#!/bin/bash
processing options and parameters with getopts

while getopts :ab:cd opt
do
 case “$opt” in
 a) echo “Found the -a option” ;;
 b) echo “Found the -b option, with value $OPTARG”;;
 c) echo “Found the -c option”;;
 d) echo “Found the -d option”;;
 *) echo “Unknown option: $opt”;;
 esac
done
shift $[$OPTIND - 1]

count=1
for param in “$@”
do
 echo “Parameter $count: $param”
 count=$[$count + 1]
done
$
$./test20 -a -b test1 -d test2 test3 test4
Found the -a option
Found the -b option, with value test1
Found the -d option
Parameter 1: test2

www.it-ebooks.info

http://www.it-ebooks.info/

Parameter 2: test3
Parameter 3: test4
$
Now you have a full-featured command line option and parameter processing utility you can use in all of your shell

scripts.

Standardizing Options
When you create your shell script, obviously you're in control of what happens. It's completely up to you as to which letter

options you select to use and how you select to use them.
However, there are a few letter options that have achieved somewhat of a standard meaning in the Linux world. If you

leverage these options in your shell script, it will make your scripts more user-friendly.
Table 13.1 shows some of the common meanings for command line options used in Linux.

Table 13.1 Common Linux Command Line Options

Option Description

-a Show all objects.

-c Produce a count.

-d Specify a directory.

-e Expand an object.

-f Specify a file to read data from.

-h Display a help message for the command.

-i Ignore text case.

-l Produce a long format version of the output.

-n Use a non-interactive (batch) mode.

-o Specify an output file to redirect all output to.

-q Run in quiet mode.

-r Process directories and files recursively.

-s Run in silent mode.

-v Produce verbose output.

-x Exclude and object.

-y Answer yes to all questions.

You'll probably recognize most of these option meanings just from working with the various bash commands
throughout the book. Using the same meaning for your options helps users interact with your script without having to worry

about manuals.

Getting User Input
While providing command line options and parameters is a great way to get data from your script users, sometimes your
script needs to be more interactive. There are times when you need to ask a question while the script is running and wait for a

response from the person running your script. The bash shell provides the read command just for this purpose.

www.it-ebooks.info

#c13_tbl_0001
#c13_tbl_anc_0001
http://www.it-ebooks.info/

Basic Reading
The read command accepts input from the standard input (the keyboard) or from another file descriptor (see Chapter 14).
After receiving the input, the read command places the data into a standard variable. Here's the read command at its

simplest:

$ cat test21
#!/bin/bash
testing the read command

echo -n “Enter your name: ”
read name
echo “Hello $name, welcome to my program. ”
$
$./test21
Enter your name: Rich Blum
Hello Rich Blum, welcome to my program.
$
That's pretty simple. Notice that the echo command that produced the prompt uses the -n option. This suppresses the

newline character at the end of the string, allowing the script user to enter data immediately after the string, instead of on

the next line. This gives your scripts a more form-like appearance.
In fact, the read command includes the -p option, which allows you to specify a prompt directly in the read command

line:

$ cat test22
#!/bin/bash
testing the read -p option
 read -p “Please enter your age: ” age
days=$[$age * 365]
echo “That makes you over $days days old! ”
$
$./test22
Please enter your age:10
That makes you over 3650 days old!
$
You'll notice in the first example that when a name was entered, the read command assigned both the first name and last

name to the same variable. The read command will assign all data entered at the prompt to a single variable, or you can
specify multiple variables. Each data value entered is assigned to the next variable in the list. If the list of variables runs out

before the data does, the remaining data is assigned to the last variable:

$ cat test23
#!/bin/bash
entering multiple variables

read -p “Enter your name: ” first last
echo “Checking data for $last, $first…”
$
$./test23
Enter your name: Rich Blum
Checking data for Blum, Rich...

www.it-ebooks.info

http://www.it-ebooks.info/

$
You can also specify no variables on the read command line. If you do that, the read command places any data it

receives in the special environment variable REPLY:

$ cat test24
#!/bin/bash
testing the REPLY environment variable

read -p “Enter a number: ”
factorial=1
for ((count=1; count <= $REPLY; count++))
do
 factorial=$[$factorial * $count]
done
echo “The factorial of $REPLY is $factorial”
$
$./test24
Enter a number: 5
The factorial of 5 is 120
$
The REPLY environment variable will contain all of the data entered in the input, and it can be used in the shell script as

any other variable.

Timing Out
There's a danger when using the read command. It's quite possible that your script will get stuck waiting for the script user
to enter data. If the script must go on regardless of whether there was any data entered, you can use the -t option to specify
a timer. The -t option specifies the number of seconds for the read command to wait for input. When the timer expires, the

read command returns a non-zero exit status:

$ cat test25
#!/bin/bash
timing the data entry

if read -t 5 -p “Please enter your name: ” name
then
 echo “Hello $name, welcome to my script”
else
 echo
 echo “Sorry, too slow! ”
fi
$
$./test25
Please enter your name: Rich
Hello Rich, welcome to my script
$
$./test25
Please enter your name:

www.it-ebooks.info

http://www.it-ebooks.info/

Sorry, too slow!
$
Since the read command exits with a non-zero exit status if the timer expires, it's easy to use the standard structured

statements, such as an if-then statement or a while loop to track what happened. In this example, when the timer expires,

the if statement fails, and the shell executes the commands in the else section.
Instead of timing the input, you can also set the read command to count the input characters. When a preset number of

characters has been entered, it automatically exits, assigning the entered data to the variable:

$ cat test26
#!/bin/bash
getting just one character of input

read -n1 -p “Do you want to continue [Y/N]? ” answer
case $answer in
Y | y) echo
 echo “fine, continue on…”;;
N | n) echo
 echo OK, goodbye
 exit;;
esac
echo “This is the end of the script”
$
$./test26
Do you want to continue [Y/N]? Y
fine, continue on…
This is the end of the script
$
$./test26
Do you want to continue [Y/N]? n
OK, goodbye
$
This example uses the -n option with the value of 1, instructing the read command to accept only a single character

before exiting. As soon as you press the single character to answer, the read command accepts the input and passes it to the

variable. There's no need to press the Enter key.

Silent Reading
There are times when you need input from the script user, but you don't want that input to display on the monitor. The classic

example is when entering passwords, but there are plenty of other types of data that you will need to hide.
The -s option prevents the data entered in the read command from being displayed on the monitor (actually, the data is

displayed, but the read command sets the text color to the same as the background color). Here's an example of using the -
s option in a script:

$ cat test27
#!/bin/bash
hiding input data from the monitor

read -s -p “Enter your password: ” pass
echo

www.it-ebooks.info

http://www.it-ebooks.info/

echo “Is your password really $pass? ”
$
$./test27
Enter your password:
Is your password really T3st1ng?
$
The data typed at the input prompt doesn't appear on the monitor but is assigned to the variable for use in the script.

Reading from a File
Finally, you can also use the read command to read data stored in a file on the Linux system. Each call to the read command
reads a single line of text from the file. When there are no more lines left in the file, the read command will exit with a non-

zero exit status.
The tricky part of this is getting the data from the file to the read command. The most common method for doing this is

to pipe the result of the cat command of the file directly to a while command that contains the read command. Here's an

example of how to do this:

$ cat test28
#!/bin/bash
reading data from a file

count=1
cat test | while read line
do
 echo “Line $count: $line”
 count=$[$count + 1]
done
echo “Finished processing the file”
$
$ cat test
The quick brown dog jumps over the lazy fox.
This is a test, this is only a test.
O Romeo, Romeo! Wherefore art thou Romeo?
$
$./test28
Line 1: The quick brown dog jumps over the lazy fox.
Line 2: This is a test, this is only a test.
Line 3: O Romeo, Romeo! Wherefore art thou Romeo?
Finished processing the file
$
The while command loop continues processing lines of the file with the read command, until the read command exits

with a non-zero exit status.

Summary
This chapter showed three different methods for retrieving data from the script user. Command line parameters allow users
to enter data directly on the command line when they run the script. The script uses positional parameters to retrieve the

command line parameters and assign them to variables.
The shift command allows you to manipulate the command line parameters by rotating them within the positional

parameters. This command allows you to easily iterate through the parameters without knowing how many parameters are

www.it-ebooks.info

http://www.it-ebooks.info/

parameters. This command allows you to easily iterate through the parameters without knowing how many parameters are

available.
There are three special variables that you can use when working with command line parameters. The shell sets the $#

variable to the number of parameters entered on the command line. The $* variable contains all of the parameters as a
single string, and the $@ variable contains all of the parameters as separate words. These variables come in handy when trying

to process long parameter lists.
Besides parameters, your script users can also use command line options to pass information to your script. Command

line options are single letters preceded by a dash. Different options can be assigned to alter the behavior of your script. The

bash shell provides three ways to handle command line options.
The first way is to handle them just like command line parameters. You can iterate through the options using the

positional parameter variables, processing each option as it appears on the command line.
Another way to handle command line options is with the getopt command. This command converts command line

options and parameters into a standard format that you can process in your script. The getopt command allows you to
specify which letters it recognizes as options and which options require an additional parameter value. The getopt command

processes the standard command line parameters and outputs the options and parameters in the proper order.
The final method for handling command line options is via the getopts command (note that it's plural). The getopts

command provides more advanced processing of the command line parameters. It allows for multi-value parameters, along

with identifying options not defined by the script.
An interactive method to obtain data from your script users is the read command. The read command allows your

scripts to query users for information and wait. The read command places any data entered by the script user into one or

more variables, which you can use within the script.
Several options are available for the read command that allow you to customize the data input into your script, such as

using hidden data entry, applying timed data entry, and requesting a specific number of input characters.
In the next chapter, we look further into how bash shell scripts output data. So far, you've seen how to display data on the

monitor and redirect it to a file. Next, we explore a few other options that you have available not only to direct data to
specific locations but also to direct specific types of data to specific locations. This will help make your shell scripts look

professional!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Presenting Data

In This Chapter

Revisiting redirection
Standard input and output
Reporting errors
Throwing away data
Creating log files

So far the scripts shown in this book display information either by echoing data to the monitor or by redirecting data to a file.
Chapter 10 demonstrated how to redirect the output of a command to a file. This chapter expands on that topic by showing

you how you can redirect the output of your script to different locations on your Linux system.

Understanding Input and Output

So far, you've seen two methods for displaying the output from your scripts:
Displaying output on the monitor screen
Redirecting output to a file

Both methods produced an all-or-nothing approach to data output. There are times, however, when it would be nice to
display some data on the monitor and other data in a file. For these instances, it comes in handy to know how Linux handles

input and output so that you can get your script output to the right place.
The following sections describe how to use the standard Linux input and output system to your advantage, to help direct

script output to specific locations.

Standard File Descriptors
The Linux system handles every object as a file. This includes the input and output process. Linux identifies each file object
using a file descriptor. The file descriptor is a non-negative integer, which uniquely identifies open files in a session. Each
process is allowed to have up to nine open file descriptors at a time. The bash shell reserves the first three file descriptors (0, 1,

and 2) for special purposes. These are shown in Table 14.1.

Table 14.1 Linux Standard File Descriptors

File Descriptor Abbreviation Description

0 STDIN Standard input

1 STDOUT Standard output

2 STDERR Standard error

These three special file descriptors handle the input and output from your script. The shell uses them to direct the default
input and output in the shell to the appropriate location (which by default is usually your monitor). The following sections

describe each of these standard file descriptors in greater detail.

STDIN
The STDIN file descriptor references the standard input to the shell. For a terminal interface, the standard input is the
keyboard. The shell receives input from the keyboard on the STDIN file descriptor and processes each character as you type

it.

www.it-ebooks.info

#c14_tbl_0001
#c14_tbl_anc_0001
http://www.it-ebooks.info/

When you use the input redirect symbol (<), Linux replaces the standard input file descriptor with the file referenced by

the redirection. It reads the file and retrieves data just as if it were typed on the keyboard.
Many bash commands accept input from STDIN, especially if no files are specified on the command line. Here's an

example of using the cat command with data entered from STDIN:

 $ cat
 this is a test
 this is a test
 this is a second test.
 this is a second test.
When you enter the cat command on the command line by itself, it accepts input from STDIN. As you enter each line, the

cat command echoes the line to the display.
However, you can also use the STDIN redirect symbol to force the cat command to accept input from another file other

than STDIN:

 $ cat < testfile
 This is the first line.
 This is the second line.
 This is the third line.
 $
Now the cat command uses the lines that are contained in the testfile file as the input. You can use this technique to

input data to any shell command that accepts data from STDIN.

STDOUT
The STDOUT file descriptor references the standard output for the shell. On a terminal interface, the standard output is the
terminal monitor. All output from the shell (including programs and scripts you run in the shell) is directed to the standard

output, which is the monitor.
Most bash commands direct their output to the STDOUT file descriptor by default. As shown in Chapter 10, you can

change that using output redirection:

 $ ls -l > test2
 $ cat test2
 total 20
 -rw-rw-r-- 1 rich rich 53 2010-10-16 11:30 test
 -rw-rw-r-- 1 rich rich 0 2010-10-16 11:32 test2
 -rw-rw-r-- 1 rich rich 73 2010-10-16 11:23 testfile
 $
With the output redirection symbol, all of the output that normally would have gone to the monitor is instead redirected

to the designated redirection file by the shell.
You can also append data to a file. You do this using the >> symbol:

 $ who >> test2
 $ cat test2
 total 20
 -rw-rw-r-- 1 rich rich 53 2010-10-16 11:30 test
 -rw-rw-r-- 1 rich rich 0 2010-10-16 11:32 test2
 -rw-rw-r-- 1 rich rich 73 2010-10-16 11:23 testfile
 rich pts/0 2010-10-17 15:34 (192.168.1.2)
 $
The output generated by the who command is appended to the data already in the test2 file.

www.it-ebooks.info

http://www.it-ebooks.info/

However, if you use the standard output redirection for your scripts, you can run into a problem. Here's an example of

what can happen in your script:

 $ ls -al badfile > test3
 ls: cannot access badfile: No such file or directory
 $ cat test3
 $
When a command produces an error message, the shell doesn't redirect the error message to the output redirection file.

The shell created the output redirection file, but the error message appeared on the monitor screen. Notice that there isn't an

error when trying to display the contents of the test3 file. The test3 file was created just fine, it's just empty.
The shell handles error messages separately from the normal output. If you're creating a shell script that runs in

background mode, often you must rely on the output messages being sent to a log file. Using this technique, if any error

messages occur, they won't appear in the log file. You'll need to do something different.

STDERR
The shell handles error messages using the special STDERR file descriptor. The STDERR file descriptor references the standard
error output for the shell. This is the location where the shell sends error messages generated by the shell or programs and

scripts running in the shell.
By default, the STDERR file descriptor points to the same place as the STDOUT file descriptor (even though they are

assigned different file descriptor values). This means that, by default, all error messages go to the monitor display.
However, as you saw in the example, when you redirect STDOUT this doesn't automatically redirect STDERR. When

working with scripts, you'll often want to change that behavior, especially if you're interested in logging error messages to a

log file.

Redirecting Errors
You've already seen how to redirect the STDOUT data by using the redirection symbol. Redirecting the STDERR data isn't
much different; you just need to define the STDERR file descriptor when you use the redirection symbol. There are a couple

of ways to do this.

Redirecting Just Errors
As you saw in Table 14.1, the STDERR file descriptor is set to the value 2. You can select to redirect only error messages by
placing this file descriptor value immediately before the redirection symbol. The value must appear immediately before the

redirection symbol or it won't work:

 $ ls -al badfile 2> test4
 $ cat test4
 ls: cannot access badfile: No such file or directory
 $
Now when you run the command, the error message doesn't appear on the monitor. Instead, the output file contains any

error messages that are generated by the command. Using this method, the shell redirects the error messages only, not the

normal data. Here's another example of mixing STDOUT and STDERR messages in the same output:

 $ ls -al test badtest test2 2> test5
 -rw-rw-r-- 1 rich rich 158 2010-10-16 11:32 test2
 $ cat test5
 ls: cannot access test: No such file or directory
 ls: cannot access badtest: No such file or directory
 $
The normal STDOUT output from the ls command still goes to the default STDOUT file descriptor, which is the monitor.

Because the command redirects file descriptor 2 output (STDERR) to an output file, the shell sends any error messages

generated directly to the specified redirection file.

www.it-ebooks.info

#c14_tbl_0001
http://www.it-ebooks.info/

Redirecting Errors and Data
If you want to redirect both errors and the normal output, you'll need to use two redirection symbols. You need to precede
each with the appropriate file descriptor for the data you want to redirect and then have them point to the appropriate

output file for holding the data:

 $ ls -al test test2 test3 badtest 2> test6 1> test7
 $ cat test6
 ls: cannot access test: No such file or directory
 ls: cannot access badtest: No such file or directory
 $ cat test7
 -rw-rw-r-- 1 rich rich 158 2010-10-16 11:32 test2
 -rw-rw-r-- 1 rich rich 0 2010-10-16 11:33 test3
 $
The shell redirects the normal output of the ls command that would have gone to STDOUT to the test7 file using the

1> symbol. Any error messages that would have gone to STDERR were redirected to the test6 file using the 2> symbol.
You can use this technique to separate normal script output from any error messages that occur in the script. This allows

you to easily identify errors without having to wade through thousands of lines of normal output data.
Alternatively, if you want, you can redirect both STDERR and STDOUT output to the same output file. The bash shell

provides a special redirection symbol just for this purpose, the &> symbol:

 $ ls -al test test2 test3 badtest &> test7
 $ cat test7
 ls: cannot access test: No such file or directory
 ls: cannot access badtest: No such file or directory
 -rw-rw-r-- 1 rich rich 158 2010-10-16 11:32 test2
 -rw-rw-r-- 1 rich rich 0 2010-10-16 11:33 test3
 $
When you use the &> symbol, all of the output generated by the command is sent to the same location, both data and

errors. You'll notice that one of the error messages is out of order from what you'd expect. The error message for the
badtest file (the last file to be listed) appears second in the output file. The bash shell automatically gives error messages a
higher priority than the standard output. This allows you to view the error messages together, rather than scattered

throughout the output file.

Redirecting Output in Scripts
You can use the STDOUT and STDERR file descriptors in your scripts to produce output in multiple locations simply by

redirecting the appropriate file descriptors. There are two methods for redirecting output in the script:
Temporarily redirecting each line
Permanently redirecting all commands in the script

The following sections describe how each of these methods works.

Temporary Redirections
If you want to purposely generate error messages in your script, you can redirect an individual output line to STDERR. All
you need to do is use the output redirection symbol to redirect the output to the STDERR file descriptor. When you redirect

to a file descriptor, you must precede the file descriptor number with an ampersand sign (&):

 echo “This is an error message” >&2
This line displays the text wherever the STDERR file descriptor for the script is pointing, instead of the normal STDOUT.

The following is an example of a script that uses this feature:

 $ cat test8
 #!/bin/bash

www.it-ebooks.info

http://www.it-ebooks.info/

 # testing STDERR messages

 echo “This is an error” >&2
 echo “This is normal output”
 $
If you run the script as normal, you won't notice any difference:

 $./test8
 This is an error
 This is normal output
 $
Remember that, by default, Linux directs the STDERR output to STDOUT. However, if you redirect STDERR when running

the script, any text directed to STDERR in the script will be redirected:

 $./test8 2> test9
 This is normal output
 $ cat test9
 This is an error
 $
Perfect! The text that's displayed using STDOUT appears on the monitor, while the echo statement text sent to STDERR is

redirected to the output file.
This method is great for generating error messages in your scripts. If someone uses your scripts, they can easily redirect

the error messages using the STDERR file descriptor, as shown.

Permanent Redirections
If you have lots of data that you're redirecting in your script, it can get tedious having to redirect every echo statement.

Instead, you can tell the shell to redirect a specific file descriptor for the duration of the script by using the exec command:

 $ cat test10
 #!/bin/bash
 # redirecting all output to a file
 exec 1>testout

 echo “This is a test of redirecting all output”
 echo “from a script to another file.”
 echo “without having to redirect every individual line”
 $./test10
 $ cat testout
 This is a test of redirecting all output
 from a script to another file.
 without having to redirect every individual line
 $
The exec command starts a new shell and redirects the STDOUT file descriptor to a file. All output in the script that goes

to STDOUT is instead redirected to the file.
You can also redirect the STDOUT in the middle of a script:

 $ cat test11
 #!/bin/bash

www.it-ebooks.info

http://www.it-ebooks.info/

 # redirecting output to different locations

 exec 2>testerror

 echo “This is the start of the script”
 echo “now redirecting all output to another location”

 exec 1>testout

 echo “This output should go to the testout file”
 echo “but this should go to the testerror file” >&2
 $
 $./test11
 This is the start of the script
 now redirecting all output to another location
 $ cat testout
 This output should go to the testout file
 $ cat testerror
 but this should go to the testerror file
 $
The script uses the exec command to redirect any output going to STDERR to the file testerror. Next, the script uses

the echo statement to display a few lines to STDOUT. After that, the exec command is used again to redirect STDOUT to the
testout file. Notice that even when STDOUT is redirected, you can still specify the output from an echo statement to go to

STDERR, which in this case is still redirected to the testerror file.
This feature can come in handy when you want to redirect the output of just parts of a script to an alternative location,

such as an error log. There's just one problem you'll run into when using this.
Once you redirect STDOUT or STDERR, you can't easily redirect them back to their original location. If you need to switch

back and forth with your redirection, there's a trick you'll need to learn. The “Creating Your Own Redirection” section later in

this chapter discusses what this trick is and how to use it in your shell scripts.

Redirecting Input in Scripts
You can use the same technique used to redirect STDOUT and STDERR in your scripts to redirect STDIN from the keyboard.

The exec command allows you to redirect STDIN to a file on the Linux system:

 exec 0< testfile
This command informs the shell that it should retrieve input from the file testfile instead of STDIN. This redirection

applies anytime the script requests input. Here's an example of this in action:

 $ cat test12
 #!/bin/bash
 # redirecting file input

 exec 0< testfile
 count=1

 while read line
 do
 echo “Line #$count: $line”
 count=$[$count + 1]

www.it-ebooks.info

http://www.it-ebooks.info/

 done
 $./test12
 Line #1: This is the first line.
 Line #2: This is the second line.
 Line #3: This is the third line.
 $
Chapter 13 showed you how to use the read command to read data entered from the keyboard by a user. By redirecting

STDIN to a file, when the read command attempts to read from STDIN, it retrieves data from the file instead of the

keyboard.
This is an excellent technique to read data in files for processing in your scripts. A common task for Linux system

administrators is to read data from log files for processing. This is the easiest way to accomplish that task.

Creating Your Own Redirection
When you redirect input and output in your script, you're not limited to the three default file descriptors. I mentioned that
you could have up to nine open file descriptors in the shell. The other six file descriptors are numbered from three through
eight and are available for you to use as either input or output redirection. You can assign any of these file descriptors to a

file and then use them in your scripts as well. This section shows you how to use the other file descriptors in your scripts.

Creating Output File Descriptors
You assign a file descriptor for output by using the exec command. As with the standard file descriptors, once you assign an
alternative file descriptor to a file location, that redirection stays permanent until you reassign it. Here's a simple example of

using an alternative file descriptor in a script:

 $ cat test13
 #!/bin/bash
 # using an alternative file descriptor

 exec 3>test13out

 echo “This should display on the monitor”
 echo “and this should be stored in the file” >&3
 echo “Then this should be back on the monitor”
 $./test13
 This should display on the monitor
 Then this should be back on the monitor
 $ cat test13out
 and this should be stored in the file
 $
The script uses the exec command to redirect file descriptor 3 to an alternative file location. When the script executes the

echo statements, they display on STDOUT as you would expect. However, the echo statements that you redirect to file
descriptor 3 go to the alternative file. This allows you to keep normal output for the monitor, and redirect special

information to files, such as log files.
You can also use the exec command to append data to an existing file instead of creating a new file:

exec 3>>test13out
Now the output will be appended to the test13out file instead of creating a new file.

Redirecting File Descriptors
Now comes the trick to help you bring back a redirected file descriptor. You can assign an alternative file descriptor to a
standard file descriptor, and vice versa. This means that you can redirect the original location of STDOUT to an alternative file

www.it-ebooks.info

http://www.it-ebooks.info/

standard file descriptor, and vice versa. This means that you can redirect the original location of STDOUT to an alternative file

descriptor and then redirect that file descriptor back to STDOUT. This might sound somewhat complicated, but in practice it's

fairly straightforward. This simple example will clear things up for you:

 $ cat test14
 #!/bin/bash
 # storing STDOUT, then coming back to it

 exec 3>&1
 exec 1>test14out

 echo “This should store in the output file”
 echo “along with this line.”

 exec 1>&3

 echo “Now things should be back to normal”
 $
 $./test14
 Now things should be back to normal
 $ cat test14out
 This should store in the output file
 along with this line.
 $
This example is a little crazy so let's walk through it piece by piece. First, the script redirects file descriptor 3 to the current

location of file descriptor 1, which is STDOUT. This means that any output sent to file descriptor 3 will go to the monitor.
The second exec command redirects STDOUT to a file. The shell will now redirect any output sent to STDOUT directly to

the output file. However, file descriptor 3 still points to the original location of STDOUT, which is the monitor. If you send

output data to file descriptor 3 at this point, it'll still go to the monitor, even though STDOUT is redirected.
After sending some output to STDOUT, which points to a file, the script then redirects STDOUT to the current location of

file descriptor 3, which is still set to the monitor. This means that now STDOUT is pointing to its original location, the monitor.
While this method can get confusing, it's a common way to temporarily redirect output in script files and then set the

output back to the normal settings.

Creating Input File Descriptors
You can redirect input file descriptors exactly the same way as output file descriptors. Save the STDIN file descriptor location
to another file descriptor before redirecting it to a file, and then when you're done reading the file you can restore STDIN to

its original location:

 $ cat test15
 #!/bin/bash
 # redirecting input file descriptors

 exec 6<&0

 exec 0< testfile

 count=1
 while read line

www.it-ebooks.info

http://www.it-ebooks.info/

 do
 echo “Line #$count: $line”
 count=$[$count + 1]
 done
 exec 0<&6
 read -p “Are you done now? ” answer
 case $answer in
 Y|y) echo “Goodbye”;;
 N|n) echo “Sorry, this is the end.”;;
 esac
 $./test15
 Line #1: This is the first line.
 Line #2: This is the second line.
 Line #3: This is the third line.
 Are you done now? y
 Goodbye
 $
In this example, file descriptor 6 is used to hold the location for STDIN. The script then redirects STDIN to a file. All of the

input for the read command comes from the redirected STDIN, which is now the input file.
When all of the lines have been read, the script returns STDIN to its original location by redirecting it to file descriptor 6.

The script tests to make sure that STDIN is back to normal by using another read command, which this time waits for input

from the keyboard.

Creating a Read/Write File Descriptor
As odd as it may seem, you can also open a single file descriptor for both input and output. You can then use the same file

descriptor to both read data from a file and write data to the same file.
You need to be especially careful with this method, however. As you read and write data to and from a file, the shell

maintains an internal pointer, indicating where it is in the file. Any reading or writing occurs where the file pointer last left off.

This can produce some interesting results if you're not careful. Take a look at this example:

 $ cat test16
 #!/bin/bash
 # testing input/output file descriptor

 exec 3<> testfile
 read line <&3
 echo “Read: $line”
 echo “This is a test line” >&3
 $ cat testfile
 This is the first line.
 This is the second line.
 This is the third line.
 $./test16
 Read: This is the first line.
 $ cat testfile
 This is the first line.

www.it-ebooks.info

http://www.it-ebooks.info/

 This is a test line
 ine.
 This is the third line.
 $
This example uses the exec command to assign file descriptor 3 for both input and output sent to and from the file

testfile. Next, it uses the read command to read the first line in the file, using the assigned file descriptor, and then it
displays the read line of data in STDOUT. After that, it uses the echo statement to write a line of data to the file opened with

the same file descriptor.
When you run the script, at first things look just fine. The output shows that the script read the first line in the testfile

file. However, if you display the contents of the testfile file after running the script, you'll see that the data written to the

file overwrote the existing data.
When the script writes data to the file, it starts where the file pointer is located. The read command reads the first line of

data, so it left the file pointer pointing to the first character in the second line of data. When the echo statement outputs

data to the file, it places the data at the current location of the file pointer, overwriting whatever data was there.

Closing File Descriptors
If you create new input or output file descriptors, the shell automatically closes them when the script exits. There are

situations, however, when you need to manually close a file descriptor before the end of the script.
To close a file descriptor, redirect it to the special symbol &-. This is how this looks in the script:

 exec 3>&-
This statement closes file descriptor 3, preventing it from being used any more in the script. Here's an example of what

happens when you try to use a closed file descriptor:

 $ cat badtest
 #!/bin/bash
 # testing closing file descriptors

 exec 3> test17file

 echo “This is a test line of data” >&3

 exec 3>&-

 echo “This won't work” >&3
 $./badtest
 ./badtest: 3: Bad file descriptor
 $
Once you close the file descriptor, you can't write any data to it in your script or the shell produces an error message.
There's yet another thing to be careful of when closing file descriptors. If you open the same output file later on in your

script, the shell replaces the existing file with a new file. This means that if you output any data, it will overwrite the existing

file. Consider the following example of this problem:

 $ cat test17
 #!/bin/bash
 # testing closing file descriptors

 exec 3> test17file
 echo “This is a test line of data” >&3
 exec 3>&-

www.it-ebooks.info

http://www.it-ebooks.info/

 cat test17file

 exec 3> test17file
 echo “This'll be bad” >&3
 $./test17
 This is a test line of data
 $ cat test17file
 This'll be bad
 $
After sending a data string to the test17file file and closing the file descriptor, the script uses the cat command to

display the contents of the file. So far, so good. Next, the script reopens the output file and sends another data string to it.
When you display the contents of the output file, all you'll see is the second data string. The shell overwrote the original

output file.

Listing Open File Descriptors
With only nine file descriptors available to you, you'd think that it wouldn't be too hard keeping things straight. Sometimes,
however, it's easy to get lost when trying to keep track of which file descriptor is redirected where. To help you keep your

sanity, the bash shell provides the lsof command.
The lsof command lists all of the open file descriptors on the entire Linux system. This is somewhat of a controversial

feature, as it can provide information about the Linux system to non-system-administrators. Because of this, many Linux

systems hide this command so that users don't accidentally stumble across it.
On my Fedora Linux system, the lsof command is located in the /usr/sbin directory. To run it with a normal user

account, I have to reference it by its full pathname:

 $ /usr/sbin/lsof
This produces an amazing amount of output. It displays information about every file currently open on the Linux

system. This includes all of the processes running on background, as well as any user accounts logged in to the system.
There are plenty of command line parameters and options available to help filter out the lsof output. The most

commonly used are -p, which allows you to specify a process ID (PID), and -d, which allows you to specify the file descriptor

numbers to display.
To easily determine the current PID of the process, you can use the special environment variable $$, which the shell sets to

the current PID. The -a option is used to perform a Boolean AND of the results of the other two options, to produce the

following:

 $ /usr/sbin/lsof -a -p $$ -d 0,1,2
 COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
 bash 3344 rich 0u CHR 136,0 2 /dev/pts/0
 bash 3344 rich 1u CHR 136,0 2 /dev/pts/0
 bash 3344 rich 2u CHR 136,0 2 /dev/pts/0
 $
This shows the default file descriptors (0, 1, and 2) for the current process (the bash shell). The default output of lsof

contains several columns of information, described in Table 14.2.

Table 14.2 Default lsof Output

Column Description

COMMAND The first nine characters of the name of the command in the process

PID The process ID of the process

USER The login name of the user who owns the process

www.it-ebooks.info

#c14_tbl_0002
#c14_tbl_anc_0002
http://www.it-ebooks.info/

FD The file descriptor number and access type (r—(read), w—(write), u—(read/write))

TYPE The type of file (CHR—(character), BLK— (block), DIR— (directory), REG—(regular
file))

DEVICE The device numbers (major and minor) of the device

SIZE If available, the size of the file

NODE The node number of the local file

NAME The name of the file

The file type associated with STDIN, STDOUT, and STDERR is character mode. Because the STDIN, STDOUT, and STDERR
file descriptors all point to the terminal, the name of the output file is the device name of the terminal. All three standard
files are available for both reading and writing (although it does seem odd to be able to write to STDIN and read from

STDOUT).
Now, let's take a look at the results of the lsof command from inside a script that's opened a couple of alternative file

descriptors:

 $ cat test18
 #!/bin/bash
 # testing lsof with file descriptors

 exec 3> test18file1
 exec 6> test18file2
 exec 7< testfile

 /usr/sbin/lsof -a -p $$ -d0,1,2,3,6,7
 $./test18
 COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
 test18 3594 rich 0u CHR 136,0 2 /dev/pts/0
 test18 3594 rich 1u CHR 136,0 2 /dev/pts/0
 est18 3594 rich 2u CHR 136,0 2 /dev/pts/0
 18 3594 rich 3w REG 253,0 0 360712 /home/rich/test18file1
 18 3594 rich 6w REG 253,0 0 360715 /home/rich/test18file2
 18 3594 rich 7r REG 253,0 73 360717 /home/rich/testfile
 $
The script creates three alternative file descriptors, two for output (3 and 6) and one for input (7). When the script runs

the lsof command, you can see the new file descriptors in the output. We truncated the first part of the output so that you
could see the results of the file name. The file name shows the complete pathname for the files used in the file descriptors. It

shows each of the files as type REG, which indicates that they are regular files on the filesystem.

Suppressing Command Output
There are times when you don't want to display any output from your script. This often occurs if you're running a script as a
background process (see Chapter 15). If any error messages occur from the script while it's running in the background, the
shell e-mails them to the owner of the process. This can get tedious, especially if you run scripts that generate minor nuisance

errors.
To solve that problem, you can redirect STDERR to a special file called the null file. The null file is pretty much what it says

it is, a file that contains nothing. Any data that the shell outputs to the null file is not saved, thus they are lost.
The standard location for the null file on Linux systems is /dev/null. Any data you redirect to that location is thrown

away and doesn't appear:

www.it-ebooks.info

http://www.it-ebooks.info/

 $ ls -al > /dev/null
 $ cat /dev/null
 $
This is a common way to suppress any error messages without actually saving them:

 $ ls -al badfile test16 2> /dev/null
 -rwxr--r-- 1 rich rich 135 Oct 29 19:57 test16*
 $
You can also use the /dev/null file for input redirection as an input file. Because the /dev/null file contains nothing,

it is often used by programmers to quickly remove data from an existing file without having to remove the file and re-create

it:

 $ cat testfile
 This is the first line.
 This is the second line.
 This is the third line.
 $ cat /dev/null > testfile
 $ cat testfile
 $
The file testfile still exists on the system, but now it is empty. This is a common method used to clear out log files that

must remain in place for applications to operate.

Using Temporary Files
The Linux system contains a special directory location reserved for temporary files. Linux uses the /tmp directory for files
that don't need to be kept indefinitely. Most Linux distributions configure the system to automatically remove any files in

the /tmp directory at bootup.
Any user account on the system has privileges to read and write files in the /tmp directory. This feature provides an easy

way for you to create temporary files that you don't necessarily have to worry about cleaning up.
There's even a specific command to use for creating a temporary file. The mktemp command allows you to easily create a

unique temporary file in the /tmp folder. The shell creates the file but doesn't use your default umask value (see Chapter 6).
Instead, it only assigns read and write permissions to the file's owner and makes you the owner of the file. Once you create
the file, you have full access to read and write to and from it from your script, but no one else will be able to access it (other

than the root user of course).

Creating a Local Temporary File
By default, mktemp creates a file in the local directory. To create a temporary file in a local directory with the mktemp
command, all you need to do is specify a file name template. The template consists of any text filename, plus six X's appended

to the end of the file name:

 $ mktemp testing.XXXXXX
 $ ls -al testing*
 -rw------- 1 rich rich 0 Oct 17 21:30 testing.UfIi13
 $
The mktemp command replaces the six X's with a six-character code to ensure the file name is unique in the directory. You

can create multiple temporary files and be assured that each one is unique:

 $ mktemp testing.XXXXXX
 testing.1DRLuV
 $ mktemp testing.XXXXXX
 testing.lVBtkW
 $ mktemp testing.XXXXXX
 testing.PgqNKG

www.it-ebooks.info

http://www.it-ebooks.info/

 $ ls -l testing*
 -rw------- 1 rich rich 0 Oct 17 21:57 testing.1DRLuV
 -rw------- 1 rich rich 0 Oct 17 21:57 testing.PgqNKG
 -rw------- 1 rich rich 0 Oct 17 21:30 testing.UfIi13
 -rw------- 1 rich rich 0 Oct 17 21:57 testing.lVBtkW
 $
As you can see, the output of the mktemp command is the name of the file that it creates. When you use the mktemp

command in a script, you'll want to save that filename in a variable, so you can refer to it later on in the script:

 $ cat test19
 #!/bin/bash
 # creating and using a temp file

 tempfile=‘mktemp test19.XXXXXX’

 exec 3>$tempfile

 echo “This script writes to temp file $tempfile”

 echo “This is the first line” >&3
 echo “This is the second line.” >&3
 echo “This is the last line.” >&3
 exec 3>&-

 echo “Done creating temp file. The contents are:”
 cat $tempfile
 rm -f $tempfile 2> /dev/null
 $./test19
 This script writes to temp file test19.vCHoya
 Done creating temp file. The contents are:
 This is the first line
 This is the second line.
 This is the last line.
 $ ls -al test19*
 -rwxr--r-- 1 rich rich 356 Oct 29 22:03 test19*
 $
The script uses the mktemp command to create a temporary file and assigns the file name to the $tempfile variable. It

then uses the temporary file as the output redirection file for file descriptor 3. After displaying the temporary file name on
STDOUT, it writes a few lines to the temporary file, and then it closes the file descriptor. Finally, it displays the contents of the

temporary file and then uses the rm command to remove it.

Creating a Temporary File in /tmp
The -t option forces mktemp to create the file in the temporary directory of the system. When you use this feature, the

mktemp command returns the full pathname used to create the temporary file, not just the file name:

 $ mktemp -t test.XXXXXX
 /tmp/test.xG3374

www.it-ebooks.info

http://www.it-ebooks.info/

 $ ls -al /tmp/test*
 -rw------- 1 rich rich 0 2010-10-29 18:41 /tmp/test.xG3374
 $
Because the mktemp command returns the full pathname, you can then reference the temporary file from any directory

on the Linux system, no matter where it places the temporary directory:

 $ cat test20
 #!/bin/bash
 # creating a temp file in /tmp

 tempfile=‘mktemp -t tmp.XXXXXX’

 echo “This is a test file.” > $tempfile
 echo “This is the second line of the test.” >> $tempfile

 echo “The temp file is located at: $tempfile”
 cat $tempfile
 rm -f $tempfile
 $./test20
 The temp file is located at: /tmp/tmp.Ma3390
 This is a test file.
 This is the second line of the test.
 $
When mktemp creates the temporary file, it returns the full pathname to the environment variable. You can then use that

value in any command to reference the temporary file.

Creating a Temporary Directory
The -d option tells the mktemp command to create a temporary directory instead of a file. You can then use that directory

for whatever purposes you need, such as creating additional temporary files:

 $ cat test21
 #!/bin/bash
 # using a temporary directory

 tempdir=‘mktemp -d dir.XXXXXX’
 cd $tempdir
 tempfile1=‘mktemp temp.XXXXXX’
 tempfile2=‘mktemp temp.XXXXXX’
 exec 7> $tempfile1
 exec 8> $tempfile2

 echo “Sending data to directory $tempdir”
 echo “This is a test line of data for $tempfile1” >&7
 echo “This is a test line of data for $tempfile2” >&8
 $./test21
 Sending data to directory dir.ouT8S8

www.it-ebooks.info

http://www.it-ebooks.info/

 $ ls -al
 total 72
 drwxr-xr-x 3 rich rich 4096 Oct 17 22:20 ./
 drwxr-xr-x 9 rich rich 4096 Oct 17 09:44 ../
 drwx------ 2 rich rich 4096 Oct 17 22:20 dir.ouT8S8/
 -rwxr--r-- 1 rich rich 338 Oct 17 22:20 test21*
 $ cd dir.ouT8S8
 [dir.ouT8S8]$ ls -al
 total 16
 drwx------ 2 rich rich 4096 Oct 17 22:20 ./
 drwxr-xr-x 3 rich rich 4096 Oct 17 22:20 ../
 -rw------- 1 rich rich 44 Oct 17 22:20 temp.N5F3O6
 -rw------- 1 rich rich 44 Oct 17 22:20 temp.SQslb7
 [dir.ouT8S8]$ cat temp.N5F3O6
 This is a test line of data for temp.N5F3O6
 [dir.ouT8S8]$ cat temp.SQslb7
 This is a test line of data for temp.SQslb7
 [dir.ouT8S8]$
The script creates a directory in the current directory and then it uses the cd command to change to that directory before

creating two temporary files. The two temporary files are then assigned to file descriptors and used to store output from the

script.

Logging Messages
Sometimes it's beneficial to send output both to the monitor and to a file for logging. Instead of having to redirect output

twice, you can use the special tee command.
The tee command is like a T-connector for pipes. It sends data from STDIN to two destinations at the same time. One

destination is STDOUT. The other destination is a file name specified on the tee command line:

 tee filename
Because tee redirects data from STDIN, you can use it with the pipe command to redirect output from any command:

 $ date | tee testfile
 Sun Oct 17 18:56:21 EDT 2010
 $ cat testfile
 Sun Oct 17 18:56:21 EDT 2010
 $
The output appears in STDOUT, and it is written to the file specified. Be careful: by default, the tee command overwrites

the output file on each use:

 $ who | tee testfile
 rich pts/0 2010-10-17 18:41 (192.168.1.2)
 $ cat testfile
 rich pts/0 2010-10-17 18:41 (192.168.1.2)
 $
If you want to append data to the file, you must use the -a option:

 $ date | tee -a testfile
 Sun Oct 17 18:58:05 EDT 2010
 $ cat testfile
 rich pts/0 2010-10-17 18:41 (192.168.1.2)

www.it-ebooks.info

http://www.it-ebooks.info/

 Sun Oct 17 18:58:05 EDT 2010
 $
Using this technique, you can both save data in files and display the data on the monitor for your users:

 $ cat test22
 #!/bin/bash
 # using the tee command for logging

 tempfile=test22file

 echo “This is the start of the test” | tee $tempfile
 echo “This is the second line of the test” | tee -a $tempfile
 echo “This is the end of the test” | tee -a $tempfile
 $./test22
 This is the start of the test
 This is the second line of the test
 This is the end of the test
 $ cat test22file
 This is the start of the test
 This is the second line of the test
 This is the end of the test
 $
Now you can save a permanent copy of your output at the same time that you're displaying it to your users.

Summary
Understanding how the bash shell handles input and output can come in handy when creating your scripts. You can
manipulate both how the script receives data and how it displays data, to customize your script for any environment. You can
redirect the input of a script from the standard input (STDIN) to any file on the system. You can also redirect the output of

the script from the standard output (STDOUT) to any file on the system.
Besides the STDOUT, you can redirect any error messages your script generates by redirecting the STDERR output. This is

accomplished by redirecting the file descriptor associated with the STDERR output, which is file descriptor 2. You can redirect
STDERR output to the same file as the STDOUT output or to a completely separate file. This enables you to separate normal

script messages from any error messages generated by the script.
The bash shell allows you to create your own file descriptors for use in your scripts. You can create file descriptors 3

through 9 and assign them to any output file you desire. Once you create a file descriptor, you can redirect the output of any

command to it, using the standard redirection symbols.
The bash shell also allows you to redirect input to a file descriptor, providing an easy way to read data contained in a file

into your script. You can use the lsof command to display the active file descriptors in your shell.
Linux systems provide a special file, called /dev/null, to allow you to redirect output that you don't want. The Linux

system discards anything redirected to the /dev/null file. You can also use this file to produce an empty file by redirecting

the contents of the /dev/null file to the file.
The mktemp command is a handy feature of the bash shell that allows you to easily create temporary files and directories.

Simply specify a template for the mktemp command, and it creates a unique file each time you call it, based on the file
template format. You can also create temporary files and directories in the /tmp directory on the Linux system, which is a

special location that isn't preserved between system boots.
The tee command is a handy way to send output both to the standard output and to a log file. This enables you to

display messages from your script on the monitor and store them in a log file at the same time.
In Chapter 15, you'll see how to control and run your scripts. Linux provides several different methods for running

scripts other than directly from the command line interface prompt. You'll see how to schedule your scripts to run at a

specific time, as well as learn how to pause them while they're running.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

Script Control

In This Chapter

Handling signals
Running scripts in background mode
Running scripts without a console
Job control
Being nice
Running like clockwork
Start at the beginning
Filesystem commands

As you start building advanced scripts, you'll probably wonder how to run and control them on your Linux system. So far in
this book, the only way we've run scripts is directly from the command line interface in real-time mode. This isn't the only way
to run scripts in Linux. Quite a few options are available for running your shell scripts. This chapter examines the different
ways to get your scripts started. Also, sometimes a script gets stuck in a loop, and you need to figure out how to get it to
stop without turning off your Linux system. This chapter examines the different ways you can control how and when your

shell script runs on your system.

Handling Signals
Linux uses signals to communicate with processes running on the system. Chapter 4 described the different Linux signals and
how the Linux system uses these signals to stop, start, and kill processes. You can also use these signals to control the
operation of your shell script by programming the script to perform certain commands when it receives specific signals from

the Linux system.

Linux Signals Revisited
There are over 30 Linux signals that can be generated by the system and applications. Table 15.1 lists the most common Linux

system signals that you'll run across in your Linux programming.

Table 15.1 Linux Signals

Signal Value Description

 1 SIGHUP Hang up the process.

 2 SIGINT Interrupt the process.

 3 SIGQUIT Stop the process.

 9 SIGKILL Unconditionally terminate the process.

15 SIGTERM Terminate the process if possible.

17 SIGSTOP Unconditionally stop, but don't terminate, the process.

18 SIGTSTP Stop or pause the process, but don't terminate.

19 SIGCONT Continue a stopped process.

www.it-ebooks.info

#c15_tbl_0001
#c15_tbl_anc_0001
http://www.it-ebooks.info/

By default, the bash shell ignores any SIGQUIT (3) and SIGTERM (15) signals that it receives (this is so that an
interactive shell cannot be accidentally terminated). However, the bash shell does process any SIGHUP (1) and SIGINT
(2) signals it receives.

If the bash shell receives a SIGHUP signal, it exits. Before it exits, however, it passes the SIGHUP signal to any processes
started by the shell (such as your shell script). With a SIGINT signal, the shell is just interrupted. The Linux kernel stops giving
the shell processing time on the CPU. When this happens, the shell passes the SIGINT signal to any processes started by the

shell to notify them of the situation.
The shell passes these signals on to your shell script program for processing. The default behavior of shell scripts,

however, is to ignore the signals, which may have an adverse effect on the operation of your script. To avoid this situation, you
can program your script to recognize signals and perform commands to prepare the script for the consequences of the

signal.

Generating Signals
The bash shell allows you to generate two basic Linux signals using key combinations on the keyboard. This feature comes in

handy if you need to stop or pause a runaway program.

Interrupting a Process
The Ctrl+C key combination generates a SIGINT signal, and sends it to any processes currently running in the shell. You can

test this by running a command that normally takes a long time to finish, and pressing the Ctrl+C key combination:

$ sleep 100
ˆC
$
The Ctrl+C key combination simply just stops the current process running in the shell. The sleep command pauses the

operation for the specified number of seconds. Normally, the command prompt wouldn't return until the timer has expired.
By pressing the Ctrl+C key combination before the timer expires, you can cause the sleep command to terminate

prematurely.

Pausing a Process
Instead of terminating a process, you can pause it in the middle of whatever it's doing. Sometimes this can be a dangerous
thing (for example, if a script has a file lock open on a crucial system file), but often it allows you to peek inside what a script is

doing without actually terminating the process.
The Ctrl+Z key combination generates a SIGTSTP signal, stopping any processes running in the shell. Stopping a process

is different than terminating the process, as stopping the process leaves the program still in memory and able to continue
running from where it left off. In the “Job Control” section later on, you'll learn how to restart a process that's been

stopped.
When you use the Ctrl+Z key combination, the shell informs you that the process has been stopped:

$ sleep 100
ˆZ
[1]+ Stopped sleep 100
$
The number in the square brackets is the job number assigned by the shell. The shell refers to each process running in the

shell as a job and assigns each job a unique job number. It assigns the first process started job number 1, the second job

number 2, and so on.
If you have a stopped job assigned to your shell session, bash will warn you if you try to exit the shell:

$ exit
logout
There are stopped jobs.
$
You can view the stopped job by using the ps command:

www.it-ebooks.info

http://www.it-ebooks.info/

$ ps au
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
rich 20560 0.0 1.2 2688 1624 pts/0 S 05:15 0:00 -bash
rich 20605 0.2 0.4 1564 552 pts/0 T 05:22 0:00 sleep 100
rich 20606 0.0 0.5 2584 740 pts/0 R 05:22 0:00 ps au
$
In the STAT column, the ps command shows the status of the stopped job as T. This indicates the command is either being

traced or is stopped.
If you really want to exit the shell with the stopped job still active, just type the exit command again. The shell will exit,

terminating the stopped job. Alternately, now that you know the PID of the stopped job, you can use the kill command to

send a SIGKILL signal to terminate it:

$ kill -9 20605
$
[1]+ Killed sleep 100
$
When you kill the job, initially you won't get any response. However, the next time you do something that produces a

shell prompt, you'll see a message indicating that the job was killed. Each time the shell produces a prompt, it also displays the
status of any jobs that have changed states in the shell. After you kill a job, the next time you force the shell to produce a

prompt it will display a message showing that the job was killed while running.

Trapping Signals
Instead of allowing your script to ignore signals, you can trap them when they appear and perform other commands. The
trap command allows you to specify which Linux signals your shell script can watch for and intercept from the shell. If the
script receives a signal listed in the trap command, it prevents it from being processed by the shell, and instead handles it

locally.
The format of the trap command is:

trap commands signals
That's simple enough. On the trap command line, you just list the commands you want the shell to execute, along with a

space-separated list of signals you want to trap. You can specify the signals either by their numeric value or by their Linux

signal name.
Here's a simple example of using the trap command to ignore SIGINT and SIGTERM signals:

$
$ cat test1
#!/bin/bash
testing signal trapping

trap “echo ‘ Sorry! I have trapped Ctrl-C’” SIGINT SIGTERM
echo This is a test program
count=1
while [$count -le 10]
do
 echo “Loop #$count”
 sleep 5
 count=$[$count + 1]
done
echo This is the end of the test program
$

www.it-ebooks.info

http://www.it-ebooks.info/

The trap command used in this example displays a simple text message each time it detects either the SIGINT or
SIGTERM signal. Trapping these signals makes this script impervious to the user attempting to stop the program by using the

bash shell keyboard Ctrl+C command:

$
$./test1
This is a test program
Loop #1
Loop #2
Loop #3
ˆC Sorry! I have trapped Ctrl-C
Loop #4
Loop #5
Loop #6
Loop #7
ˆC Sorry! I have trapped Ctrl-C
Loop #8
Loop #9
Loop #10
This is the end of the test program
$
Each time the Ctrl+C key combination was used, the script executed the echo statement specified in the trap command

instead of ignoring the signal and allowing the shell to stop the script.

Trapping a Script Exit
Besides trapping signals in your shell script, you can trap them when the shell script exits. This is a convenient way to perform

commands just as the shell finishes its job.
To trap the shell script exiting, just add the EXIT signal to the trap command:

$ cat test2
#!/bin/bash
trapping the script exit

trap “echo byebye” EXIT

count=1
while [$count -le 5]
do
 echo “Loop #$count”
 sleep 3
 count=$[$count + 1]
done
$
$./test2
Loop #1
Loop #2
Loop #3

www.it-ebooks.info

http://www.it-ebooks.info/

Loop #4
Loop #5
byebye
$
When the script gets to the normal exit point, the trap is triggered, and the shell executes the command you specify on

the trap command line. The EXIT trap also works if you prematurely exit the script:

$./test2
Loop #1
Loop #2
ˆCbyebye

$
When the Ctrl+C key combination is used to send a SIGINT signal, the script exits (because that signal isn't listed in the

trap list), but before the script exits, the shell executes the trap command.

Removing a Trap

You can remove a set trap by using a dash as the command and a list of the signals you want to return to normal behavior:

$ cat test3
#!/bin/bash
removing a set trap

trap “echo byebye” EXIT

count=1
while [$count -le 5]
do
 echo “Loop #$count”
 sleep 3
 count=$[$count + 1]
done
trap - EXIT
echo “I just removed the trap”
$
$./test3
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5
I just removed the trap
$
Once the signal trap is removed, the script ignores the signals. However, if a signal is received before the trap is removed,

the script processes it per the trap command:

$./test3

www.it-ebooks.info

http://www.it-ebooks.info/

Loop #1
Loop #2
ˆCbyebye

$
In this example, a Ctrl+C key combination was used to terminate the script prematurely. Because the script was terminated

before the trap was removed, the script executed the command specified in the trap.

Running Scripts in Background Mode
There are times when running a shell script directly from the command line interface is inconvenient. Some scripts can take a
long time to process, and you may not want to tie up the command line interface waiting. While the script is running, you

can't do anything else in your terminal session. Fortunately, there's a simple solution to that problem.
When you use the ps command, you see a whole bunch of different processes running on the Linux system. Obviously, all

of these processes are not running on your terminal monitor. This is called running processes in the background. In
background mode, a process runs without being associated with a STDIN, STDOUT, and STDERR on a terminal session (see

Chapter 14).
You can exploit this feature with your shell scripts as well, allowing them to run behind the scenes and not lock up your

terminal session. The following sections describe how to run your scripts in background mode on your Linux system.

Running in the Background
Running a shell script in background mode is a fairly easy thing to do. To run a shell script in background mode from the

command line interface, just place an ampersand symbol after the command:

$./test1 &
[1] 1976
$ This is a test program
Loop #1
Loop #2
ls /home/user/Desktop
gnome-screenshot.desktop konsole.desktop virtualbox.desktop
gnome-terminal.desktop ksnapshot.desktop
$ Loop #3
Loop #4
...

$
When you place the ampersand symbol after a command, it separates the command from the bash shell and runs it as a

separate background process on the system. The first thing that displays is the line:

[1] 1976
The number in the square brackets is the job number assigned to the background process by the shell. The next number is

the Process ID (PID) the Linux system assigns to the process. Every process running on the Linux system must have a unique

PID.
As soon as the system displays these items, a new command line interface prompt appears. You are returned back to the

shell, and the command you executed runs safely in background mode.
At this point, you can enter new commands at the prompt (as shown in the example). However, while the background

process is still running, it still uses your terminal monitor for STDOUT and STDERR messages. You'll notice from the example
that the output from the test1 script appears in the output intermixed with any other commands that are run from the

shell.
When the background process finishes, it displays a message on the terminal:

[1]+ Done ./test1

www.it-ebooks.info

http://www.it-ebooks.info/

This shows the job number and the status of the job (Done), along with the command used to start the job.

Running Multiple Background Jobs

You can start any number of background jobs at the same time from the command line prompt:

$
$./test1 &
[3] 2174
$ This is Test Program 1

$./test2 &
[4] 2176
$ I am Test Program 2

$./test3 &
[5] 2178
$ Well this is Test Program

$./test4 &
[6] 2180
$ This is Test Program 4

$
Each time you start a new job, the Linux system assigns it a new job number and PID. You can see that all of the scripts are

running using the ps command:

$ ps au
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
...
user 1826 0.0 0.3 6704 3408 pts/0 Ss 14:07 0:00 bash
user 2174 0.0 0.1 4860 1076 pts/0 S 15:23 0:00 /bin/bash ./
test1
user 2175 0.0 0.0 3884 504 pts/0 S 15:23 0:00 sleep 300
user 2176 0.0 0.1 4860 1068 pts/ S 15:23 0:00 /bin/bash ./
test2
user 2177 0.0 0.0 3884 508 pts/0 S 15:23 0:00 sleep 300
user 2178 0.0 0.1 4860 1068 pts/0 S 15:23 0:00 /bin/bash ./
test3
user 2179 0.0 0.0 3884 504 pts/0 S 15:23 0:00 sleep 300
user 2180 0.0 0.1 4860 1068 pts/0 S 15:23 0:00 /bin/bash ./
test4
user 2181 0.0 0.0 3884 504 pts/0 S 15:23 0:00 sleep 300
user 2182 0.0 0.1 4592 1100 pts/0 R+ 15:24 0:00 ps au
$
Each of the background processes you start appears in the ps command output listing of running processes. If all of the

processes display output in your terminal session, things can get pretty messy pretty quickly. Fortunately, there's a simple

way to solve that problem, which we discuss in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Exiting the Terminal
You must be careful when using background processes from a terminal session. Notice in the output from the ps command
that each of the background processes is tied to the terminal session (pts/0) terminal. If the terminal session exits, the

background process also exits.
Some terminal emulators warn you if you have any running background processes associated with the terminal, while

others don't. If you want your script to continue running in background mode after you have logged off the console, there's

something else you need to do. The next section discusses that process.

Running Scripts Without a Console
There will be times when you want to start a shell script from a terminal session and then let the script run in background

mode until it finishes, even if you exit the terminal session. You can do this by using the nohup command.
The nohup command runs another command blocking any SIGHUP signals that are sent to the process. This prevents the

process from exiting when you exit your terminal session.
The format used for the nohup command is as follows:

$ nohup ./test1 &
[1] 19831
$ nohup: ignoring input and appending output to ‘nohup.out’
$
As with a normal background process, the shell assigns the command a job number, and the Linux system assigns a PID

number. The difference is that when you use the nohup command, the script ignores any SIGHUP signals sent by the terminal

session if you close the session.
Because the nohup command disassociates the process from the terminal, the process loses the STDOUT and STDERR

output links. To accommodate any output generated by the command, the nohup command automatically redirects STDOUT

and STDERR messages to a file, called nohup.out.
The nohup.out file contains all of the output that would normally be sent to the terminal monitor. After the process

finishes running, you can view the nohup.out file for the output results:

$ cat nohup.out
This is a test program
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5
Loop #6
Loop #7
Loop #8
Loop #9
Loop #10
This is the end of the test program
$
The output appears in the nohup.out file just as if the process ran on the command line!

Caution

If you run another command using nohup, the output is appended to the existing
nohup.out file. Be careful when running multiple commands from the same directory,
as all of the output will be sent to the same nohup.out file, which can get confusing.

Job Control
Earlier in this chapter, you saw how to use the key combination to stop a job running in the shell. After you stop a job, the

www.it-ebooks.info

http://www.it-ebooks.info/

Earlier in this chapter, you saw how to use the key combination to stop a job running in the shell. After you stop a job, the

Linux system lets you either kill or restart it. You can kill the process by using the kill command. Restarting a stopped

process requires that you send it a SIGCONT signal.
The function of starting, stopping, killing, and resuming jobs is called job control. With job control, you have full control

over how processes run in your shell environment.
This section describes the commands to use to view and control jobs running in your shell.

Viewing Jobs
The key command for job control is the jobs command. The jobs command allows you to view the current jobs being

handled by the shell:

$ cat test4
#!/bin/bash
testing job control

echo “This is a test program $$”
count=1
while [$count -le 10]
do
 echo “Loop #$count”
 sleep 10
 count=$[$count + 1]
done
echo “This is the end of the test program”
$
$./test4
This is a test program 29011
Loop #1
ˆZ
[1]+ Stopped ./test4
$
$./test4 > test4out &
[2] 28861
$
$ jobs
[1]+ Stopped ./test4
[2]- Running ./test4 >test4out &
$
The script uses the $$ variable to display the PID that the Linux system assigns to the script; then it goes into a loop,

sleeping for 10 seconds at a time for each iteration. In the example, the first script is started from the command line interface
and then stopped using the Ctrl+Z key combination. Next, another job is started as a background process, using the
ampersand symbol. To make life a little easier, the output of that script is redirected to a file so that it doesn't appear on the

screen.
After the two jobs were started, we used the jobs command to view the jobs assigned to the shell. The jobs command

shows both the stopped and the running jobs, along with their job numbers and the commands used in the jobs.
The jobs command uses a few different command line parameters, as shown in Table 15.2.

Table 15.2 The jobs Command Parameters

www.it-ebooks.info

#c15_tbl_0002
#c15_tbl_anc_0002
http://www.it-ebooks.info/

Parameter Description

-l List the PID of the process along with the job number.

-n List only jobs that have changed their status since the last notification from the
shell.

-p List only the PIDs of the jobs.

-r List only the running jobs.

-s List only stopped jobs.

You probably noticed the plus and minus signs in the jobs command output. The job with the plus sign is considered the
default job. It would be the job referenced by any job control commands if a job number wasn't specified in the command
line. The job with the minus sign is the job that would become the default job when the current default job finishes processing.
There will only be one job with the plus sign and one job with the minus sign at any time, no matter how many jobs are

running in the shell.
The following is an example showing how the next job in line takes over the default status, when the default job is

removed:

$./test4
This is a test program 29075
Loop #1
ˆZ
[1]+ Stopped ./test4
$
$./test4
This is a test program 29090
Loop #1
ˆZ
[2]+ Stopped ./test4
$
$./test4
This is a test program 29105
Loop #1
ˆZ
[3]+ Stopped ./test4
$
$ jobs -l
[1] 29075 Stopped ./test4
[2]- 29090 Stopped ./test4
[3]+ 29105 Stopped ./test4
$
$ kill -9 29105
$
$ jobs -l
[1]- 29075 Stopped ./test4
[2]+ 29090 Stopped ./test4

www.it-ebooks.info

http://www.it-ebooks.info/

$
In this example, three separate processes were started and then stopped. The jobs command listing shows the three

processes and their status. Note that the default process (the one listed with the plus sign) is the last process started.
Then the kill command was issued to send a SIGHUP signal to the default process. In the next jobs listing, the job that

previously had the minus sign is now the default job.

Restarting Stopped Jobs
Under bash job control, you can restart any stopped job as either a background process or a foreground process. A

foreground process takes over control of the terminal you're working on, so be careful about using that feature.
To restart a job in background mode, use the bg command, along with the job number:

$ bg 2
[2]+ ./test4 &
Loop #2
$ Loop #3
Loop #4

$ jobs
[1]+ Stopped ./test4
[2]- Running ./test4 &
$ Loop #6
Loop #7
Loop #8
Loop #9
Loop #10
This is the end of the test program
[2]- Done ./test4
$

Because the job was restarted in background mode, the command line interface prompt appears, allowing other

commands to be entered. The output from the jobs command now shows that the job is indeed running (as you can tell

from the output now appearing on the monitor).
To restart a job in foreground mode, use the fg command, along with the job number:

$ jobs
[1]+ Stopped ./test4
$ fg 1
./test4
Loop #2
Loop #3
Since the job is running in foreground mode, the command line interface prompt does not appear until the job finishes.

Being Nice
In a multitasking operating system (which Linux is), the kernel is responsible for assigning CPU time for each process running
on the system. Only one process at a time can actually be running in a CPU, so the kernel assigns CPU time to each process in

turn.
By default, all processes started from the shell have the same scheduling priority on the Linux system. The scheduling

priority is the amount of CPU time the kernel assigns to the process relative to the other processes.
The scheduling priority is an integer value, from -20 (the highest priority) to + 20 (the lowest priority). By default, the bash

www.it-ebooks.info

http://www.it-ebooks.info/

The scheduling priority is an integer value, from -20 (the highest priority) to + 20 (the lowest priority). By default, the bash

shell starts all processes with a priority of 0.

Tip

It's confusing to remember that -20 , the lowest value, is the highest priority and 19 , the
highest value, is the lowest priority. Just remember the phrase, “Nice guys finish last.” The
“nicer” or higher you are in value, the lower your chance of getting the CPU.

This means that a simple script that requires only a little bit of processing time gets the same CPU time slices as a complex

mathematical algorithm that can take hours to run.
Sometimes you want to change the priority of a specific command, either lowering its priority so that it doesn't take as

much processing power from the CPU or giving it a higher priority so that it gets more processing time. You can do this by

using the nice command.

The nice Command
The nice command allows you to set the scheduling priority of a command as you start it. To make a command run with less

priority, just use the -n command line option for nice to specify a new priority level:

$ nice -n 10 ./test4 > test4out &
[1] 29476
$ ps al
 F UID PID PPID PRI NI WCHAN STAT TTY TIME COMMAND
100 501 29459 29458 12 0 wait4 S pts/0 0:00 -bash
000 501 29476 29459 15 10 wait4 SN pts/0 0:00 /bin/bash
000 501 29490 29476 15 10 nanosl SN pts/0 0:00 sleep 10
000 501 29491 29459 14 0 - R pts/0 0:00 ps al
$
The nice command causes the script to run at a lower priority. However, if you try to increase the priority of one of your

commands, you might be in for a surprise:

$ nice -n -10 ./test4 > test4out &
[1] 29501
$ nice: cannot set priority: Permission denied

[1]+ Exit 1 nice -n -10 ./test4 >test4out
$
The nice command prevents normal system users from increasing the priority of their commands. This is a safety feature

to prevent a user from starting all of his or her commands as high priority.

The renice Command
Sometimes you'd like to change the priority of a command that's already running on the system. That's what the renice

command is for. It allows you to specify the PID of a running process to change its priority:

$./test4 > test4out &
[1] 29504
$ ps al
 F UID PID PPID PRI NI WCHAN STAT TTY TIME COMMAND
100 501 29459 29458 12 0 wait4 S pts/0 0:00 -bash
000 501 29504 29459 9 0 wait4 S pts/0 0:00 /bin/bash .
000 501 29518 29504 9 0 nanosl S pts/0 0:00 sleep 10

www.it-ebooks.info

http://www.it-ebooks.info/

000 501 29519 29459 14 0 - R pts/0 0:00 ps al
$ renice 10 -p 29504
29504: old priority 0, new priority 10
$ ps al
 F UID PID PPID PRI NI WCHAN STAT TTY TIME COMMAND
100 501 29459 29458 16 0 wait4 S pts/0 0:00 -bash
000 501 29504 29459 14 10 wait4 SN pts/0 0:00 /bin/bash .
000 501 29535 29504 9 0 nanosl S pts/0 0:00 sleep 10
000 501 29537 29459 14 0 - R pts/0 0:00 ps al
$
The renice command automatically updates the scheduling priority of the running process. As with the nice command,

the renice command has some limitations:
You can only renice processes that you own.
You can only renice your processes to a lower priority.
The root user can renice any process to any priority.

If you want to fully control running processes, you must be logged in as the root account or use the sudo command

Running Like Clockwork
I'm sure that, as you start working with scripts, there will be a situation in which you will want to run a script at a preset time,
usually at a time when you're not there. The Linux system provides a couple of ways to run a script at a preselected time: the
at command and the cron table. Each method uses a different technique for scheduling when and how often to run scripts.

The following sections describe each of these methods.

Scheduling a Job Using the at Command
The at command allows you to specify a time when the Linux system will run a script. The at command submits a job to a
queue with directions on when the shell should run the job. The at daemon, atd, runs in the background and checks the job

queue for jobs to run. Most Linux distributions start this daemon automatically at boot time.
The atd daemon checks a special directory on the system (usually /var/spool/at) for jobs submitted using the at

command. By default, the atd daemon checks this directory every 60 seconds. When a job is present, the atd daemon checks

the time the job is set to be run. If the time matches the current time, the atd daemon runs the job.
The following sections describe how to use the at command to submit jobs to run and how to manage jobs.

The at Command Format

The basic at command format is pretty simple:

at [-f filename] time
By default, the at command submits input from STDIN to the queue. You can specify a file name used to read commands

(your script file) using the -f parameter.
The time parameter specifies when you want the Linux system to run the job. You can get pretty creative with how you

specify the time. The at command recognizes lots of different time formats:
A standard hour and minute, such as 10:15
An ∼A.M./∼PMindicator, such as 10:15∼P.M.
A specific named time, such as now, noon, midnight, or teatime (4∼P.M.)

If you specify a time that has already past, the at command runs the job at that time on the next day.
In addition to specifying the time to run the job, you can also include a specific date, using a few different date formats:

A standard date format, such as MMDDYY, MM/DD/YY, or DD.MM.YY
A text date, such as Jul 4 or Dec 25, with or without the year
You can also specify a time increment:

www.it-ebooks.info

http://www.it-ebooks.info/

Now + 25 minutes
10:15∼P.M. tomorrow
10:15 + 7 days

When you use the at command, the job is submitted into a job queue. The job queue holds the jobs submitted by the at
command for processing. There are 26 different job queues available for different priority levels. Job queues are referenced

using lowercase letters, a through z.

Note

A few years ago, the batch command was another method that allowed a script to
be run at a later time. The batch command was unique because you could
schedule a script to run when the system was at a lower usage level. However,
nowadays, the batch command is just simply a script, /usr/bin/batch , that
calls the at command and submits your job to the b queue.

The higher alphabetically the job queue, the lower the priority (higher nice value) the job will run under. By default, at
jobs are submitted to the at job queue. If you want to run a job at a higher priority, you can specify a different queue letter

using the -q parameter.

Retrieving Job Output
When the job runs on the Linux system, there's no monitor associated with the job. Instead, the Linux system uses the e-mail
address of the user who submitted the job as STDOUT and STDERR. Any output destined to STDOUT or STDERR is mailed to

the user via the mail system.
Here's a simple example of using the at command to schedule a job to run:

$
$ cat test5
#!/bin/bash

testing the at command

echo This script ran at ‘date’
echo This is the end of the script >&2
$
$ date
Mon Oct 18 14:38:17 EDT 2010
$
$ at -f test5 14:39
warning: commands will be executed using /bin/sh
job 57 at Mon Oct 18 14:39:00 2010
$
$ mail
“/var/mail/user”: 1 message 1 new
>N 1 user Mon Oct 18 14:39 15/538 Output from your job
& 1
Date: Mon, 18 Oct 2010 14:39:00 -0400
Subject: Output from your job 57
To: user@user-desktop
From: user <user@user-desktop>

www.it-ebooks.info

http://www.it-ebooks.info/

This script ran at Mon Oct 18 14:39:00 EDT 2010
This is the end of the script

& exit
$
The at command produces a warning message, indicating what shell the system uses to run the script, /bin/sh, along

with the job number assigned to the job and the time the job is scheduled to run.

Caution

In most Linux distributions, the default shell assigned to /bin/sh is the bash shell.
However, Ubuntu uses the dash shell for its default shell. See Chapter 22 for more
information on the dash shell.

When the job completes, nothing appears on the monitor, but the system generates an e-mail message. The e-mail
message shows the output generated by the script. If the script doesn't produce any output, it won't generate an e-mail
message, by default. You can change that by using the -m option in the at command. This generates an e-mail message,

indicating the job completed, even if the script doesn't generate any output.

Listing Pending Jobs

The atq command allows you to view what jobs are pending on the system:

$
$ at -f test5 15:05
warning: commands will be executed using /bin/sh
job 58 at Mon Oct 18 15:05:00 2010
$
$ at -f test5 15:10
warning: commands will be executed using /bin/sh
job 59 at Mon Oct 18 15:10:00 2010
$
$ at -f test5 15:15
warning: commands will be executed using /bin/sh
job 60 at Mon Oct 18 15:15:00 2010
$
$ at -f test5 15:20
warning: commands will be executed using /bin/sh
job 61 at Mon Oct 18 15:20:00 2010
$$ atq
61 Mon Oct 18 15:20:00 2010 a user
58 Mon Oct 18 15:05:00 2010 a user
59 Mon Oct 18 15:10:00 2010 a user
60 Mon Oct 18 15:15:00 2010 a user
$
The job listing shows the job number, the date and time the system will run the job, and the job queue the job is stored in.

Removing Jobs

www.it-ebooks.info

http://www.it-ebooks.info/

Once you know the information about what jobs are pending in the job queues, you can use the atrm command to remove a

pending job:

$
$ atq
59 Mon Oct 18 15:10:00 2010 a user
60 Mon Oct 18 15:15:00 2010 a user
$
$ atrm 59
$
$ atq
60 Mon Oct 18 15:15:00 2010 a user
$
Just specify the job number you want to remove. You can only remove jobs that you submit for execution. You can't

remove jobs submitted by others.

Scheduling Regular Scripts
Using the at command to schedule a script to run at a preset time is great, but what if you need that script to run at the same
time every day or once a week or once a month? Instead of having to continually submit at jobs, you can use another feature

of the Linux system.
The Linux system uses the cron program to allow you to schedule jobs that need to run on a regular basis. The cron

program runs in the background and checks special tables, called cron tables, for jobs that are scheduled to run.

The cron Table

The cron table uses a special format for allowing you to specify when a job should be run. The format for the cron table is:

min hour dayofmonth month dayofweek command
The cron table allows you to specify entries as specific values, ranges of values (such as 1–5) or as a wildcard character

(the asterisk). For example, if you want to run a command at 10:15 on every day, you would use the cron table entry of:

15 10 * * * command
The wildcard character used in the dayofmonth, month, and dayofweek fields indicates that cron will execute the command

every day of every month at 10:15. To specify a command to run at 4:15 PM every Monday, you would use the following:

15 16 * * 1 command
You can specify the dayofweek entry as either a three-character text value (mon, tue, wed, thu, fri, sat, sun) or as a numeric

value, with 0 being Sunday and 6 being Saturday.
Here's another example: to execute a command at 12 noon on the first day of every month, you would use the following

format:

00 12 1 * * command
The dayofmonth entry specifies a date value (1–31) for the month.

Note

The astute reader might be wondering just how you would be able to set a
command to execute on the last day of every month because you can't set the
dayofmonth value to cover every month. This problem has plagued Linux and Unix
programmers, and has spawned quite a few different solutions. A common method
is to add an if-then statement that uses the date command to check if
tomorrow's date is 01:

00 12 * * * if [‘date +%d -d tomorrow’ =

www.it-ebooks.info

http://www.it-ebooks.info/

00 12 * * * if [‘date +%d -d tomorrow’ =

01] ; then ; command
This will check every day at 12 noon to see if it's the last day of the month, and if
so, cron will run the command.

The command list must specify the full pathname of the command or shell script to run. You can add any command line

parameters or redirection symbols you like, as a regular command line:

15 10 * * * /home/rich/test4 > test4out
The cron program runs the script using the user account that submitted the job. Thus, you must have the proper

permissions to access the command and output files specified in the command listing.

Building the cron Table
Each system user can have their own cron table (including the root user) for running scheduled jobs. Linux provides the

crontab command for handling the cron table. To list an existing cron table, use the -l parameter:

$ crontab -l
no crontab for rich
$
By default, each user's cron table file doesn't exist. To add entries to your cron table, use the -e parameter. When you

do that, the crontab command starts a text editor (see Chapter 9) with the existing cron table (or an empty file if it doesn't

yet exist).

cron Directories
When you create a script that has less precise execution time needs, it is easier to use one of the pre-configured cron script

directories. There are four basic directories: hourly, daily, monthly, and weekly.

$
$ ls /etc/cron.*ly
/etc/cron.daily:
0anacron aptitude exim4-base man-
db sysstat
apt bsdmainutils logrotate popularity-contest
apport dpkg mlocate standard
/etc/cron.hourly:

/etc/cron.monthly:
0anacron

/etc/cron.weekly:
0anacron apt-xapian-index man-db
$
Thus, if you have a script that needs to be run one time per day, just copy the script to the daily directory and cron

executes it each day.

The anacron Program
The only problem with the cron program is that it assumes that your Linux system is operational 24 hours a day, 7 days a

week. Unless you're running Linux in a server environment, this may not necessarily be true.
If the Linux system is turned off at the time a job is scheduled to run in the crontable, the job won't run. The cron

program doesn't retroactively run missed jobs when the system is turned back on. To resolve this issue, many Linux

distributions also include the anacron program.

www.it-ebooks.info

http://www.it-ebooks.info/

If anacron determines that a job has missed a scheduled running, it runs the job as soon as possible. This means that if
your Linux system is turned off for a few days, when it starts back up any jobs scheduled to run during the time it was off are

automatically run.
This is a feature that's often used for scripts that perform routine log maintenance. If the system is always off when the

script should run, the log files would never get trimmed and could grow to undesirable sizes. With anacron, you're

guaranteed that the log files will be trimmed at least each time the system is started.
The anacron program deals only with programs located in the cron directories, such as /etc/cron.monthly. It uses

timestamps to determine if the jobs have been run at the proper scheduled interval. A timestamp file exists for each cron

directory and is located in /var/spool/anacron:

$
$ sudo cat /var/spool/anacron.monthly
20101123
$
The anacron program has its own table (usually located at /etc/anacrontab) to check the job directories:

$
$ cat /etc/anacrontab
/etc/anacrontab: configuration file for anacron

See anacron(8) and anacrontab(5) for details.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

These replace cron's entries
1 5 cron.daily nice run-parts --report /etc/cron.daily
7 10 cron.weekly nice run-parts --report /etc/cron.weekly
@monthly 15 cron.monthly nice run-parts --report /etc/cron.monthly
$
The basic format of the anacron table is slightly different from that of the cron table:

period delay identifier command
The period entry defines how often the jobs should be run, specified in days. The anacron program uses this entry to

check against the jobs' timestamp file. The delay entry specifies how many minutes after the system starts the anacron
program should run missed scripts. The command entry contains the run-parts program and a cron script directory name.

The run-parts program is responsible for running any script in the directory passed to it.
Notice that anacron does not run the scripts located in /etc/cron.hourly. This is because the anacron program

does not deal with scripts that have execution time needs of less than daily.
The identifier entry is a unique non-blank character string—for example, cron-weekly. It is used to uniquely identify

the job in log messages and error e-mails.

Start at the Beginning
The last method of starting shell scripts is to have your script run automatically either as soon as the Linux system boots or
whenever a user starts a new bash shell session. Starting scripts at boot time is usually reserved for special scripts that
perform system functions, such as configuring a network interface or starting a server process. However, if you're a Linux
system administrator, it's possible that you'll need to perform a function every time the Linux system boots, such as resetting

a custom log file or starting a custom application.
The ability to run a script every time a user starts a new bash shell (even just when a specific user starts a bash shell) also

can come in handy. There are times when you want to set shell features for a shell session or just ensure that a specific file has

been set.
This section describes how to configure your Linux system to run your scripts either at boot time or each time a new bash

www.it-ebooks.info

http://www.it-ebooks.info/

This section describes how to configure your Linux system to run your scripts either at boot time or each time a new bash

shell starts.

Starting Your Scripts at Boot Time
Before you can get your shell script to start at boot time, you'll need to know a little bit about how the Linux boot process
works. There's a specific order that Linux uses to start scripts at boot time, and knowing that process can help you in getting

your script to perform the way you want it.

The Boot Process
After you turn on your Linux system, the Linux kernel loads into memory and runs. The first thing it does is start the UNIX
System V init process or the Upstart init process, depending upon your distribution and its version. This process is then

responsible for starting all other processes on the Linux system.

System V init Process
As part of the boot process, the System V init process reads the /etc/inittab file. The inittab file lists the system's run
level. Different Linux run levels start different programs and scripts. Table 15.3 lists the Linux run levels for Red Hat–based

distributions.

Table 15.3 The Linux Run Levels—Red Hat–Based Distributions

Run Level Description

0 Halt

1 Single-user mode

2 Multi-user mode, usually without networking support

3 Full multi-user mode, with networking

4 User definable

5 Multi-user mode, with networking and a graphical X Window session

6 Reboot

It is common for Linux distributions to use the run levels listed in Table 15.3 to grant finer control over what services are
started on the system. However, Debian-based distributions, such as Ubuntu and Linux Mint, do not distinguish a difference

between run levels 2 through 5, as shown in Table 15.4

Table 15.4 The Linux Run Levels—Debian–Based Distributions

Run Level Description

0 Halt

1 Single-user mode

2 - 5 Multi-user mode, with networking and a graphical X Window session

6 Reboot

The Ubuntu distribution does not even have a /etc/inittab file to set run levels. By default, Ubuntu goes to run

level 2. You must create a /etc/inittab file on an Ubuntu distribution, if you want to change the default run level.
Each run level defines what scripts the System V init process starts or stops. These startup script are shell scripts that start

applications, providing the necessary environment variables for them to run.

www.it-ebooks.info

#c15_tbl_0003
#c15_tbl_anc_0003
#c15_tbl_0003
#c15_tbl_0004
#c15_tbl_anc_0004
http://www.it-ebooks.info/

This is the part of the System V init based boot process where things start to get a little fuzzy, mainly because different
Linux distributions place startup scripts in slightly different locations. Some distributions place startup scripts in the
/etc/rc#.d directory, where # stands for the run level. Others use the /etc/init.d directory, and still others use the
/etc/init.d/rc.d directory. Usually a quick glance in your /etc directory structure can easily determine what format

your distribution uses.

Upstart init Process
The Upstart init process is a newer standard for managing service processes that many Linux distributions are now moving
toward. Upstart is not focused on system run levels, but is instead focused on events, such as a system boot. In Upstart, a

system boot is called a startup event.
Upstart uses files located in either the /etc/event.d or the /etc/init directory to start processes, depending upon

your distribution and its version. In order to maintain backward compatibility, many Upstart implementations still call the

older System V init scripts from /etc/init.d and/or /etc/rc#.d.
The Upstart init process standard is still highly evolving at this point in time. For the scripts you create and want to start

during a system startup event, it would be prudent to use the older System V init process method. This method is described in

the next section.

Defining Your Scripts
It's best not to mess with the individual startup script files in your Linux distribution. Often distributions provide tools to

automatically build these scripts as you add server applications, and manually changing these scripts can cause problems.
Instead, most Linux distributions provide a local startup file specifically to allow the system administrator to enter scripts

to run at boot time. Of course, the name and location of this file are different in different Linux distributions. Table 15.5

identifies the location of the startup file in five popular Linux distributions.

Table 15.5 The Linux Local Startup File Locations

Distribution File location

debian /etc/init.d/rc.local

Fedora /etc/rc.d/rc.local

Mandriva /etc/rc.local

openSuse /etc/init.d/boot.local

Ubuntu /etc/rc.local

Inside the local startup file, you can either specify specific commands and statements, or enter any scripts you want
started at boot time. Remember that if you use a script, you'll need to specify the full pathname for the script so that the

system can find it at boot time.

Caution

Different Linux distributions also execute the local startup script at different points in the
boot process. Sometimes the script is run before things such as network support have
been started. Consult your specific Linux distribution documentation to determine when
the local startup script is run in your distribution.

Starting with a New Shell
Each user's home directory contains two files that the bash shell uses to automatically start scripts and set environment

variables:
The .bash_profile file
The .bashrc file

www.it-ebooks.info

#c15_tbl_0005
#c15_tbl_anc_0005
http://www.it-ebooks.info/

The bash shell runs the .bash_profile file when a new shell is run as a result of a new login. Place any scripts that you

want run at login time in this file.
The bash shell runs the .bashrc file any time a new shell is started, including when a new login occurs. You can test this

by adding a simple echo statement to the .bashrc file in your home directory and then starting a new shell:

$ bash
This is a new shell!!
$
If you want to run a script for every user on the system, most Linux distributions provide the /etc/bashrc file (note

that there's no period in front of the bashrc filename). The bash shell executes the statements in this file every time any user

on the system starts a new bash shell.

Summary
The Linux system allows you to control your shell scripts by using signals. The bash shell accepts signals and passes them on
to any process running under the shell process. Linux signals allow you to easily kill a runaway process or temporarily pause

a long-running process.
You can use the trap statement in your scripts to catch signals and perform commands. This feature provides a simple

way to control whether a user can interrupt your script while it's running.
By default, when you run a script in a terminal session shell, the interactive shell is suspended until the script completes.

You can cause a script or command to run in background mode by adding an ampersand sign (&) after the command name.
When you run a script or command in background mode, the interactive shell returns, allowing you to continue entering
more commands. Any background processes run using this method are still tied to the terminal session. If you exit the

terminal session, the background processes also exit.
To prevent this from happening, use the nohup command. This command intercepts any signals intended for the

command that would stop it—for example, when you exit the terminal session. This allows scripts to continue running in

background mode even if you exit the terminal session.
When you move a process to background mode, you can still control what happens to it. The jobs command allows you to

view processes started from the shell session. Once you know the job ID of a background process, you can use the kill
command to send Linux signals to the process or use the fg command to bring the process back to the foreground in the
shell session. You can suspend a running foreground process by using the Ctrl+Z key combination and then place it back in

background mode, using the bg command.
The nice and renice commands allow you to change the priority level of a process. By giving a process a lower priority,

you allow the CPU to allocate less time to it. This comes in handy when running long processes that can take lots of CPU time.
In addition to controlling processes while they're running, you can also determine when a process starts on the system.

Instead of running a script directly from the command line interface prompt, you can schedule the process to run at an
alternative time. There are several different ways to accomplish this. The at command enables you to run a script once at a

preset time. The cron program provides an interface that can run scripts at a regularly scheduled interval.
Finally, the Linux system provides script files for you to use for scheduling your scripts to run either at system boot time

or whenever a user starts a new bash shell. Distributions have different files that allow you to list scripts that start each time
the system boots. This permits system administrators to run special scripts for system maintenance at boot time. Similarly, the
.bash_profile and .bashrc files are located in every user's home directory to provide a location to place scripts and
commands that run with a new shell. The .bash_profile file runs scripts each time a user logs in to the system, and the

.bashrc file runs scripts on each new shell instance.
In the next chapter, we'll look at how to write script functions. Script functions allow you to write code blocks once and

then use them in multiple locations throughout your script.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III

Advanced Shell Scripting

In This Part
Chapter 16: Creating Functions

Chapter 17: Writing Scripts for Graphical Desktops

Chapter 18: Introducing sed and gawk

Chapter 19: Regular Expressions

Chapter 20: Advanced sed

Chapter 21: Advanced gawk

Chapter 22: Working with Alternative Shells

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16

Creating Functions

In This Chapter

Basic script functions
Returning a value
Using variables in functions
Array and variable functions
Function recursion
Creating a library
Using functions on the command line

Often while writing shell scripts you'll find yourself using the same code in multiple locations. If it's just a small code snippet,
it's usually not that big of a deal. However, rewriting large chunks of code multiple times in your shell script can get tiring.
The bash shell provides a way to help you out by supporting user-defined functions. You can encapsulate your shell script
code into a function and then use it as many times as you want anywhere in your script. This chapter walks you through the

process of creating your own shell script functions and demonstrates how to use them in other shell script applications.

Basic Script Functions
As you start writing more complex shell scripts, you'll find yourself reusing parts of code that perform specific tasks.
Sometimes it's something simple, such as displaying a text message and retrieving an answer from the script users. Other times

it's a complicated calculation that's used multiple times in your script as part of a larger process.
In each of these situations, it can get tiresome writing the same blocks of code over and over again in your script. It would

be nice to just write the block of code once and then be able to refer to that block of code anywhere in your script without

having to rewrite it.
The bash shell provides a feature allowing you to do just that. Functions are blocks of script code that you assign a name

to and then reuse anywhere in your code. Anytime you need to use that block of code in your script, you simply use the
function name you assigned it (referred to as calling the function). This section describes how to create and use functions in

your shell scripts.

Creating a Function
There are two formats you can use to create functions in bash shell scripts. The first format uses the keyword function,

along with the function name you assign to the block of code:

function name {
 commands
}
The name attribute defines a unique name assigned to the function. Each function you define in your script must be

assigned a unique name.
The commands are one or more bash shell commands that make up your function. When you call the function, the bash

shell executes each of the commands in the order they appear in the function, just as in a normal script.
The second format for defining a function in a bash shell script more closely follows how functions are defined in other

programming languages:

name() {
commands
}
The empty parentheses after the function name indicate that you're defining a function. The same naming rules apply in

www.it-ebooks.info

http://www.it-ebooks.info/

The empty parentheses after the function name indicate that you're defining a function. The same naming rules apply in

this format as in the original shell script function format.

Using Functions

To use a function in your script, specify the function name on a line, just as you would any other shell command:

$ cat test1
#!/bin/bash
using a function in a script

function func1 {
 echo “This is an example of a function”
}

count=1
while [$count -le 5]
do
 func1
 count=$[$count + 1]
done

echo “This is the end of the loop”
func1
echo “Now this is the end of the script”
$
$./test1
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
This is an example of a function
Now this is the end of the script
$
Each time you reference the func1 function name, the bash shell returns to the func1 function definition and

executes any commands you defined there.
The function definition doesn't have to be the first thing in your shell script, but be careful. If you attempt to use a

function before it's defined, you'll get an error message:

$ cat test2
#!/bin/bash
using a function located in the middle of a script

count=1
echo “This line comes before the function definition”

www.it-ebooks.info

http://www.it-ebooks.info/

function func1 {
 echo “This is an example of a function”
}

while [$count -le 5]
do
 func1
 count=$[$count + 1]
done
echo “This is the end of the loop”
func2
echo “Now this is the end of the script”

function func2 {
 echo “This is an example of a function”
}
$
$./test2
This line comes before the function definition
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
./test2: func2: command not found
Now this is the end of the script
$
The first function, func1, was defined after a couple of statements in the script, which is perfectly fine. When the func1

function was used in the script, the shell knew where to find it.
However, the script attempted to use the func2 function before it was defined. Because the func2 function wasn't

defined, when the script reached the place where we used it, it produced an error message.
You also need to be careful about your function names. Remember, each function name must be unique, or you'll have a

problem. If you redefine a function, the new definition will override the original function definition, without producing any

error messages:

$ cat test3
#!/bin/bash
testing using a duplicate function name

function func1 {
echo “This is the first definition of the function name”
}

func1

www.it-ebooks.info

http://www.it-ebooks.info/

function func1 {
 echo “This is a repeat of the same function name”
}

func1
echo “This is the end of the script”
$
$./test3
This is the first definition of the function name
This is a repeat of the same function name
This is the end of the script
$
The original definition of the func1 function works fine, but after the second definition of the func1 function, any

subsequent uses of the function use the second definition.

Returning a Value
The bash shell treats functions like mini-scripts, complete with an exit status (see Chapter 10). There are three different ways

you can generate an exit status for your functions.

The Default Exit Status
By default, the exit status of a function is the exit status returned by the last command in the function. After the function

executes, you use the standard $? variable to determine the exit status of the function:

$ cat test4
#!/bin/bash
testing the exit status of a function

func1() {
 echo “trying to display a non-existent file”
 ls -l badfile
}

echo “testing the function: ”
func1
echo “The exit status is: $?”
$
$./test4
testing the function:
trying to display a non-existent file
ls: badfile: No such file or directory
The exit status is: 1
$
The exit status of the function is 1 because the last command in the function failed. However, you have no way of knowing

if any of the other commands in the function completed successfully or not. Take a look at this example:

$ cat test4b
#!/bin/bash

www.it-ebooks.info

http://www.it-ebooks.info/

testing the exit status of a function

func1() {
 ls -l badfile
 echo “This was a test of a bad command”
}

echo “testing the function:”
func1
echo “The exit status is: $?”
$
$./test4b
testing the function:
ls: badfile: No such file or directory
This was a test of a bad command
The exit status is: 0
$
This time, because the function ended with an echo statement that completed successfully, the exit status of the function

is 0, even though one of the commands in the function failed. Using the default exit status of a function can be a dangerous

practice. Fortunately, there are a couple of other solutions for us.

Using the return Command
The bash shell uses the return command to exit a function with a specific exit status. The return command allows you to
specify a single integer value to define the function exit status, providing an easy way for you to programmatically set the

exit status of your function:

$ cat test5
#!/bin/bash
using the return command in a function

function dbl {
 read -p “Enter a value: ” value
 echo “doubling the value”
 return $[$value * 2]
}

dbl
echo “The new value is $?”
$
The dbl function doubles the value contained in the $value variable provided by the user input. It then returns the

result using the return command, which the script displays using the $? variable.
You must be careful, however, when using this technique to return a value from a function. Keep the following two tips in

mind to avoid problems:
Remember to retrieve the return value as soon as the function completes.
Remember that an exit status must be in the range of 0 to 255.

If you execute any other commands before retrieving the value of the function, using the $? variable, the return value

from the function will be lost. Remember that the $? variable returns the exit status of the last executed command.

www.it-ebooks.info

http://www.it-ebooks.info/

The second problem defines a limitation for using this return value technique. Because an exit status must be less than

256, the result of your function must produce an integer value less than 256. Any value over that returns an error value:

$./test5
Enter a value: 200
doubling the value
The new value is 1
$
You cannot use this return value technique if you need to return either larger integer values or a string value. Instead,

you'll need to use another method, demonstrated in the next section.

Using Function Output
Just as you can capture the output of a command to a shell variable, you can also capture the output of a function to a shell

variable. You can use this technique to retrieve any type of output from a function to assign to a variable:

 result=‘dbl‘
This command assigns the output of the dbl function to the $result shell variable. The following is an example of using

this method in a script:

$ cat test5b
#!/bin/bash
using the echo to return a value

function dbl {
 read -p “Enter a value: ” value
 echo $[$value * 2]
}

result=‘dbl‘
echo “The new value is $result”
$
$./test5b
Enter a value: 200
The new value is 400
$
$./test5b
Enter a value: 1000
The new value is 2000
$
The new function now uses an echo statement to display the result of the calculation. The script just captures the output

of the dbl function instead of looking at the exit status for the answer.
There's a subtle trick that this example demonstrates. You'll notice that the db1 function really outputs two messages.

The read command outputs a short message querying the user for the value. The bash shell script is smart enough to not
consider this as part of the STDOUT output and ignores it. If you had used an echo statement to produce this query message

to the user, it would have been captured by the shell variable as well as the output value.

Note

Using this technique, you can also return floating point and string values, making
this an extremely versatile method for returning values from functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables in Functions
You might have noticed in the test5 example in the previous section that we used a variable called $value within the
function to hold the value that it processed. When you use variables in your functions, you need to be somewhat careful
about how you define and handle them. This is a common cause of problems in shell scripts. This section goes over a few

techniques for handling variables both inside and outside your shell script functions.

Passing Parameters to a Function
As we mentioned earlier in the “Returning a Value” section, the bash shell treats functions just like mini-scripts. This means

that you can pass parameters to a function just like a regular script (see Chapter 13).
Functions can use the standard parameter environment variables to represent any parameters passed to the function on

the command line. For example, the name of the function is defined in the $0 variable, and any parameters on the function
command line are defined using the variables $1, $2, and so on. You can also use the special variable $# to determine the

number of parameters passed to the function.
When specifying the function in your script, you must provide the parameters on the same command line as the function,

like this:

func1 $value1 10
The function can then retrieve the parameter values using the parameter environment variables. Here's an example of

using this method to pass values to a function:

$ cat test6
#!/bin/bash
passing parameters to a function

function addem {
 if [$# -eq 0] || [$# -gt 2]
 then
 echo -1
 elif [$# -eq 1]
 then
 echo $[$1 + $1]
 else
 echo $[$1 + $2]
 fi
}

echo -n “Adding 10 and 15: ”
value=‘addem 10 15‘
echo $value
echo -n “Let's try adding just one number: ”
value=‘addem 10‘
echo $value
echo -n “Now trying adding no numbers: ”
value=‘addem‘
echo $value
echo -n “Finally, try adding three numbers: ”
value=‘addem 10 15 20‘
echo $value

www.it-ebooks.info

http://www.it-ebooks.info/

$
$./test6
Adding 10 and 15: 25
Let's try adding just one number: 20
Now trying adding no numbers: -1
Finally, try adding three numbers: -1
$
The addem function in the text6 script first checks the number of parameters passed to it by the script. If there aren't

any parameters, or if there are more than two parameters, addem returns a value of -1. If there's just one parameter, addem

adds the parameter to itself for the result. If there are two parameters, addem adds them together for the result.
Because the function uses the special parameter environment variables for its own parameter values, it can't directly

access the script parameter values from the command line of the script. The following example will fail:

$ cat badtest1
#!/bin/bash
trying to access script parameters inside a function

function badfunc1 {
 echo $[$1 * $2]
}

if [$# -eq 2]
then
 value=‘badfunc1‘
 echo “The result is $value”
else
 echo “Usage: badtest1 a b”
fi
$
$./badtest1
Usage: badtest1 a b
$./badtest1 10 15
./badtest1: * : syntax error: operand expected (error token is “*
”)
The result is
$
Even though the function uses the $1 and $2 variables, they aren't the same $1 and $2 variables available in the main

part of the script. Instead, if you want to use those values in your function, you'll have to manually pass them when you call

the function:

$ cat test7
#!/bin/bash
trying to access script parameters inside a function

function func7 {
 echo $[$1 * $2]
}

www.it-ebooks.info

http://www.it-ebooks.info/

if [$# -eq 2]
then
 value=‘func7 $1 $2‘
 echo “The result is $value”
else
 echo “Usage: badtest1 a b”
fi
$
$./test7
Usage: badtest1 a b
$./test7 10 15
The result is 150
$
By passing the $1 and $2 variables to the function, they become available for the function to use, just like any other

parameter.

Handling Variables in a Function
One thing that causes problems for shell script programmers is the scope of a variable. The scope is where the variable is
visible. Variables defined in functions can have a different scope than regular variables. That is, they can be hidden from the

rest of the script.
Functions use two types of variables:

Global
Local

The following sections describe how to use both types of variables in your functions.

Global Variables
Global variables are variables that are valid anywhere within the shell script. If you define a global variable in the main section
of a script, you can retrieve its value inside a function. Likewise, if you define a global variable inside a function, you can

retrieve its value in the main section of the script.
By default, any variables you define in the script are global variables. Variables defined outside of a function can be

accessed within the function just fine:

$ cat test8
#!/bin/bash
using a global variable to pass a value

function dbl {
 value=$[$value * 2]
}

read -p “Enter a value: ” value
dbl
echo “The new value is: $value”
$
$./test8

www.it-ebooks.info

http://www.it-ebooks.info/

Enter a value: 450
The new value is: 900
$
The $value variable is defined outside of the function, and assigned a value outside of the function. When the dbl

function is called, the variable and its value are still valid inside the function. When the variable is assigned a new value inside

the function, that new value is still valid when the script references the variable.
This can be a dangerous practice, however, especially if you intend to use your functions in different shell scripts. It

requires that you know exactly what variables are used in the function, including any variables used to calculate values not

returned to the script. Here's an example of how things can go bad:

$ cat badtest2
#!/bin/bash
demonstrating a bad use of variables

function func1 {
 temp=$[$value + 5]
 result=$[$temp * 2]
}

temp=4
value=6

func1
echo “The result is $result”
if [$temp -gt $value]
then
 echo “temp is larger”
else
 echo “temp is smaller”
fi
$
$./badtest2
The result is 22
temp is larger
$
Because the $temp variable was used in the function, its value is compromised in the script, producing a result that you

may not have intended. There's an easy way to solve this problem in your functions, as shown in the next section.

Local Variables
Instead of using global variables in functions, any variables that the function uses internally can be declared as local

variables. To do that, just use the local keyword in front of the variable declaration:

local temp
You can also use the local keyword in an assignment statement while assigning a value to the variable:

local temp=$[$value + 5]
The local keyword ensures that the variable is limited to only within the function. If a variable with the same name

appears outside the function in the script, the shell keeps the two variable values separate. Now you can easily keep your

function variables separate from your script variables and share only the ones you want to share:

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat test9
#!/bin/bash
demonstrating the local keyword

function func1 {
 local temp=$[$value + 5]
 result=$[$temp * 2]
}

temp=4
value=6

func1
echo “The result is $result”
if [$temp -gt $value]
then
 echo “temp is larger”
else
 echo “temp is smaller”
fi
$
$./test9
The result is 22
temp is smaller
$
Now when you use the $temp variable within the func1 function, it doesn't affect the value assigned to the $temp

variable in the main script.

Array Variables and Functions
Chapter 5 discussed an advanced way of allowing a single variable to hold multiple values by using arrays. Using array
variable values with functions is a little tricky, and there are some special considerations. This section describes a technique

that allows you to do that.

Passing Arrays to Functions
The art of passing an array variable to a script function can be confusing. If you try to pass the array variable as a single

parameter, it won't work:

$ cat badtest3
#!/bin/bash
trying to pass an array variable

function testit {
 echo “The parameters are: $@”
 thisarray=$1
 echo “The received array is ${thisarray[*]}”
}

www.it-ebooks.info

http://www.it-ebooks.info/

myarray=(1 2 3 4 5)
echo “The original array is: ${myarray[*]}”
testit $myarray
$
$./badtest3
The original array is: 1 2 3 4 5
The parameters are: 1
./badtest3: thisarray[*]: bad array subscript
The received array is
$
If you try using the array variable as a function parameter, the function only picks up the first value of the array variable.
To solve this problem, you must disassemble the array variable into its individual values and then use the values as

function parameters. Inside the function, you can reassemble all of the parameters into a new array variable. The following is

an example of doing this:

$ cat test10
#!/bin/bash
array variable to function test

function testit {
 local newarray
 newarray=(‘echo “$@”‘)
 echo “The new array value is: ${newarray[*]}”
}

myarray=(1 2 3 4 5)
echo “The original array is ${myarray[*]}”
testit ${myarray[*]}
$
$./test10
The original array is 1 2 3 4 5
The new array value is: 1 2 3 4 5
$
The script uses the $myarray variable to hold all of the individual array values to place them all on the command line for

the function. The function then rebuilds the array variable from the command line parameters. Once inside the function, the

array can be used just like any other array:

$ cat test11
#!/bin/bash
adding values in an array

function addarray {
 local sum=0
 local newarray
 newarray=(‘echo “$@”‘)
 for value in ${newarray[*]}
 do

www.it-ebooks.info

http://www.it-ebooks.info/

 sum=$[$sum + $value] done
 echo $sum
}

myarray=(1 2 3 4 5)
echo “The original array is: ${myarray[*]}”
arg1=‘echo ${myarray[*]}‘
result=‘addarray $arg1‘
echo “The result is $result”
$
$./test11
The original array is: 1 2 3 4 5
The result is 15
$
The addarray function iterates through the array values, adding them together. You can put any number of values in

the myarray array variable, and the addarray function will add them.

Returning Arrays from Functions
Passing an array variable from a function back to the shell script uses a similar technique. The function uses an echo
statement to output the individual array values in the proper order, and then the script must reassemble them into a new

array variable:

$ cat test12
#!/bin/bash
returning an array value

function arraydblr {
 local origarray
 local newarray
 local elements
 local i
 origarray=(‘echo “$@”‘)
 newarray=(‘echo “$@”‘)
 elements=$[$# - 1]
 for ((i = 0; i <= $elements; i++))
 {
 newarray[$i]=$[${origarray[$i]} * 2]
 }
 echo ${newarray[*]}
}

myarray=(1 2 3 4 5)
echo “The original array is: ${myarray[*]}”
arg1=‘echo ${myarray[*]}‘
result=(‘arraydblr $arg1‘)

www.it-ebooks.info

http://www.it-ebooks.info/

echo “The new array is: ${result[*]}”
$
$./test12
The original array is: 1 2 3 4 5
The new array is: 2 4 6 8 10
The script passes the array value, using the $arg1 variable to the arraydblr function. The arraydblr function

reassembles the array into a new array variable, and it makes a copy for the output array variable. It then iterates through the

individual array variable values, doubles each value, and places it into the copy of the array variable in the function.
The arraydblr function then uses the echo statement to output the individual values of the array variable values. The

script uses the output of the arraydblr function to reassemble a new array variable with the values.

Function Recursion
One feature that local function variables provide is self-containment. A self-contained function doesn't use any resources

outside of the function, other than whatever variables the script passes to it in the command line.
This feature enables the function to be called recursively, which means that the function calls itself to reach an answer.

Usually, a recursive function has a base value that it eventually iterates down to. Many advanced mathematical algorithms

use recursion to reduce a complex equation down one level repeatedly, until they get to the level defined by the base value.
The classic example of a recursive algorithm is calculating factorials. A factorial of a number is the value of the preceding

numbers multiplied with the number. Thus, to find the factorial of 5, you'd perform the following equation:

5! = 1 * 2 * 3 * 4 * 5 = 120
Using recursion, the equation is reduced down to the following format:

x! = x * (x-1)!
or in English, the factorial of x is equal to x times the factorial of x-1. This can be expressed in a simple recursive script:

function factorial {
 if [$1 -eq 1]
 then
 echo 1
 else
 local temp=$[$1 - 1]
 local result=‘factorial $temp‘
 echo $[$result * $1]
 fi
}
The factorial function uses itself to calculate the value for the factorial:

$ cat test13
#!/bin/bash
using recursion

function factorial {
 if [$1 -eq 1]
 then
 echo 1
 else
 local temp=$[$1 - 1]
 local result=‘factorial $temp‘
 echo $[$result * $1]
 fi

www.it-ebooks.info

http://www.it-ebooks.info/

}

read -p “Enter value: ” value
result=‘factorial $value‘
echo “The factorial of $value is: $result”
$
$./test13
Enter value: 5
The factorial of 5 is: 120
$
Using the factorial function is easy. Having created a function like this, you may want to use it in other scripts. Next, we'll

look at how to do that efficiently.

Creating a Library
It's easy to see how functions can help save typing in a single script, but how about if you just happen to use the same single
code block between scripts? It's obviously challenging if you have to define the same function in each script, only to use it

one time in each script.
There's a solution for that problem! The bash shell allows you to create a library file for your functions, and then

reference that single library file in as many scripts as you need to.
The first step in the process is to create a common library file that contains the functions you need in your scripts. Here's a

simple library file called myfuncs that defines three simple functions:

$ cat myfuncs
my script functions

function addem {
 echo $[$1 + $2]
}

function multem {
 echo $[$1 * $2]
}

function divem {
 if [$2 -ne 0]
 then
 echo $[$1 / $2]
 else
 echo -1
 fi
}
$
The next step is to include the myfuncs library file in your script files that want to use any of the functions. This is where

things get tricky.
The problem is with the scope of shell functions. As with environment variables, shell functions are only valid for the shell

session in which you define them. If you run the myfuncs shell script from your shell command line interface prompt, the
shell creates a new shell and runs the script in that new shell. This will define the three functions for that shell, but when you

try to run another script that uses those functions, they won't be available.
This applies to scripts as well. If you try to just run the library file as a regular script file, the functions won't appear in

www.it-ebooks.info

http://www.it-ebooks.info/

This applies to scripts as well. If you try to just run the library file as a regular script file, the functions won't appear in

your script:

$ cat badtest4
#!/bin/bash
using a library file the wrong way
./myfuncs

result=‘addem 10 15‘
echo “The result is $result”
$
$./badtest4
./badtest3: addem: command not found
The result is
$
The key to using function libraries is the source command. The source command executes commands within the current

shell context instead of creating a new shell to execute them. You use the source command to run the library file script

inside of your shell script. This makes the functions available to the script.
The source command has a shortcut alias, called the dot operator. To source the myfuncs library file in a shell script, all

you need to do is add the following line:

. ./myfuncs
This example assumes that the myfuncs library file is located in the same directory as the shell script. If not, you'll need to

use the appropriate path to access the file. Here's an example of creating a script that uses the myfuncs library file:

$ cat test14
#!/bin/bash
using functions defined in a library file
. ./myfuncs

value1=10
value2=5
result1=‘addem $value1 $value2‘
result2=‘multem $value1 $value2‘
result3=‘divem $value1 $value2‘
echo “The result of adding them is: $result1”
echo “The result of multiplying them is: $result2”
echo “The result of dividing them is: $result3”
$
$./test14
The result of adding them is: 15
The result of multiplying them is: 50
The result of dividing them is: 2
$
The script successfully uses the functions defined in the myfuncs library file.

Using Functions on the Command Line
You can use script functions to create some pretty complex operations. Sometimes it would be nice to be able to use these

functions directly on the command line interface prompt.
Just as you can use a script function as a command in a shell script, you can also use a script function as a command in the

www.it-ebooks.info

http://www.it-ebooks.info/

Just as you can use a script function as a command in a shell script, you can also use a script function as a command in the

command line interface. This is a nice feature because once you define the function in the shell, you can use it from any
directory on the system; you don't have to worry about a script being in your PATH environment variable. The trick is to get

the shell to recognize the function. There are a couple of ways to do that.

Creating Functions on the Command Line
Because the shell interprets commands as you type them, you can define a function directly on the command line. There are

two ways to do that.
The first method defines the function all on one line:

$ function divem { echo $[$1 / $2]; }
$ divem 100 5
20
$
When you define the function on the command line, you must remember to include a semicolon at the end of each

command, so the shell knows where to separate commands:

$ function doubleit { read -p “Enter value: ” value; echo $[
 $ value * 2]; }
$
$ doubleit
Enter value: 20
40
$
The other method is to use multiple lines to define the function. When you do that, the bash shell uses the secondary

prompt to prompt you for more commands. Using this method, you don't need to place a semicolon at the end of each

command; just press the Enter key:

$ function multem {
> echo $[$1 * $2]
> }
$ multem 2 5
10
$
When you use the brace at the end of the function, the shell knows that you're done defining the function.

Caution

Be extremely careful when creating functions on the command line. If you use a function
with the same name as a built-in command or another command, the function will override
the original command.

Defining Functions in the .bashrc File
The obvious downside to defining shell functions directly on the command line is that when you exit the shell, your function

disappears. For complex functions, this can become a problem.
A much simpler method is to define the function in a place where it will be reloaded by the shell each time you start a new

shell.
The best place to do that is the .bashrc file. The bash shell looks for this file in your home directory each time it starts,

whether interactively or as the result of starting a new shell from within an existing shell.

Directly Defining Functions

www.it-ebooks.info

http://www.it-ebooks.info/

You can define the functions directly in the .bashrc file in your home directory. Most Linux distributions already define
some things in the .bashrc file, so be careful not to remove those items. Just add your functions to the bottom of the

existing file. Here's an example of doing that:

$ cat .bashrc
.bashrc

Source global definitions
if [-r /etc/bashrc]; then
 . /etc/bashrc
fi

function addem {
 echo $[$1 + $2]
}
$
The function won't take effect until the next time you start a new bash shell. After you do that, you can use the function

anywhere on the system.

Sourcing Function Files
Just as in a shell script, you can use the source command (or its alias the dot operator) to add functions from an existing

library file to your .bashrc script:

$ cat .bashrc
.bashrc

Source global definitions
if [-r /etc/bashrc]; then
 . /etc/bashrc
fi

. /home/rich/libraries/myfuncs
$
Make sure that you include the proper pathname to reference the library file for the bash shell to find. The next time you

start a shell, all of the functions in your library are available at the command line interface:

$ addem 10 5
15
$ multem 10 5
50
$ divem 10 5
2
$
Even better, the shell also passes any defined functions to child shell processes so your functions are automatically

available for any shell scripts you run from your shell session. You can test this by writing a script that uses the functions

without defining or sourcing them:

$ cat test15
#!/bin/bash

www.it-ebooks.info

http://www.it-ebooks.info/

using a function defined in the .bashrc file

value1=10
value2=5
result1=‘addem $value1 $value2‘
result2=‘multem $value1 $value2‘
result3=‘divem $value1 $value2‘
echo “The result of adding them is: $result1”
echo “The result of multiplying them is: $result2”
echo “The result of dividing them is: $result3”
$
$./test15
The result of adding them is: 15
The result of multiplying them is: 50
The result of dividing them is: 2
$
Even without sourcing the library file, the functions worked perfectly in the shell script.

Summary
Shell script functions allow you to place script code that's repeated throughout the script in a single place. Instead of having
to rewrite blocks of code, you can create a function containing the code block, and then just reference the function name in

your script. The bash shell jumps to the function code block whenever it sees the function name used in the script.
You can even create script functions that return values. This allows you to create functions that interact with the script,

returning both numeric and character data. Script functions can return numeric data by using the exit status of the last
command in the function, or using the return command. The return command allows you to programmatically set the exit

status of your function to a specific value based on the results of the function.
Functions can also return values using the standard echo statement. You can capture the output data using the backtick

character as you would any other shell command. This enables you to return any type of data from a function, including

strings and floating-point numbers.
You can use shell variables within your functions, assigning values to variables and retrieving values from existing

variables. This allows you to pass any type of data both into and out of a script function from the main script program.
Functions also allow you to define local variables, which are accessible only from within the function code block. Local
variables allow you to create self-contained functions, which don't interfere with any variables or processes used in the main

shell script.
Functions can also call other functions, including themselves. When a function calls itself, it is called recursion. A recursive

function often has a base value that is the terminal value of the function. The function continues to call itself with a

decreasing parameter value until the base value is reached.
If you use lots of functions in your shell scripts, you can create library files of script functions. The library files can be

included in any shell script file by using the source command, or its alias, the dot operator. This is called sourcing the library
file. The shell doesn't run the library file but makes the functions available within the shell that runs the script. You can use
this same technique to create functions that you can use on the normal shell command line. You can either define functions
directly on the command line or you can add them to your .bashrc file so that they are available for each new shell session

you start. This is a handy way to create utilities that can be used no matter what your PATH environment variable is set to.
The next chapter discusses the use of text graphics in your scripts. In this day of modern graphical interfaces, sometimes a

plain text interface just doesn't cut it. The bash shell provides some easy ways for you to incorporate simple graphics features

in your scripts to help spice things up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17

Writing Scripts for Graphical Desktops

In This Chapter

Creating text menus
Building text window widgets
Adding X Windows graphics

Over the years, shell scripts have acquired a reputation for being dull and boring. This doesn't have to be the case, however, if
you plan on running your scripts in a graphical environment. There are plenty of ways to interact with your script user that
don't rely on the read and echo statements. This chapter dives into a few different methods you can use to help add life to

your interactive scripts so that they don't look so old-fashioned.

Creating Text Menus
The most common way to create an interactive shell script is to utilize a menu. Offering your customers a choice of various

options helps guide them through exactly what the script can and can't do.
Menu scripts usually clear the display area, and then show a list of options available. The customer can select an option by

pressing an associated letter or number assigned to each option. Figure 17.1 shows the layout of a sample menu.

Figure 17.1 Displaying a menu from a shell script

The core of a shell script menu is the case command (see Chapter 11). The case command performs specific commands,

www.it-ebooks.info

#c17_fig_0001
#c17_fig_anc_0001
http://www.it-ebooks.info/

The core of a shell script menu is the case command (see Chapter 11). The case command performs specific commands,

depending on what character your customer selects from the menu.
The following sections walk you through the steps you should follow to create a menu-based shell script.

Create the Menu Layout
The first step in creating a menu is, obviously, to determine what elements you want to appear in the menu and lay them out

the way that you want them to appear.
Before creating the menu, it's usually a good idea to clear the monitor display. This enables you to display your menu in a

clean environment without distracting text.
The clear command uses the terminfo data of your terminal session (see Chapter 2) to clear any text that appears on the

monitor. After the clear command, you can use the echo command to display your menu elements.
By default, the echo command can only display printable text characters. When creating menu items, it's often helpful to

use nonprintable items, such as the tab and newline characters. To include these characters in your echo command, you must

use the -e option. Thus, the command:

 echo -e “1.\tDisplay disk space”
results in the output line:

 1. Display disk space
This greatly helps in formatting the layout of the menu items. With just a few echo commands, you can create a

reasonable-looking menu:

 clear
 echo
 echo -e “\t\t\tSys Admin Menu\n”
 echo -e “\t1. Display disk space”
 echo -e “\t2. Display logged on users”
 echo -e “\t3. Display memory usage”
 echo -e “\t0. Exit menu\n\n”
 echo –en “\t\tEnter option: ”
The -en option on the last line displays the line without adding the newline character at the end. This gives the menu a

more professional look, as the cursor will stay at the end of the line waiting for the customer's input.
The last part of creating the menu is to retrieve the input from the customer. This is done using the read command (see

Chapter 13). Because we expect only single-character input, the nice thing to do is to use the -n option in the read command

to retrieve only one character. This allows the customer to enter a number without having to press the Enter key:

 read -n 1 option
Next, you'll need to create your menu functions.

Create the Menu Functions
Shell script menu options are easier to create as a group of separate functions. This enables you to create a simple, concise

case command that is easy to follow.
To do that, you need to create separate shell functions for each of your menu options. The first step in creating a menu

shell script is to determine what functions you want your script to perform and lay them out as separate functions in your

code.
It is common practice to create stub functions for functions that aren't implemented yet. A stub function is a function that

doesn't contain any commands yet, or possibly just an echo statement indicating what should be there eventually:

 function diskspace {
 clear
 echo “This is where the diskspace commands will go”
 }

www.it-ebooks.info

http://www.it-ebooks.info/

This enables your menu to operate smoothly while you work on the individual functions. You don't have to code all of
the functions for your menu to work. You'll notice that the function starts out with the clear command. This enables you to

start the function on a clean monitor screen, without the menu showing.
One thing that helps out in the shell script menu is to create the menu layout itself as a function:

 function menu {
 clear
 echo
 echo -e “\t\t\tSys Admin Menu\n”
 echo -e “\t1. Display disk space”
 echo -e “\t2. Display logged on users”
 echo -e “\t3. Display memory usage”
 echo -e “\t0. Exit program\n\n”
 echo -en “\t\tEnter option: ”
 read -n 1 option
 }
This enables you to easily redisplay the menu at any time just by calling the menu function.

Add the Menu Logic
Now that you have your menu layout and your functions, all you need to do is create the programming logic to put the two

together. As mentioned, this requires the case command.
The case command should call the appropriate function according to the character selection expected from the menu.

It's always a good idea to use the default case command character (the asterisk) to catch any incorrect menu entries.
The following code illustrates the use of the case command in a typical menu:

 menu
 case $option in
 0)
 break ;;
 1)
 diskspace ;;
 2)
 whoseon ;;
 3)
 memusage ;;
 *)
 clear
 echo “Sorry, wrong selection”;;
 esac
This code first uses the menu function to clear the monitor screen and display the menu. The read command in the menu

function pauses until the customer hits a character on the keyboard. Once that's been done, the case command takes over.
The case command calls the appropriate function based on the returned character. After the function completes, the case

command exits.

Putting It All Together
Now that you've seen all of the parts that make up a shell script menu, let's put them together and see how they all

interoperate. Here's an example of a full menu script:

www.it-ebooks.info

http://www.it-ebooks.info/

 $ cat menu1
 #!/bin/bash
 # simple script menu

 function diskspace {
 clear
 df -k
 }

 function whoseon {
 clear
 who
 }

 function memusage {
 clear
 cat /proc/meminfo
 }

 function menu {
 clear
 echo
 echo -e “\t\t\tSys Admin Menu\n”
 echo -e “\t1. Display disk space”
 echo -e “\t2. Display logged on users”
 echo -e “\t3. Display memory usage”
 echo -e “\t0. Exit program\n\n”
 echo -en “\t\tEnter option: ”
 read -n 1 option
 }

 while [1]
 do
 menu
 case $option in
 0)
 break ;;
 1)
 diskspace ;;
 2)
 whoseon ;;
 3)
 memusage ;;
 *)

www.it-ebooks.info

http://www.it-ebooks.info/

 clear
 echo “Sorry, wrong selection”;;
 esac
 echo -en “\n\n\t\t\tHit any key to continue”
 read -n 1 line
 done
 clear
 $
This menu creates three functions to retrieve administrative information about the Linux system using common

commands. It uses a while loop to continually loop through the menu until the customer selects option 0, which uses the

break command to break out of the while loop.
You can use this same template to create any shell script menu interface. It provides a simple way to interact with your

customers.

Using the select Command
You may have noticed that half the challenge of creating a text menu is just creating the menu layout and retrieving the

answer that you enter. The bash shell provides a handy little utility for you that does all of this work automatically.
The select command allows you to create a menu from a single command line and then retrieve the entered answer and

automatically process it. The format of the select command is as follows:

 select variable in list
 do
 commands
 done
The list parameter is a space-separated list of text items that build the menu. The select command displays each item

in the list as a numbered option and then displays a special prompt, defined by the PS3 environment variable, for the

selection.
Here's a simple example of the select command in action:

 $ cat smenu1
 #!/bin/bash
 # using select in the menu

 function diskspace {
 clear
 df -k
 }

 function whoseon {
 clear
 who
 }

 function memusage {
 clear
 cat /proc/meminfo
 }

www.it-ebooks.info

http://www.it-ebooks.info/

 PS3=”Enter option: “
 select option in “Display disk space” “Display logged on users”
 “Display memory usage” “Exit program”
 do
 case $option in
 “Exit program”)
 break ;;
 “Display disk space”)
 diskspace ;;
 “Display logged on users”)
 whoseon ;;
 “Display memory usage”)
 memusage ;;
 *)
 clear
 echo “Sorry, wrong selection”;;
 esac
 done
 clear
 $
When you run the program, it automatically produces the following menu:

 $./smenu1
 1) Display disk space 3) Display memory usage
 2) Display logged on users 4) Exit program
 Enter option:
When you use the select command, remember that the result value stored in the variable is the entire text string and

not the number associated with the menu item. The text string values are what you need to compare in your case

statements.

Doing Windows
Using text menus is a step in the right direction, but there's still a lot missing in our interactive scripts, especially if we try to
compare them to the graphical Windows world. Fortunately for us, there are some very resourceful people out in the open

source world that have helped us out.
The dialog package is a nifty little tool originally created by Savio Lam, and currently maintained by Thomas E. Dickey. This

package recreates standard Windows dialog boxes in a text environment using ANSI escape control codes. You can easily
incorporate these dialog boxes in your shell scripts to interact with your script users. This section describes the dialog package

and demonstrates how to use it in shell scripts.

Note

The dialog package isn't installed in all Linux distributions by default. If it's not
installed by default, because of its popularity it's almost always included in the
software repository. Check your specific Linux distribution documentation for how
to load the dialog package. For the Ubuntu Linux distribution, the following is the
command line command to install it:

sudo apt-get install dialog
That package installs the dialog package plus the required libraries for your system.

www.it-ebooks.info

http://www.it-ebooks.info/

The dialog Package
The dialog command uses command line parameters to determine what type of Windows widget to produce. A widget is the
dialog package term for a type of Windows element. The dialog package currently supports the types of widgets shown in

Table 17.1.

Table 17.1 The dialog Widgets

Widget Description

calendar Provides a calendar to select a date from

checklist Displays multiple entries where each entry can be turned on or off

form Allows you to build a form with labels and text fields to be filled out

fselect Provides a file selection window to browse for a file

gauge Displays a meter showing a percentage of completion

infobox Displays a message without waiting for a response

inputbox Displays a single text form box for text entry

inputmenu Provides an editable menu

menu Displays a list of selections to choose from

msgbox Displays a message and requires the user to select an OK button

pause Displays a meter showing the status of a specified pause period

passwordbox Displays a single textbox that hides entered text

passwordform Displays a form with labels and hidden text fields

radiolist Provides a group of menu items where only one item can be selected

tailbox Displays text from a file in a scroll window using the tail command

tailboxbg Same as tailbox, but operates in background mode

textbox Displays the contents of a file in a scroll window

timebox Provides a window to select an hour, minute, and second

yesno Provides a simple message with Yes and No buttons

As you can see from Table 17.1, there are lots of different widgets to choose from. This can give your scripts a more

professional look with very little effort.
To specify a specific widget on the command line, you need to use the double dash format:

 dialog --widget parameters
where widget is the widget name as seen in Table 17.1, and parameters defines the size of the widget window and any text

required for the widget.
Each dialog widget provides output in two forms:

Using STDERR
Using the exit code status

The exit code status of the dialog command determines the button selected by the user. If an OK or Yes button is

www.it-ebooks.info

#c17_tbl_0001
#c17_tbl_anc_0001
#c17_tbl_0001
#c17_tbl_0001
http://www.it-ebooks.info/

The exit code status of the dialog command determines the button selected by the user. If an OK or Yes button is

selected, the dialog command returns a 0 exit status. If a Cancel or No button is selected, the dialog command returns a 1

exit status. You can use the standard $? variable to determine which button was selected in the dialog widget.
If a widget returns any data, such as a menu selection, the dialog command sends the data to STDERR. You can use the

standard bash shell technique of redirecting the STDERR output to another file or file descriptor:

 dialog --inputbox “Enter your age:” 10 20 2>age.txt
This command redirects the text entered in the textbox to the age.txt file.
The following sections take a look at some examples of the more common dialog widgets you'll use in your shell scripts.

The msgbox Widget
The msgbox widget is the most common type of dialog box. It displays a simple message in a window and waits for the user to

click an OK button before disappearing. The following format is required to use a msgbox widget:

 dialog --msgbox text height width
The text parameter is any string you want to place in the window. The dialog command will automatically wrap the

text to fit the size of the window you create, using the height and width parameters. If you want to place a title at the top
of the window, you can also use the --title parameter, along with the text of the title. Here's an example of using the

msgbox widget:

 $ dialog --title Testing --msgbox “This is a test” 10 20
After entering this command, the message box will appear on the screen of the terminal emulator session you're using.

Figure 17.2 shows what this looks like.

Figure 17.2 Using the msgbox widget in the dialog command

If your terminal emulator supports the mouse, you can click the OK button to close the dialog box. You can also use

keyboard commands to simulate a click—just press the Enter key.

www.it-ebooks.info

#c17_fig_0002
#c17_fig_anc_0002
http://www.it-ebooks.info/

The yesno Widget
The yesno widget takes the msgbox widget one step further, allowing the user to answer a yes/no question displayed in the
window. It produces two buttons at the bottom of the window, one for Yes, and another for No. The user can switch between
buttons by using the mouse, the tab key, or the keyboard arrow keys. To select the button, the user can either press the

spacebar or the Enter key.
Here's an example of using the yesno widget:

 $ dialog --title “Please answer” --yesno “Is this thing on?” 10 20
 $ echo $?
 1
 $
This produces the widget shown in Figure 17.3.

Figure 17.3 Using the yesno widget in the dialog command

The exit status of the dialog command is set depending on which button the user selects. If the No button is selected,

the exit status is 1, and if the Yes button is selected, the exit status is 0.

The inputbox Widget
The inputbox widget provides a simple textbox area for the user to enter a text string. The dialog command sends the value
of the text string to STDERR. You must redirect that to retrieve the answer. Figure 17.4 demonstrates what the inputbox

widget looks like.

Figure 17.4 The inputbox widget

www.it-ebooks.info

#c17_fig_0003
#c17_fig_anc_0003
#c17_fig_0004
#c17_fig_anc_0004
http://www.it-ebooks.info/

Figure 17.4 The inputbox widget

As you can see in Figure 17.4, the inputbox provides two buttons, OK and Cancel. If the Cancel button is selected, the

exit status of the command is 1; otherwise, the exit status will be 0:

 $ dialog --inputbox “Enter your age:” 10 20 2>age.txt
 $ echo $?
 0
 $ cat age.txt
 12$
You'll notice when you use the cat command to display the contents of the text file that there's no newline character

after the value. This enables you to easily redirect the file contents to a variable in a shell script to extract the string entered

by the user.

The textbox Widget
The textbox widget is a great way to display lots of information in a window. It produces a scrollable window containing

the text from a file specified in the parameters:

 $ dialog --textbox /etc/passwd 15 45
The contents of the /etc/passwd file are shown within the scrollable text window, as illustrated in Figure 17.5.

Figure 17.5 The textbox widget

www.it-ebooks.info

#c17_fig_anc_0004
#c17_fig_0004
#c17_fig_0005
#c17_fig_anc_0005
http://www.it-ebooks.info/

Figure 17.5 The textbox widget

You can use the arrow keys to scroll left and right, as well as up and down in the text file. The bottom line in the window

shows the percent location within the file that you're viewing. The textbox contains only a single Exit button, which should be

selected to exit the widget.

The menu Widget
The menu widget allows you to create a window version of the text menu we created earlier in this chapter. All you need to do

is provide a selection tag and the text for each item:

 $ dialog --menu “Sys Admin Menu” 20 30 10 1 “Display disk space”
 2 “Display users” 3 “Display memory usage” 4 “Exit” 2> test.txt
The first parameter defines a title for the menu. The next two parameters define the height and width of the menu

window, while the third parameter defines the number of menu items that appear in the window at one time. If there are more

menu items, you can scroll through them using the arrow keys.
Following those parameters, you must add menu item pairs. The first element is the tag used to select the menu item. Each

tag should be unique for each menu item and can be selected by hitting the appropriate key on the keyboard. The second

element is the text used in the menu. Figure 17.6 demonstrates the menu produced by the example command.

Figure 17.6 The menu widget with menu items

www.it-ebooks.info

#c17_fig_anc_0005
#c17_fig_0006
#c17_fig_anc_0006
http://www.it-ebooks.info/

Figure 17.6 The menu widget with menu items

If the user selects a menu item by pressing the appropriate key for the tag, that menu item is highlighted but not selected.

A selection isn't made until the OK button is selected by using either the mouse or the Enter key. The dialog command sends

the selected menu item text to STDERR, which you can redirect as needed.

The fselect Widget
There are several fancy built-in widgets provided by the dialog command. The fselect widget is extremely handy when
working with file names. Instead of forcing the user to type in a file name, you can use the fselect widget to browse to the

file location and select the file, as shown in Figure 17.7.

Figure 17.7 The fselect widget

www.it-ebooks.info

#c17_fig_anc_0006
#c17_fig_0007
#c17_fig_anc_0007
http://www.it-ebooks.info/

Figure 17.7 The fselect widget

The fselect widget format looks like:

 $ dialog --title “Select a file” --fselect $HOME/ 10 50 2>file.txt
The first parameter after the fselect option is the starting folder location used in the window. The fselect widget

window consists of a directory listing on the left side, a file listing on the right side that shows all of the files in the selected
directory, and a simple textbox that contains the currently selected file or directory. You can manually type a file name in the

textbox, or use the directory and file listings to select one.

The dialog Options
In addition to the standard widgets, you can customize lots of different options in the dialog command. You've already seen

the --title parameter in action. This allows you to set a title for the widget that appears at the top of the window.
There are lots of other options available that allow you to completely customize both the appearance and the behavior

of your windows. Table 17.2 shows the options available for the dialog command.

Table 17.2 The dialog Command Options

Option Description

--add-widget Proceed to the next dialog unless Esc or the Cancel button has
been pressed.

--aspect ratio Specify the width/height aspect ratio of the window.

--backtitle title Specify a title to display on the background, at the top of the
screen.

www.it-ebooks.info

#c17_fig_anc_0007
#c17_tbl_0002
#c17_tbl_anc_0002
http://www.it-ebooks.info/

--begin x y Specify the starting location of the top-left corner of the
window.

--cancel-label label Specify an alternative label for the Cancel button.

--clear Clear the display using the default dialog background color.

--colors Embed ANSI color codes in dialog text.

--cr-wrap Allow newline characters in dialog text and force a line wrap.

--create-rc file Dump a sample configuration file to the specified file.

--defaultno Make the default of a yes/no dialog No.

--default-item string Set the default item in a checklist, form, or menu dialog.

--exit-label label Specify an alternative label for the Exit button.

--extra-button Display an extra button between the OK and Cancel buttons.

--extra-label label Specify an alternative label for the Extra button.

--help Display the dialog command help message.

--help-button Display a Help button after the OK and Cancel buttons.

--help-label label Specify an alternative label for the Help button.

--help-status Write the checklist, radiolist, or form information after the
help information in the Help button was selected.

--ignore Ignore options that dialog does not recognize.

--input-fd fd Specify an alternative file descriptor, other than STDIN.

--insecure Change the password widget to display asterisks when typing.

--item-help Add a help column at the bottom of the screen for each tag in
a checklist, radiolist, or menu for the tag item.

--keep-window Don't clear old widgets from the screen.

--max-input size Specify a maximum string size for the input. The default is
2048.

--nocancel Suppress the Cancel button.

--no-collapse Don't convert tabs to spaces in dialog text.

--no-kill Place the tailboxbg dialog in background and disable SIGHUP
for the process.

--no-label label Specify an alternative label for the No button.

--no-shadow Don't display shadows for dialog windows.

--ok-label label Specify an alternative label for the OK button.

www.it-ebooks.info

http://www.it-ebooks.info/

--output-fd fd Specify an alternative output file descriptor other than
STDERR.

--print-maxsize Print the maximum size of dialog windows allowed to the
output.

--print-size Print the size of each dialog window to the output.

--print-version Print the dialog version to output.

--separate-output Output the result of a checklist widget one line at a time with
no quoting.

--separator string Specify a string that separates the output for each widget.

--separate-widget string Specify a string that separates the output for each widget.

--shadow Draw a shadow to the right and bottom of each window.

--single-quoted Use single quoting if needed for the checklist output.

--sleep sec Delay for the specified number of seconds after processing
the dialog window.

--stderr Send output to STDERR (this is the default behavior).

--stdout Send output to STDOUT.

--tab-correct Convert tabs to spaces.

--tab-len n Specify the number of spaces a tab character uses (the default
is 8).

--timeout sec Specify the number of seconds before exiting with an error
code if no user input.

--title title Specify the title of the dialog window.

--trim Remove leading spaces and newline characters from dialog
text.

--visit-items Modify the tab stops in the dialog window to include the list of
items.

--yes-label label Specify an alternative label for the Yes button.

The --backtitle option is a handy way to create a common title for your menu through the script. If you specify it for

each dialog window, it will persist throughout your application, creating a professional look to your script.
As you can tell from Table 17.2, you can overwrite any of the button labels in your dialog window. This feature allows you

to create just about any window situation you need.

Using the dialog Command in a Script

Using the dialog command in your scripts is a snap. There are just two things you must remember:
Check the exit status of the dialog command if there's a Cancel or No button available.
Redirect STDERR to retrieve the output value.

www.it-ebooks.info

#c17_tbl_0002
http://www.it-ebooks.info/

If you follow these two rules, you'll have a professional-looking interactive script in no time. Here's an example using

dialog widgets to reproduce the system admin menu we created earlier in the chapter:

 $ cat menu3
 #!/bin/bash
 # using dialog to create a menu

 temp=‘mktemp -t test.XXXXXX‘
 temp2=‘mktemp -t test2.XXXXXX‘

 function diskspace {
 df -k > $temp
 dialog --textbox $temp 20 60
 }

 function whoseon {
 who > $temp
 dialog --textbox $temp 20 50
 }

 function memusage {
 cat /proc/meminfo > $temp
 dialog --textbox $temp 20 50
 }

 while [1]
 do
 dialog --menu “Sys Admin Menu” 20 30 10 1 “Display disk space” 2
 “Display users” 3 “Display memory usage” 0 “Exit” 2> $temp2
 if [$? -eq 1]
 then
 break
 fi

 selection=‘cat $temp2‘

 case $selection in
 1)
 diskspace ;;
 2)
 whoseon ;;
 3)
 memusage ;;
 0)
 break ;;

www.it-ebooks.info

http://www.it-ebooks.info/

 *)
 dialog --msgbox “Sorry, invalid selection” 10 30
 esac
 done
 rm -f $temp 2> /dev/null
 rm -f $temp2 2> /dev/null
 $
The script uses the while loop with a constant true value to create an endless loop displaying the menu dialog. This

means that, after every function, the script returns to displaying the menu.
The menu dialog includes a Cancel button, so the script checks the exit status of the dialog command in case the user

presses the Cancel button to exit. Because it's in a while loop, exiting is as easy as using the break command to jump out of

the while loop.
The script uses the mktemp command to create two temporary files for holding data for the dialog commands. The first

one, $temp, is used to hold the output of the df and meminfo commands so that they can be displayed in the textbox

dialog (see Figure 17.8). The second temporary file, $temp2, is used to hold the selection value from the main menu dialog.

Figure 17.8 The meminfo command output displayed using the textbox dialog option

Now this is starting to look like a real application you can show off to people!

Getting Graphic
If you're looking for even more graphics for your interactive scripts, you can go one step further. Both the KDE and GNOME
desktop environments (see Chapter 1) have expanded on the dialog command idea and include commands that produce X

Windows graphical widgets for their respective environments.
This section describes the kdialog and zenity packages, which provide graphical window widgets for the KDE and GNOME

www.it-ebooks.info

#c17_fig_0008
#c17_fig_anc_0008
http://www.it-ebooks.info/

This section describes the kdialog and zenity packages, which provide graphical window widgets for the KDE and GNOME

desktops, respectively.

The KDE Environment
The KDE graphical environment includes the kdialog package by default. The kdialog package uses the kdialog command to
generate standard windows, similar to the dialog-style widgets, within your KDE desktop. However, instead of having the
clunky feel to them, these windows blend right in with the rest of your KDE application windows! This allows you to produce

Windows-quality user interfaces directly from your shell scripts!

Note

Just because your Linux distribution uses the KDE desktop doesn't necessarily
mean it has the kdialog package installed by default. You may need to manually
install it from the distribution repository.

kdialog Widgets
Just like the dialog command, the kdialog command uses command line options to specify what type of window widget

to use. The following is the format of the kdialog command:

 kdialog display-options window-options arguments
The window-options options allow you to specify what type of window widget to use. The available options are shown

in Table 17.3.

Table 17.3 kdialog Window Options

Option Description

--checklist title [tag item status] A checklist menu, with status specifying if the
item is checked or not.

--error text Error message box.

--inputbox text [init] Input textbox. You can specify the default value
using the init value.

--menu title [tag item] Menu selection box title and a list of items
identified by a tag.

--msgbox text Simple message box with specified text.

--password text Password input textbox that hides user input.

--radiolist title [tag item status] A radiolist menu, with status specifying if the
item is selected or not.

--separate-output Returns items on separate lines for checklist and
radiolist menus.

--sorry text Sorry message box.

--textbox file [width] [height] Textbox displaying the contents of file,
alternatively specified by width and height.

--title title Specifies a title for the TitleBar area of the
dialog window.

www.it-ebooks.info

#c17_tbl_0003
#c17_tbl_anc_0003
http://www.it-ebooks.info/

--warningyesno text Warning message box with Yes and No buttons.

--warningcontinuecancel text Warning message box with Continue and Cancel
buttons.

--warningyesnocancel text Warning message box with Yes, No, and Cancel
buttons.

--yesno text Question box with Yes and No buttons.

--yesnocancel text Question box with Yes, No, and Cancel buttons.

As you can see from Table 17.3, all of the standard window dialog box types are represented. However, when you use a

kdialog window widget, it appears as a separate window in the KDE desktop, not inside the terminal emulator session!
The checklist and radiolist widgets allow you to define individual items in the lists and whether they are selected

by default:

$kdialog --checklist “Items I need” 1 “Toothbrush” on 2 “Toothpaste”
 off 3 “Hair brush” on 4 “Deodorant” off 5 “Slippers” off
The resulting checklist window is shown in Figure 17.9.

Figure 17.9 A kdialog checklist dialog window
The items specified as “on” are highlighted in the checklist. To select or deselect an item in the checklist, just click on it. If you

select the OK button, the kdialog will send the tag values to STDOUT:

“1” “3” “5”
$
When you hit the Enter key, the kdialog box appears with the selections. When you click the OK or Cancel buttons, the

kdialog command returns each tag as a string value to STDOUT (these are the “1”, “3”, and “5” values you see in the

output). Your script must be able to parse the resulting values and match them with the original values.

Using kdialog
You can use the kdialog window widgets in your shell scripts similarly to how you use the dialog widgets. The big

difference is that the kdialog window widgets output values using STDOUT instead of STDERR.
Here's a script that converts the sys admin menu created earlier into a KDE application:

www.it-ebooks.info

#c17_tbl_0003
#c17_fig_0009
#c17_fig_anc_0009
http://www.it-ebooks.info/

 $ cat menu4
 #!/bin/bash
 # using kdialog to create a menu

 temp=‘mktemp -t temp.XXXXXX‘
 temp2=‘mktemp -t temp2.XXXXXX‘

 function diskspace {
 df -k > $temp
 kdialog --textbox $temp 1000 10
 }

 function whoseon {
 who > $temp
 kdialog --textbox $temp 500 10
 }

 function memusage {
 cat /proc/meminfo > $temp
 kdialog --textbox $temp 300 500
 }

 while [1]
 do
kdialog --menu “Sys Admin Menu” “1” “Display diskspace” “2” “Display
 users” “3” “Display memory usage” “0” “Exit” > $temp2
 if [$? -eq 1]
 then
 break
 fi

 selection=‘cat $temp2‘

 case $selection in
 1)
 diskspace ;;
 2)
 whoseon ;;
 3)
 memusage ;;
 0)
 break ;;
 *)
 kdialog --msgbox “Sorry, invalid selection”

www.it-ebooks.info

http://www.it-ebooks.info/

 esac
 done
 $
There isn't much difference in the script from using the kdialog command and the dialog command. The resulting main

menu generated is shown in Figure 17.10.

Figure 17.10 The sys admin menu script using kdialog
Now your simple shell script looks just like a real KDE application! There's no limit to what you can do with your interactive

scripts now.

The GNOME Environment

The GNOME graphical environment supports two popular packages that can generate standard windows:
gdialog
zenity

By far, zenity is the most commonly available package found in most GNOME desktop Linux distributions (it's installed by
default in both Ubuntu and Fedora). This section describes the features of zenity and demonstrates how to use it in your

shell scripts.

zenity Widgets
As you would expect, zenity allows you to create different windows widgets by using command line options. Table 17.4 shows

the different widgets that zenity can produce.

Table 17.4 The zenity Windows Widgets

Option Description

--calendar Display a full month calendar.

--entry Display a text entry dialog window.

--error Display an error message dialog window.

--file-selection Display a full pathname and file name dialog window.

www.it-ebooks.info

#c17_fig_0010
#c17_fig_anc_0010
#c17_tbl_0004
#c17_tbl_anc_0004
http://www.it-ebooks.info/

--info Display an informational dialog window.

--list Display a checklist or radiolist dialog window.

--notification Display a notification icon.

--progress Display a progress bar dialog window.

--question Display a yes/no question dialog window.

--scale Display a scale dialog window.

--text-info Display a textbox containing text.

--warning Display a warning dialog window.

The zenity command line program works somewhat differently than the kdialog and dialog programs. Many of the
widget types are defined using additional options on the command line, instead of including them as arguments to an

option.
The zenity command does offer some pretty cool advanced dialog windows. The calendar option produces a full

month calendar, as shown in Figure 17.11.

Figure 17.11 The zenity calendar dialog window

When you select a date from the calendar, the zenity command returns the value to STDOUT, just like kdialog:

 $ zenity --calendar

www.it-ebooks.info

#c17_fig_0011
#c17_fig_anc_0011
http://www.it-ebooks.info/

 12/25/2011
 $
Another pretty cool window in zenity is the file selection option, shown in Figure 17.12.

Figure 17.12 The zenity file selection dialog window

You can use the dialog window to browse to any directory location on the system (as long as you have the privileges to

view the directory) and select a file. When you select a file, the zenity command returns the full file and pathname:

 $ zenity --file-selection
 /home/ubuntu/menu5
 $
With tools like that at your disposal, the sky's the limit with your shell script creations!

www.it-ebooks.info

#c17_fig_0012
#c17_fig_anc_0012
http://www.it-ebooks.info/

Using zenity in Scripts
As you would expect, zenity performs well in shell scripts. Unfortunately zenity chose not to follow the option convention

used in dialog and kdialog, so converting any existing interactive scripts to zenity may prove challenging.
In converting the sys admin menu from kdialog to zenity, we found that we had to do quite a bit of manipulation of

the widget definitions:

 $cat menu5
 #!/bin/bash
 # using zenity to create a menu

 temp=‘mktemp -t temp.XXXXXX‘
 temp2=‘mktemp -t temp2.XXXXXX‘

 function diskspace {
 df -k > $temp
 zenity --text-info --title “Disk space” --filename=$temp
 --width 750 --height 10
 }

 function whoseon {
 who > $temp
 zenity --text-info --title “Logged in users” --filename=$temp
 --width 500 --height 10
 }

 function memusage {
 cat /proc/meminfo > $temp
 zenity --text-info --title “Memory usage” --filename=$temp
 --width 300 --height 500
 }

 while [1]
 do
 zenity --list --radiolist --title “Sys Admin Menu” --column “Select”
--column “Menu Item” FALSE “Display diskspace” FALSE “Display users”
 FALSE “Display memory usage” FALSE “Exit” > $temp2
 if [$? -eq 1]
 then
 break
 fi

 selection=‘cat $temp2‘
 case $selection in
 “Display disk space”)
 diskspace ;;

www.it-ebooks.info

http://www.it-ebooks.info/

 “Display users”)
 whoseon ;;
 “Display memory usage”)
 memusage ;;
 Exit)
 break ;;
 *)
 zenity --info “Sorry, invalid selection”
 esac
 done
 $
Because zenity doesn't support the menu dialog window, we used a radiolist type window for the main menu, as shown in

Figure 17.13.

Figure 17.13 The sys admin menu using zenity

The radiolist uses two columns, each with a column heading. The first column includes the radio buttons to select. The

second column is the item text. The radiolist also doesn't use tags for the items. When you select an item, the full text of the
item is returned to STDOUT. This makes life a little more interesting for the case command. You must use the full text from

the items in the case options. If there are any spaces in the text, you need to use quotation marks around the text.
Using the zenity package, you can add a Windows feel to your interactive shell scripts in the GNOME desktop.

Summary
Interactive shell scripts have a reputation for being dull and boring. You can change that by using a few different techniques
and tools available on most Linux systems. First, you can create menu systems for your interactive scripts by using the case

www.it-ebooks.info

#c17_fig_0013
#c17_fig_anc_0013
http://www.it-ebooks.info/

and tools available on most Linux systems. First, you can create menu systems for your interactive scripts by using the case

command and shell script functions.
The case command allows you to paint a menu, using the standard echo command, and read a response from the user,

using the read command. The case command then selects the appropriate shell script function based on the value entered.
The dialog program provides several prebuilt text widgets for creating Windows-like objects on a text-based terminal

emulator. You can create dialog boxes for displaying text, entering text, and choosing files and dates by using the dialog

program. This helps bring even more life to your shell script.
If you're running your shell scripts in a graphical X Windows environment, you can utilize even more tools in your

interactive scripts. For the KDE desktop, there's the kdialog program. This program provides simple commands to create
windows widgets for all of the basic windows functions. For the GNOME desktop, there are the gdialog and zenity
programs. Each of these programs provides window widgets that blend into the GNOME desktop just like a real Windows

application.
The next chapter dives into the subject of editing and manipulating text data files. Often the biggest use of shell scripts

revolves around parsing and displaying data in text files such as log and error files. The Linux environment includes two very
useful tools, sed and gawk, for working with text data in your shell scripts. The next chapter introduces you to these tools,

and shows the basics of how to use them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18

Introducing sed and gawk

In This Chapter

Text manipulation
The sed editor basics

By far, one of the most common functions that people use shell scripts for is to work with text files. Between examining log
files, reading configuration files, and handling data elements, shell scripts can help automate the mundane tasks of
manipulating any type of data contained in text files. However, trying to manipulate the contents of text files using just shell
script commands can be somewhat awkward. If you perform any type of data manipulation in your shell scripts, you'll want
to become familiar with the sed and gawk tools available in Linux. These tools can greatly simplify any data-handling tasks

you need to perform.

Text Manipulation
Chapter 9 showed you how to edit text files using different editor programs available in the Linux environment. These editors

enable you to easily manipulate text contained in a text file by using simple commands or mouse clicks.
There are times, however, when you'll find yourself wanting to manipulate text in a text file on the fly, without having to

pull out a full-fledged interactive text editor. In these situations, it would be useful to have a simple command line editor

that could easily format, insert, modify, or delete text elements automatically.
The Linux system provides two common tools for doing just that. This section describes the two most popular command

line editors used in the Linux world, sed and gawk.

The sed Editor
The sed editor is called a stream editor, as opposed to a normal interactive text editor. In an interactive text editor, such as
vim, you interactively use keyboard commands to insert, delete, or replace text in the data. A stream editor edits a stream of

data based on a set of rules you supply ahead of time, before the editor processes the data.
The sed editor can manipulate data in a data stream based on commands you either enter into the command line or store

in a command text file. It reads one line of data at a time from the input, matches that data with the supplied editor
commands, changes data in the stream as specified in the commands, and then outputs the new data to STDOUT. After the
stream editor matches all of the commands against a line of data, it reads the next line of data and repeats the process. After

the stream editor processes all of the lines of data in the stream, it terminates.
Because the commands are applied sequentially line by line, the sed editor has to make only one pass through the data

stream to make the edits. This makes the sed editor much faster than an interactive editor, and allows you to quickly make

changes to data in a file on-the-fly.
The format for using the sed command is:

sed options script file
The options parameters allow you to customize the behavior of the sed command, and include the options shown in

Table 18.1.

Table 18.1 The sed Command Options

Option Description

-e script Add commands specified in the script to the commands run while processing the
input.

-f file Add the commands specified in the file to the commands run while processing the
input.

www.it-ebooks.info

#c18_tbl_0001
#c18_tbl_anc_0001
http://www.it-ebooks.info/

-n Don't produce output for each command, but wait for the print command.

The script parameter specifies a single command to apply against the stream data. If more than one command is required,
you must use either the -e option to specify them in the command line or the -f option to specify them in a separate file.
Numerous commands are available for manipulating data. We'll examine some of the basic commands used by the sed editor

later in this chapter, and then look at some of the more advanced commands in Chapter 20.

Defining an Editor Command in the Command Line
By default, the sed editor applies the specified commands to the STDIN input stream. This allows you to pipe data directly to

the sed editor for processing. Here's a quick example demonstrating how to do this:

$ echo “This is a test” | sed ‘s/test/big test/’
This is a big test
$
This example uses the s command in the sed editor. The s command substitutes a second text string for the first text

string pattern specified between the forward slashes. In this example, the words big test were substituted for the word

test.
When you run this example, it should display the results almost instantaneously. That's the power of using the sed editor.

You can make multiple edits to data in about the same time it takes for some of the interactive editors just to start up.
Of course, this simple test just edited one line of data. You should get the same speedy results when editing complete

files of data:

$ cat data1
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$
$ sed ‘s/dog/cat/’ data1
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
$
The sed command executes and returns the data almost instantaneously. As it processes each line of data, the results are

displayed. You'll start seeing results before the sed editor completes processing the entire file.
It's important to note that the sed editor doesn't modify the data in the text file itself. It only sends the modified text to

STDOUT. If you look at the text file, it still contains the original data:

$ cat data1
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$

Using Multiple Editor Commands in the Command Line

To execute more than one command from the sed command line, just use the -e option:

www.it-ebooks.info

http://www.it-ebooks.info/

$ sed -e ‘s/brown/green/; s/dog/cat/’ data1
The quick green fox jumps over the lazy cat.
The quick green fox jumps over the lazy cat.
The quick green fox jumps over the lazy cat.
The quick green fox jumps over the lazy cat.
$
Both commands are applied to each line of data in the file. The commands must be separated with a semicolon, and there

shouldn't be any spaces between the end of the command and the semicolon.
Instead of using a semicolon to separate the commands, you can use the secondary prompt in the bash shell. Just enter

the first single quotation mark to open the script, and bash will continue to prompt you for more commands until you enter

the closing quotation mark:

$ sed -e ‘
> s/brown/green/
> s/fox/elephant/
> s/dog/cat/’ data1
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
$
You must remember to finish the command on the same line that the closing single quotation mark appears. Once the

bash shell detects the closing quotation mark, it will process the command. Once it starts, the sed command applies each

command you specified to each line of data in the text file.

Reading Editor Commands from a File
Finally, if you have lots of sed commands you want to process, it is often easier to just store them in a separate file. Use the -
f option to specify the file in the sed command:

$ cat script1
s/brown/green/
s/fox/elephant/
s/dog/cat/
$
$ sed -f script1 data1
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
$
In this case, you don't put a semicolon after each command. The sed editor knows that each line contains a separate

command. As with entering commands on the command line, the sed editor reads the commands from the specified file and

applies them to each line in the data file.
We'll be looking at some other sed editor commands that will come in handy for manipulating data in the “The sed

Editor Basics” section. Before that, let's take a quick look at the other Linux data editor.

The gawk Program
While the sed editor is a handy tool for modifying text files on-the-fly, it has its limitations. Often you need a more advanced

www.it-ebooks.info

http://www.it-ebooks.info/

While the sed editor is a handy tool for modifying text files on-the-fly, it has its limitations. Often you need a more advanced

tool for manipulating data in a file, one that provides a more programming-like environment allowing you to modify and

reorganize data in a file. This is where gawk comes in.
The gawk program is the GNU version of the original awk program in Unix. The gawk program takes stream editing one

step further than the sed editor by providing a programming language instead of just editor commands. Within the gawk

programming language, you can do the following:
Define variables to store data.
Use arithmetic and string operators to operate on data.
Use structured programming concepts, such as if-then statements and loops, to add logic to your data processing.
Generate formatted reports by extracting data elements within the data file and repositioning them in another

order or format.
The gawk program's report-generating capabilities are often used for extracting data elements from large bulky text

files and formatting them into a readable report. The perfect example of this is formatting log files. Trying to pore through
lines of errors in a log file can be difficult. The gawk program allows you to filter just the data elements you want to view

from the log file, and then format them in a manner that makes reading the important data easier.

The gawk Command Format

The basic format of the gawk program is as follows:

gawk options program file
Table 18.2 shows the options available with the gawk program.

Table 18.2 The gawk Options

Option Description

-F fs Specify a file separator for delineating data fields in a line.

-f file Specify a file name to read the program from.

-v var=value Define a variable and default value used in the gawk program.

-mf N Specify the maximum number of fields to process in the data file.

-mr N Specify the maximum record size in the data file.

-W keyword Specify the compatibility mode or warning level for gawk.

The command line options provide an easy way to customize features in the gawk program. We'll be looking more closely

at these as we explore gawk.
The power of gawk is in the program script. You can write scripts to read the data within a text line and then manipulate

and display the data to create any type of output report.

Reading the Program Script from the Command Line
A gawk program script is defined by opening and closing braces. You must place script commands between the two braces.
Because the gawk command line assumes that the script is a single text string, you must also enclose your script in single

quotation marks. The following is an example of a simple gawk program script specified on the command line:

$ gawk ‘{print “Hello John!”}’
The program script defines a single command, the print command. The print command does what it says: it prints text

to STDOUT. If you try running this command, you'll be somewhat disappointed, as nothing will happen right away. Because
no file name was defined in the command line, the gawk program retrieves data from STDIN. When you run the program, it

just waits for text to come in via STDIN.
If you type a line of text and press the Enter key, gawk runs the text through the program script:

$ gawk ‘{print “Hello John!”}’

www.it-ebooks.info

#c18_tbl_0002
#c18_tbl_anc_0002
http://www.it-ebooks.info/

This is a test
Hello John!
hello
Hello John!
This is another test
Hello John!

$
Just like the sed editor, the gawk program executes the program script on each line of text available in the data stream.

Because the program script is set to display a fixed text string, no matter what text you enter in the data stream, you'll get

the same text output.
To terminate the gawk program, you must signal that the data stream has ended. The bash shell provides a key

combination to generate an End-of-File (EOF) character. The Ctrl+D key combination generates an EOF character in bash.

Using that key combination terminates the gawk program and returns you to a command line interface prompt.

Using Data Field Variables
One of the primary features of gawk is its ability to manipulate data in the text file. It does this by automatically assigning a
variable to each data element in a line. By default, gawk assigns the following variables to each data field it detects in the line

of text:
$0 represents the entire line of text.
$1 represents the first data field in the line of text.
$2 represents the second data field in the line of text.
$n represents the nth data field in the line of text.

Each data field is determined in a text line by a field separation character. When gawk reads a line of text, it delineates each
data field using the defined field separation character. The default field separation character in gawk is any whitespace

character (such as the tab or space characters).
The following is an example gawk program that reads a text file and displays only the first data field value:

$ cat data3
One line of test text.
Two lines of test text.
Three lines of test text.
$
$ gawk ‘{print $1}’ data3
One
Two
Three
$
This program uses the $1 field variable to display only the first data field for each line of text.
If you're reading a file that uses a different field separation character, you can specify it by using the -F option:

$ gawk -F: ‘{print $1}’ /etc/passwd
root
daemon
bin
sys
sync
games

www.it-ebooks.info

http://www.it-ebooks.info/

man
lp
mail
...
This short program displays the first data field in the password file on the system. Because the /etc/passwd file uses a

colon to separate the data fields, if you want to separate out each data element you must specify it as the field separation

character in the gawk options.

Using Multiple Commands in the Program Script
A programming language wouldn't be very useful if you could only execute one command. The gawk programming
language allows you to combine commands into a normal program. To use multiple commands in the program script

specified on the command line, just place a semicolon between each command:

$ echo “My name is Rich” | gawk ‘{$4=“Christine”; print $0}’
My name is Christine
$
The first command assigns a value to the $4 field variable. The second command then prints the entire data field. Notice

from the output that the gawk program replaced the fourth data field in the original text with the new value.
You can also use the secondary prompt to enter your program script commands one line at a time:

$ gawk ‘{
> $4=“testing”
> print $0 }’
This is not a good test.
This is not testing good test.
$
After you open the single quotation mark, the bash shell provides the secondary prompt to prompt you for more data.

You can add your commands one at a time on each line until you enter the closing single quotation mark. To exit the

program, just press the Ctrl+D key combination to signal the end of the data.

Reading the Program from a File

As with the sed editor, the gawk editor allows you to store your programs in a file and refer to them in the command line:

$ cat script2
{ print $1 “'s home directory is ” $6 }
$
$ gawk -F: -f script2 /etc/passwd
root's home directory is /root
daemon's home directory is /usr/sbin
...
Samantha's home directory is /home/Samantha
Timothy's home directory is /home/Timothy
Christine's home directory is /home/Christine
$
The script2 program script uses the print command again to print the /etc/passwd file's home directory data field

(field variable $6), and the userid data field (field variable $1).
You can specify multiple commands in the program file. To do so, just place each command on a separate line. There's no

need to use semicolons:

$

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat script3
{
text = “'s home directory is ”
print $1 text $6
}
$
$ gawk -F: -f script3 /etc/passwd
root's home directory is /root
daemon's home directory is /usr/sbin
...
Samantha's home directory is /home/Samantha
Timothy's home directory is /home/Timothy
Christine's home directory is /home/Christine
$
The script3 program script defines a variable to hold a text string used in the print command. You'll notice that gawk

programs don't use a dollar sign when referencing a variable's value, as a shell script does.

Running Scripts Before Processing Data
The gawk program also allows you to specify when the program script is run. By default, gawk reads a line of text from the
input and then executes the program script on the data in the line of text. Sometimes you may need to run a script before
processing data, such as to create a header section for a report. The BEGIN keyword is used to accomplish this. It forces gawk

to execute the program script specified after the BEGIN keyword, before gawk reads the data:

$ gawk ‘BEGIN {print “Hello World!”}’
Hello World!
$
This time the print command displays the text before reading any data. However, after it displays the text, it quickly

exits, without waiting for any data.
The reason for this is that the BEGIN keyword only applies the specified script before it processes any data. If you want to

process data with a normal program script, you must define the program using another script section:

$
$ cat data4
Line 1
Line 2
Line 3
$
$ gawk ‘BEGIN { print “The data4 File Contents:” } { print $0 }’ data4
The data4 File Contents:
Line 1
Line 2
Line 3
$
Now after gawk executes the BEGIN script, it uses the second script to process any file data. Be careful when doing this—

notice that both of the scripts are still considered one text string on the gawk command line. You need to place your single

quotation marks accordingly.

Running Scripts After Processing Data

www.it-ebooks.info

http://www.it-ebooks.info/

Like the BEGIN keyword, the END keyword allows you to specify a program script that gawk executes after reading the data:

$
$ gawk ‘BEGIN { print “The data4 File Contents:” } { print $0 }
 END { print “End of File” }’ data4
The data4 File Contents:
Line 1
Line 2
Line 3
End of File
$
When the gawk program is done printing out the file contents, it executes the commands in the END script. This is a great

technique to use to add footer data to reports after all the normal data has been processed.
You can put all of these elements together into a nice little program script file to create a full report from a simple data

file:

$ cat script4
BEGIN {
print “The latest list of users and shells”
print “ Userid Shell”
print “-------- -------”
FS=“:”
}

{
print $1 “ “ $7”
}

END {
print “This concludes the listing”
}
$
This script uses the BEGIN script to create a header section for the report. It also defines a special variable called FS. This is

yet another way to define the field separation character. This way you don't have to depend on the script's user to define the

field separation character in the command line options.
Here's a somewhat truncated output from running this gawk program script:

$ gawk -f script4 /etc/passwd
The latest list of users and shells
 Userid Shell
-------- -------
root /bin/bash
daemon /bin/sh
bin /bin/sh
...
Samantha /bin/bash
Timothy /bin/sh
Christine /bin/sh

www.it-ebooks.info

http://www.it-ebooks.info/

This concludes the listing
$
As expected, the BEGIN script created the header text, the program script processed the information from the specified

data file (the /etc/passwd file), and the END script produced the footer text.
This gives you a small taste of the power available when you use simple gawk scripts. Chapter 21 describes some more

basic programming principles available for your gawk scripts, along with some even more advanced programming concepts

you can use in your gawk program scripts to create professional looking reports from even the most cryptic data files.

The sed Editor Basics
The key to successfully using the sed editor is to know its myriad of commands and formats, which help you customize your
text editing. This section describes some of the basic commands and features you can incorporate into your script to start

using the sed editor.

More Substitution Options
You've already seen how to use the s command to substitute new text for the text in a line. However, a few additional

options are available for the substitute command that can help make your life easier.

Substitution Flags
There's a caveat to how the substitute command replaces matching patterns in the text string. Watch what happens in this

example:

$ cat data5
This is a test of the test script.
This is the second test of the test script.
$
$ sed ‘s/test/trial/’ data5
This is a trial of the test script.
This is the second trial of the test script.
$
The substitute command works fine in replacing text in multiple lines, but by default, it only replaces the first

occurrence in each line. To get the substitute command to work on different occurrences of the text, you must use a

substitution flag. The substitution flag is set after the substitution command strings:

s/pattern/replacement/flags
There are four types of substitution flags available:

A number, indicating the pattern occurrence for which new text should be substituted.
g—Indicates that new text should be substituted for all occurrences of the existing text.
p—Indicates that the contents of the original line should be printed.
w file—Write the results of the substitution to a file.

In the first type of substitution, you can specify which occurrence of the matching pattern the sed editor should

substitute new text for:

$ sed ‘s/test/trial/2’ data5
This is a test of the trial script.
This is the second test of the trial script.
$
As a result of specifying a 2 as the substitution flag, the sed editor only replaces the pattern in the second occurrence in

each line. The g substitution flag enables you to replace every occurrence of the pattern in the text:

$ sed ‘s/test/trial/g’ data5

www.it-ebooks.info

http://www.it-ebooks.info/

This is a trial of the trial script.
This is the second trial of the trial script.
$
The p substitution flag prints a line that contains a matching pattern in the substitute command. This is most often used in

conjunction with the -n sed option:

$ cat data6
This is a test line.
This is a different line.
$
$ sed -n ‘s/test/trial/p’ data5
This is a trial line.
$
The -n option suppresses output from the sed editor. However, the p substitution flag outputs any line that has been

modified. Using the two in combination produces output only for lines that have been modified by the substitute command.
The w substitution flag produces the same output but stores the output in the specified file:

$ sed ‘s/test/trial/w test’ data6
This is a trial line.
This is a different line.
$
$ cat test
This is a trial line.
$
The normal output of the sed editor appears in STDOUT, but only the lines that include the matching pattern are stored

in the specified output file.

Replacement Characters
There are times when you run across characters in text strings that aren't easy to use in the substitution pattern. One popular

example in the Linux world is the forward slash.
Substituting pathnames in a file can get awkward. For example, if you wanted to substitute the C shell for the bash shell in

the /etc/passwd file, you'd have to do this:

$ sed ‘s/\/bin\/bash/\/bin\/csh/’ /etc/passwd
Because the forward slash is used as the string delimiter, you must use a backslash to escape it if it appears in the pattern

text. This often leads to confusion and mistakes.
To solve this problem, the sed editor allows you to select a different character for the string delimiter in the substitute

command:

$ sed ‘s!/bin/bash!/bin/csh!’ /etc/passwd
In this example, the exclamation point is used for the string delimiter, making the pathnames much easier to read and

understand.

Using Addresses
By default, the commands you use in the sed editor apply to all lines of the text data. If you only want to apply a command

to a specific line, or a group of lines, you must use line addressing.
There are two forms of line addressing in the sed editor:

A numeric range of lines
A text pattern that filters out a line

www.it-ebooks.info

http://www.it-ebooks.info/

Both forms use the same format for specifying the address:

[address]command
You can also group more than one command together for a specific address:

address {
 command1
 command2
 command3
}
The sed editor applies each of the commands you specify only to lines that match the address specified.
This section demonstrates using both of these addressing techniques in your sed editor scripts.

Numeric Line Addressing
When using numeric line addressing, you reference lines using their line position in the text stream. The sed editor assigns

the first line in the text stream as line number one and continues sequentially for each new line.
The address you specify in the command can be a single line number or a range of lines specified by a starting line

number, a comma, and an ending line number. Here's an example of specifying a line number to which the sed command will

be applied:

$ sed ‘2s/dog/cat/’ data1
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
$
The sed editor modified the text only in line two per the address specified. Here's another example, this time using a

range of line addresses:

$ sed ‘2,3s/dog/cat/’ data1
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy dog
$
If you want to apply a command to a group of lines starting at some point within the text, but continuing to the end of

the text, you can use the special address, the dollar sign:

$ sed ‘2,$s/dog/cat/’ data1
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy cat
$
Because you may not know how many lines of data are in the text, the dollar sign often comes in handy.

Using Text Pattern Filters
The other method of restricting which lines a command applies to is a bit more complicated. The sed editor allows you to

specify a text pattern that it uses to filter lines for the command. The format for this is:

www.it-ebooks.info

http://www.it-ebooks.info/

/pattern/command
You must encapsulate the pattern you specify in forward slashes. The sed editor applies the command only to lines that

contain the text pattern that you specify.
For example, if you want to change the default shell for only the user Samantha, you'd use the sed command:

$
$ grep Samantha /etc/passwd
Samantha:x:1001:1002:Samantha,4,,:/home/Samantha:/bin/bash
$
$ sed ‘/Samantha/s/bash/csh/’ /etc/passwd
root:x:0:0:root:/root:/bin/bash
...
Samantha:x:1001:1002:Samantha,4,,:/home/Samantha:/bin/csh
Timothy:x:1002:1005::/home/Timothy:/bin/sh
Christine:x:1003:1006::/home/Christine:/bin/sh
$
The command was only applied to the line with the matching text pattern. While using a fixed text pattern may be useful

for filtering specific values, as in the userid example, it's somewhat limited in what you can do with it. The sed editor uses a

feature called regular expressions in text patterns to allow you to create patterns that get pretty involved.
Regular expressions allow you to create advanced text pattern–matching formulas to match all sorts of data. These

formulas combine a series of wildcard characters, special characters, and fixed text characters to produce a concise pattern
that can match just about any text situation. Regular expressions are one of the scarier parts of shell script programming and

Chapter 19 covers them in great detail.

Grouping Commands
If you need to perform more than one command on an individual line, group the commands together using braces. The sed

editor will process each command listed on the address line(s):

$ sed ‘2{
> s/fox/elephant/
> s/dog/cat/
> }’ data1
The quick brown fox jumps over the lazy dog.
The quick brown elephant jumps over the lazy cat.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$
Both commands are processed against the address. And of course, you can also specify an address range before the

grouped commands:

$ sed ‘3,${
> s/brown/green/
> s/lazy/active/
> }’ data1
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick green fox jumps over the active dog.
The quick green fox jumps over the active dog.
$

www.it-ebooks.info

http://www.it-ebooks.info/

The sed editor applies all of the commands to all of the lines in the address range.

Deleting Lines
The text substitution command isn't the only command available in the sed editor. If you need to delete specific lines of text

in a text stream, there's the delete command.
The delete command, d, pretty much does what it says. It will delete any text lines that match the addressing scheme

supplied. Be careful with the delete command, because if you forget to include an addressing scheme, all of the lines will be

deleted from the stream:

$ cat data1
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
$ sed ‘d’ data1
$
The delete command is obviously most useful when used in conjunction with a specified address. This allows you to

delete specific lines of text from the data stream, either by line number:

$ sed ‘3d’ data7
This is line number 1.
This is line number 2.
This is line number 4.
$

or by a specific range of lines:

$ sed ‘2,3d’ data7
This is line number 1.
This is line number 4.
$

or by using the special end-of-file character:

$ sed ‘3,$d’ data7
This is line number 1.
This is line number 2.
$

The pattern-matching feature of the sed editor also applies to the delete command:

$ sed ‘/number 1/d’ data7
This is line number 2.
This is line number 3.
This is line number 4.
$
The sed editor removes the line containing text that matches the pattern you specify.

Note

Remember that the sed editor doesn't touch the original file. Any lines you delete
are only gone from the output of the sed editor. The original file still contains the
“deleted” lines.

www.it-ebooks.info

http://www.it-ebooks.info/

You can also delete a range of lines using two text patterns, but be careful if you do this. The first pattern you specify
“turns on” the line deletion, and the second pattern “turns off” the line deletion. The sed editor deletes any lines between

the two specified lines (including the specified lines):

$ sed ‘/1/,/3/d’ data6
This is line number 4.
$
In addition, you need to be careful, as the delete feature will “turn on” whenever the sed editor detects the start pattern

in the data stream. This may produce an unexpected result:

$ cat data8
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
This is line number 1 again.
This is text you want to keep.
This is the last line in the file.
$
$ sed ‘/1/,/3/d’ data7
This is line number 4.
$
The second occurrence of a line with the number 1 in it triggered the delete command again, deleting the rest of the

lines in the data stream, as the stop pattern wasn't recognized. Of course, the other obvious problem occurs if you specify a

stop pattern that never appears in the text:

$ sed ‘/1/,/5/d’ data8
$
Because the delete features “turned on” at the first pattern match, but never found the end pattern match, the entire

data stream was deleted.

Inserting and Appending Text
As you would expect, like any other editor, the sed editor allows you to insert and append text lines to the data stream. The

difference between the two actions can be confusing:
The insert command (i) adds a new line before the specified line.
The append command (a) adds a new line after the specified line.

What's confusing about these two commands is their formats. You can't use these commands on a single command line.

You must specify the line to insert or append on a separate line by itself. The format for doing this is:

sed ‘[address]command\
new line’
The text in new line appears in the sed editor output in the place you specify. Remember that when you use the

insert command, the text appears before the data stream text:

$ echo “Test Line 2” | sed ‘i\Test Line 1’
Test Line 1
Test Line 2
$
And when you use the append command, the text appears after the data stream text:

$ echo “Test Line 2” | sed ‘a\Test Line 1’

www.it-ebooks.info

http://www.it-ebooks.info/

Test Line 2
Test Line 1
$
When you use the sed editor from the command line interface prompt, you'll get the secondary prompt to enter the

new line data. You must complete the sed editor command on this line. Once you enter the ending single quotation mark,

the bash shell will process the command:

$ echo “Test Line 2” | sed ‘i\
> Test Line 1’
Test Line 1
Test Line 2
$
This works well for adding text before or after the text in the data stream, but what about adding text inside the data

stream?
To insert or append data inside the data stream lines, you must use addressing to tell the sed editor where you want the

data to appear. You can specify only a single line address when using these commands. You can match either a numeric line
number or a text pattern, but you cannot use a range of addresses. This is logical, because you can only insert or append

before or after a single line, and not a range of lines.
The following is an example of inserting a new line before line 3 in the data stream:

$ sed ‘3i\
> This is an inserted line.’ data7
This is line number 1.
This is line number 2.
This is an inserted line.
This is line number 3.
This is line number 4.
$
The following is an example of appending a new line after line 3 in the data stream:

$ sed ‘3a\
>This is an appended line.’ data7
This is line number 1.
This is line number 2.
This is line number 3.
This is an appended line.
This is line number 4.
$
This uses the same process as the insert command; it just places the new text line after the specified line number. If you

have a multiline data stream, and you want to append a new line of text to the end of a data stream, just use the dollar sign,

which represents the last line of data:

$ sed ‘$a\
> This is a new line of text.’ data7
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
This is a new line of text.
$

www.it-ebooks.info

http://www.it-ebooks.info/

The same idea applies if you want to add a new line at the beginning of the data stream. Just insert a new line before line

number one.
To insert or append more than one line of text, you must use a backslash on each line of new text until you reach the last

text line where you want to insert or append text:

$ sed ‘1i\
> This is one line of new text.\
> This is another line of new text.’ data7
This is one line of new text.
This is another line of new text.
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
$
Both of the specified lines are added to the data stream.

Changing Lines
The change command allows you to change the contents of an entire line of text in the data stream. It works the same way as

the insert and append commands, in that you must specify the new line separately from the rest of the sed command:

$ sed ‘3c\
> This is a changed line of text.’ data7
This is line number 1.
This is line number 2.
This is a changed line of text.
This is line number 4.
$
In this example, the sed editor changes the text in line number 3. You can also use a text pattern for the address:

$ sed ‘/number 3/c\
> This is a changed line of text.’ data7
This is line number 1.
This is line number 2.
This is a changed line of text.
This is line number 4.
$
The text pattern change command will change any line of text in the data stream that it matches.

$ sed ‘/number 1/c\
> This is a changed line of text.’ data8
This is a changed line of text.
This is line number 2.
This is line number 3.
This is line number 4.
This is a changed line of text.
This is yet another line.
This is the last line in the file.

www.it-ebooks.info

http://www.it-ebooks.info/

$
You can use an address range in the change command, but the results may not be what you expect:

$ sed ‘2,3c\
> This is a new line of text.’ data7
This is line number 1.
This is a new line of text.
This is line number 4.
$
Instead of changing both lines with the text, the sed editor uses the single line of text to replace both lines.

The transform Command
The transform command (y) is the only sed editor command that operates on a single character. The transform command

uses the format:

[address]y/inchars/outchars/
The transform command performs a one-to-one mapping of the inchars and the outchars values. The first

character in inchars is converted to the first character in outchars. The second character in inchars is converted to the
second character in outchars. This mapping continues throughout the length of the specified characters. If the inchars

and outchars are not the same length, the sed editor will produce an error message.
A simple example of using the transform command is:

$ sed ‘y/123/789/’ data8
This is line number 7.
This is line number 8.
This is line number 9.
This is line number 4.
This is line number 7 again.
This is yet another line.
This is the last line in the file.
$
As you can see from the output, each instance of the characters specified in the inchars pattern has been replaced by

the character in the same position in the outchars pattern.
The transform command is a global command; that is, it performs the transformation on any character found in the

text line automatically, without regard to the occurrence:

$ echo “This 1 is a test of 1 try.” | sed ‘y/123/456/’
This 4 is a test of 4 try.
$
The sed editor transformed both instances of the matching character 1 in the text line. You can't limit the transformation

to a specific occurrence of the character.

Printing Revisited
The “More Substitution Options” section showed you how to use the p flag with the substitution command to display lines

that the sed editor changed. There are three commands that also can be used to print information from the data stream:
The lowercase p command to print a text line
The equal sign (=) command to print line numbers
The l (lowercase L) command to list a line

The following sections look at each of these three printing commands in the sed editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Printing Lines
Like the p flag in the substitution command, the p command prints a line in the sed editor output. On its own, there's not

much excitement:

$ echo “this is a test” | sed ‘p’
this is a test
this is a test
$
All it does is print the data text that you already know is there. The most common use for the print command is printing

lines that contain matching text from a text pattern:

$ sed -n ‘/number 3/p’ data7
This is line number 3.
$
By using the -n option on the command line, you can suppress all of the other lines and only print the line that contains

the matching text pattern.
You can also use this as a quick way to print a subset of lines in a data stream:

$ sed -n ‘2,3p’ data7
This is line number 2.
This is line number 3.
$
You can also use the print command when you need to see a line before it gets altered, such as with the substitution

or change command. You can create a script that displays the line before it's changed:

$ sed -n ‘/3/{
p
s/line/test/p
}’ data7
This is line number 3.
This is test number 3.
$
This sed editor command searches for lines that contain the number 3, and then executes two commands. First, the script

uses the p command to print the original version of the line; then it uses the s command to substitute text, along with the p

flag to print the resulting text. The output shows both the original line text and the new line text.

Printing Line Numbers
The equal sign command prints the current line number for the line within the data stream. Line numbers are determined
by using the newline character in the data stream. Each time a newline character appears in the data stream, the sed editor

assumes that it terminates a line of text:

$ sed ‘=’ data1
1
The quick brown fox jumps over the lazy dog.
2
The quick brown fox jumps over the lazy dog.
3
The quick brown fox jumps over the lazy dog.
4
The quick brown fox jumps over the lazy dog.

www.it-ebooks.info

http://www.it-ebooks.info/

$
The sed editor prints the line number before the actual line of text. The equal sign command comes in handy if you're

searching for a specific text pattern in the data stream:

$ sed -n ‘/number 4/{
=
p
}’ data7
4
This is line number 4.
$
By using the -n option you can have the sed editor display only both the line number and text for the line that contains

the matching text pattern.

Listing Lines
The list command (l) allows you to print both the text and nonprintable ASCII characters in a data stream. Any
nonprintable characters are shown using either their octal values, preceded by a backslash, or the standard C-style

nomenclature for common nonprintable characters, such as \t for tab characters:

$ cat data9
This line contains tabs.
$
$ sed -n ‘l’ data9
This\tline\tcontains\ttabs.$
$
The tab character locations are shown with the \t nomenclature. The dollar sign at the end of the line indicates the

newline character. If you have a data stream that contains an escape character, the list command displays it using the octal

code:

$ cat data10
This line contains an escape character
$
$ sed -n ‘l’ data10
This line contains an escape character \033[44m$
$
The data10 text file contains an escape control code (see Chapter 17) to change the display color. When you use the cat

command to display the text file, you don't see the escape control code; it just changes the color of the display.
However, using the list command, you can display the escape control code used. The \033 is the octal value of the ASCII

code for the escape key.

Using Files with sed
The substitution command contains flags that allow you to work with files. There are also regular sed editor commands

that let you do that without having to substitute text.

Writing to a File

The w command is used to write lines to a file. The format for the w command is:

[address]w filename
The filename can be specified as either a relative or absolute pathname, but in either case, the person running the sed

www.it-ebooks.info

http://www.it-ebooks.info/

The filename can be specified as either a relative or absolute pathname, but in either case, the person running the sed

editor must have write permissions for the file. The address can be any type of addressing method used in sed, such as a

single line number, a text pattern, or a range of line numbers or text patterns.
The following is an example that prints only the first two lines of a data stream to a text file:

$ sed ‘1,2w test’ data7
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
$
$ cat test
This is line number 1.
This is line number 2.
$
Of course, if you don't want the lines to display on STDOUT, you can use the -n option for the sed command.
This is a great tool to use if you need to create a data file from a master file on the basis of common text values, such as

those in a mailing list:

$ cat data11
Blum, Katie Chicago, IL
Mullen, Riley West Lafayette, IN
Snell, Haley Ft. Wayne, IN
Woenker, Matthew Springfield, IL
Wisecarver, Emma Grant Park, IL
$
$ sed -n ‘/IN/w INcustomers’ data11
$
$ cat INcustomers
Mullen, Riley West Lafayette, IN
Snell, Haley Ft. Wayne, IN
$
The sed editor writes to a destination file only the data lines that contain the text pattern.

Reading Data from a File
You've already seen how to insert data into and append text to a data stream from the sed command line. The read

command (r) allows you to insert data contained in a separate file.
The format of the read command is:

[address]r filename
The filename parameter specifies either an absolute or relative pathname for the file that contains the data. You can't

use a range of addresses for the read command. You can only specify a single line number or text pattern address. The sed

editor inserts the text from the file after the address.

$ cat data12
This is an added line.
This is the second added line.
$
$ sed ‘3r data12’ data7
This is line number 1.

www.it-ebooks.info

http://www.it-ebooks.info/

This is line number 2.
This is line number 3.
This is an added line.
This is the second added line.
This is line number 4.
$
The sed editor inserts into the data stream all of the text lines in the data file. The same technique works when using a

text pattern address:

$ sed ‘/number 2/r data12’ data7
This is line number 1.
This is line number 2.
This is an added line.
This is the second added line.
This is line number 3.
This is line number 4.
$
If you want to add text to the end of a data stream, just use the dollar sign address symbol:

$ sed ‘$r data12’ data7
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
This is an added line.
This is the second added line.
$
A cool application of the read command is to use it in conjunction with a delete command to replace a placeholder in a

file with data from another file. For example, suppose that you had a form letter stored in a text file that looked like this:

$ cat letter
Would the following people:
LIST
please report to the office.
$
The form letter uses the generic placeholder LIST in place of a list of people. To insert the list of people after the

placeholder, all you need to do is use the read command. However, this still leaves the placeholder text in the output. To

remove that, just use the delete command. The result looks like this:

$ sed ‘/LIST/{
> r data11
> d
> }’ letter
Would the following people:
Blum, Katie Chicago, IL
Mullen, Riley West Lafayette, IN
Snell, Haley Ft. Wayne, IN
Woenker, Matthew Springfield, IL
Wisecarver, Emma Grant Park, IL

www.it-ebooks.info

http://www.it-ebooks.info/

please report to the office.
$
Now the placeholder text is replaced with the list of names from the data file.

Summary
While shell scripts can do a lot of work on their own, it's often difficult to manipulate data with just a shell script. Linux
provides two handy utilities to help out with handling text data. The sed editor is a stream editor that quickly processes data

on the fly as it reads it. You must provide the sed editor with a list of editing commands, which it applies to the data.
The gawk program is a utility from the GNU organization that mimics and expands on the functionality of the Unix awk

program. The gawk program contains a built-in programming language that you can use to write scripts to handle and
process data. You can use the gawk program to extract data elements from large data files and output them in just about

any format you desire. This makes processing large log files a snap, as well as creating custom reports from data files.
A crucial element of using both the sed and gawk programs is knowing how to use regular expressions. Regular

expressions are key to creating customized filters for extracting and manipulating data in text files. The next chapter dives
into the often misunderstood world of regular expressions, showing you how to build regular expressions for manipulating

all types of data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19

Regular Expressions

In This Chapter

Defining regular expressions
Looking at the basics
Extending our patterns
Creating expressions

The key to successfully working with the sed editor and the gawk program in your shell script is your comfort using regular
expressions. This is not always an easy thing to do, as trying to filter specific data from a large batch of data can (and often
does) get complicated. This chapter describes how to create regular expressions in both the sed editor and the gawk program

that can filter out just the data you need.

What Are Regular Expressions?
The first step to understanding regular expressions is to define just exactly what they are. This section explains what a regular

expression is and describes how Linux uses regular expressions.

A Definition
A regular expression is a pattern template you define that a Linux utility uses to filter text. A Linux utility (such as the sed
editor or the gawk program) matches the regular expression pattern against data as that data flows into the utility. If the
data matches the pattern, it's accepted for processing. If the data doesn't match the pattern, it's rejected. This is illustrated in

Figure 19.1.

Figure 19.1 Matching data against a regular expression pattern

The regular expression pattern makes use of wildcard characters to represent one or more characters in the data stream.

There are plenty of instances in Linux where you can specify a wildcard character to represent data that you don't know

www.it-ebooks.info

#c19_fig_0001
#c19_fig_anc_0001
http://www.it-ebooks.info/

There are plenty of instances in Linux where you can specify a wildcard character to represent data that you don't know

about. You've already seen an example of using wildcard characters with the Linux ls command for listing files and

directories (see Chapter 3).
The asterisk wildcard character allows you to list only files that match a certain criteria. For example:

$ ls -al da*
-rw-r--r-- 1 rich rich 45 Nov 26 12:42 data
-rw-r--r-- 1 rich rich 25 Dec 4 12:40 data.tst
-rw-r--r-- 1 rich rich 180 Nov 26 12:42 data1
-rw-r--r-- 1 rich rich 45 Nov 26 12:44 data2
-rw-r--r-- 1 rich rich 73 Nov 27 12:31 data3
-rw-r--r-- 1 rich rich 79 Nov 28 14:01 data4
-rw-r--r-- 1 rich rich 187 Dec 4 09:45 datatest
$
The da* parameter instructs the ls command to list only the files whose name starts with da. There can be any number of

characters after the da in the filename (including none). The ls command reads the information regarding all of the files in

the directory but displays only the ones that match the wildcard character.
Regular expression wildcard patterns work in a similar way. The regular expression pattern contains text and/or special

characters that define a template for the sed editor and the gawk program to follow when matching data. There are different

special characters you can use in a regular expression to define a specific pattern for filtering data.

Types of Regular Expressions
The biggest problem with using regular expressions is that there isn't just one set of them. Several different applications use
different types of regular expressions in the Linux environment. These include such diverse applications as programming
languages (Java, Perl, and Python), Linux utilities (such as the sed editor, the gawk program, and the grep utility), and

mainstream applications (such as the MySQL and PostgreSQL database servers).
A regular expression is implemented using a regular expression engine. A regular expression engine is the underlying

software that interprets regular expression patterns and uses those patterns to match text.
In the Linux world, there are two popular regular expression engines:

The POSIX Basic Regular Expression (BRE) engine
The POSIX Extended Regular Expression (ERE) engine

Most Linux utilities at a minimum conform to the POSIX BRE engine specifications, recognizing all of the pattern symbols
it defines. Unfortunately, some utilities (such as the sed editor) only conform to a subset of the BRE engine specifications. This

is due to speed constraints, as the sed editor attempts to process text in the data stream as quickly as possible.
The POSIX ERE engine is often found in programming languages that rely on regular expressions for text filtering. It

provides advanced pattern symbols as well as special symbols for common patterns, such as matching digits, words, and

alphanumeric characters. The gawk program uses the ERE engine to process its regular expression patterns.
Because there are so many different ways to implement regular expressions, it's hard to present a single, concise

description of all the possible regular expressions. The following sections discuss the most commonly found regular

expressions and demonstrate how to use them in the sed editor and gawk program.

Defining BRE Patterns
The most basic BRE pattern is matching text characters in a data stream. This section demonstrates how you can define text in

the regular expression pattern and what to expect from the results.

Plain Text
Chapter 18 demonstrated how to use standard text strings in the sed editor and the gawk program to filter data. Here's an

example to refresh your memory:

$ echo “This is a test” | sed -n ‘/test/p’
This is a test
$ echo “This is a test” | sed -n ‘/trial/p’

www.it-ebooks.info

http://www.it-ebooks.info/

$
$ echo “This is a test” | gawk ‘/test/{print $0}’
This is a test
$ echo “This is a test” | gawk ‘/trial/{print $0}’
$
The first pattern defines a single word, test. The sed editor and gawk program scripts each use their own version of the

print command to print any lines that match the regular expression pattern. Because the echo statement contains the
word “test” in the text string, the data stream text matches the defined regular expression pattern, and the sed editor

displays the line.
The second pattern again defines just a single word, this time the word “trial.” Because the echo statement text string

doesn't contain that word, the regular expression pattern doesn't match, so neither the sed editor nor the gawk program

prints the line.
You probably already noticed that the regular expression doesn't care where in the data stream the pattern occurs. It

also doesn't matter how many times the pattern occurs. Once the regular expression can match the pattern anywhere in the

text string, it passes the string along to the Linux utility that's using it.
The key is matching the regular expression pattern to the data stream text. It's important to remember that regular

expressions are extremely picky about matching patterns. The first rule to remember is that regular expression patterns are

case sensitive. This means they'll only match patterns with the proper case of characters:

$ echo “This is a test” | sed -n ‘/this/p’
$
$ echo “This is a test” | sed -n ‘/This/p’
This is a test
$
The first attempt failed to match because the word “this” doesn't appear in all lowercase in the text string, while the

second attempt, which uses the uppercase letter in the pattern, worked just fine.
You don't have to limit yourself to whole words in the regular expression. If the defined text appears anywhere in the

data stream, the regular expression will match the following:

$ echo “The books are expensive” | sed -n ‘/book/p’
The books are expensive
$
Even though the text in the data stream is books, the data in the stream contains the regular expression book, so the

regular expression pattern matches the data. Of course, if you try the opposite, the regular expression will fail:

$ echo “The book is expensive” | sed -n ‘/books/p’
$
The complete regular expression text didn't appear in the data stream, so the match failed and the sed editor didn't

display the text.
You also don't have to limit yourself to single text words in the regular expression. You can include spaces and numbers

in your text string as well:

$ echo “This is line number 1” | sed -n ‘/ber 1/p’
This is line number 1
$
Spaces are treated just like any other character in the regular expression:

$ echo “This is line number1” | sed -n ‘/ber 1/p’
$
If you define a space in the regular expression, it must appear in the data stream. You can even create a regular

expression pattern that matches multiple contiguous spaces:

$ cat data1
This is a normal line of text.

www.it-ebooks.info

http://www.it-ebooks.info/

This is a line with too many spaces.
$ sed -n ‘/ /p’ data1
This is a line with too many spaces.
$
The line with two spaces between words matches the regular expression pattern. This is a great way to catch spacing

problems in text files!

Special Characters
As you use text strings in your regular expression patterns, there's something you need to be aware of. There are a few
exceptions when defining text characters in a regular expression. Regular expression patterns assign a special meaning to a

few characters. If you try to use these characters in your text pattern, you won't get the results you were expecting.
The special characters recognized by regular expressions are:

.*[]ˆ${}\+?|()
As the chapter progresses, you'll find out just what these special characters do in a regular expression. For now, however,

just remember that you can't use these characters by themselves in your text pattern.
If you want to use one of the special characters as a text character, you need to escape it. When you escape the special

characters, you add a special character in front of it to indicate to the regular expression engine that it should interpret the

next character as a normal text character. The special character that does this is the backslash character (\).
For example, if you want to search for a dollar sign in your text, just precede it with a backslash character:

$ cat data2
The cost is $4.00
$ sed -n ‘/\$/p’ data2
The cost is $4.00
$
Because the backslash is a special character, if you need to use it in a regular expression pattern you'll need to escape it as

well, producing a double backslash:

$ echo “\ is a special character” | sed -n ‘/\\/p’
\ is a special character
$
Finally, although the forward slash isn't a regular expression special character, if you use it in your regular expression

pattern in the sed editor or the gawk program, you'll get an error:

$ echo “3 / 2” | sed -n ‘///p’
sed: -e expression #1, char 2: No previous regular expression
$
To use a forward slash you'll need to escape that as well:

$ echo “3 / 2” | sed -n ‘/\//p’
3 / 2
$
Now the sed editor can properly interpret the regular expression pattern, and all is well.

Anchor Characters
As shown in the “Plain Text” section, by default, when you specify a regular expression pattern, if the pattern appears
anywhere in the data stream, it will match. There are two special characters you can use to anchor a pattern to either the

beginning or the end of lines in the data stream.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting at the Beginning
The caret character (ˆ) defines a pattern that starts at the beginning of a line of text in the data stream. If the pattern is

located any place other than the start of the line of text, the regular expression pattern fails.
To use the caret character, you must place it before the pattern specified in the regular expression:

$ echo “The book store” | sed -n ‘/ˆbook/p’
$
$ echo “Books are great” | sed -n ‘/ˆBook/p’
Books are great
$
The caret anchor character checks for the pattern at the beginning of each new line of data, as determined by the newline

character:

$ cat data3
This is a test line.
this is another test line.
A line that tests this feature.
Yet more testing of this
$ sed -n ‘/ˆthis/p’ data3
this is another test line.
$
As long as the pattern appears at the start of a new line, the caret anchor will catch it.
If you position the caret character in any place other than at the beginning of the pattern, it will act like a normal

character and not as a special character:

$ echo “This ˆ is a test” | sed -n ‘/s ˆ/p’
This ˆ is a test
$
Because the caret character is listed last in the regular expression pattern, the sed editor uses it as a normal character to

match text.

Note

If you need to specify a regular expression pattern using only the caret character,
you don't need to escape it with a backslash. However, if you specify the caret
character first, followed by additional text in the pattern, you'll need to use the
escape character before the caret character.

Looking for the Ending
The opposite of looking for a pattern at the start of a line is looking for it at the end of a line. The dollar sign ($) special
character defines the end anchor. Add this special character after a text pattern to indicate that the line of data must end with

the text pattern:

$ echo “This is a good book” | sed -n ‘/book$/p’
This is a good book
$ echo “This book is good” | sed -n ‘/book$/p’
$
The problem with an ending text pattern is that you must be careful what you're looking for:

$ echo “There are a lot of good books” | sed -n ‘/book$/p’
$
Making the word “book” plural at the end of the line means that it no longer matches the regular expression pattern,

www.it-ebooks.info

http://www.it-ebooks.info/

Making the word “book” plural at the end of the line means that it no longer matches the regular expression pattern,

even though book is in the data stream. The text pattern must be the last thing on the line for the pattern to match.

Combining Anchors
There are a couple of common situations where you can combine both the start and end anchor on the same line. In the first

situation, suppose that you want to look for a line of data containing only a specific text pattern:

$ cat data4
this is a test of using both anchors
I said this is a test
this is a test
I'm sure this is a test.
$ sed -n ‘/ˆthis is a test$/p’ data4
this is a test
$
The sed editor ignores the lines that include other text besides the specified text.
The second situation may seem a little odd at first but is extremely useful. By combining both anchors in a pattern with no

text, you can filter blank lines from the data stream. Consider this example:

$ cat data5
This is one test line.

This is another test line.
$ sed ‘/ˆ$/d’ data5
This is one test line.
This is another test line.
$
The regular expression pattern that is defined looks for lines that have nothing between the start and end of the line.

Because blank lines contain no text between the two newline characters, they match the regular expression pattern. The sed
editor uses the d delete command to delete lines that match the regular expression pattern, thus removing all blank lines

from the text. This is an effective way to remove blank lines from documents.

The Dot Character
The dot special character is used to match any single character except a newline character. The dot character must match a

character, however; if there's no character in the place of the dot, then the pattern will fail.
Let's take a look at a few examples of using the dot character in a regular expression pattern:

$ cat data6
This is a test of a line.
The cat is sleeping.
That is a very nice hat.
This test is at line four.
at ten o'clock we'll go home.
$ sed -n ‘/.at/p’ data6
The cat is sleeping.
That is a very nice hat.
This test is at line four.
$
You should be able to figure out why the first line failed and why the second and third lines passed. The fourth line is a

www.it-ebooks.info

http://www.it-ebooks.info/

You should be able to figure out why the first line failed and why the second and third lines passed. The fourth line is a

little tricky. Notice that we matched the at, but there's no character in front of it to match the dot character. Ah, but there is! In
regular expressions, spaces count as characters, so the space in front of the at matches the pattern. The fifth line proves this,

by putting the at in the front of the line, which fails to match the pattern.

Character Classes
The dot special character is great for matching a character position against any character, but what if you want to limit what

characters to match? This is called a character class in regular expressions.
You can define a class of characters that would match a position in a text pattern. If one of the characters from the

character class is in the data stream, it matches the pattern.
To define a character class, you use square brackets. The brackets should contain any character that you want to include in

the class. You then use the entire class within a pattern just like any other wildcard character. This takes a little getting used to

at first, but once you catch on it can generate some pretty amazing results.
The following is an example of creating a character class:

$ sed -n ‘/[ch]at/p’ data6
The cat is sleeping.
That is a very nice hat.
$
Using the same data file as in the dot special character example, we came up with a different result. This time we managed

to filter out the line that just contained the word at. The only words that match this pattern are cat and hat. Also notice
that the line that started with at didn't match as well. There must be a character in the character class that matches the

appropriate position.
Character classes come in handy if you're not sure which case a character is in:

$ echo “Yes” | sed -n ‘/[Yy]es/p’
Yes
$ echo “yes” | sed -n ‘/[Yy]es/p’
yes
$
You can use more than one character class in a single expression:

$ echo “Yes” | sed -n ‘/[Yy][Ee][Ss]/p’
Yes
$ echo “yEs” | sed -n ‘/[Yy][Ee][Ss]/p’
yEs
$ echo “yeS” | sed -n ‘/[Yy][Ee][Ss]/p’
yeS
$
The regular expression used three character classes to cover both lower and upper cases for all three character positions.
Character classes don't have to contain just letters; you can use numbers in them as well:

$ cat data7
This line doesn't contain a number.
This line has 1 number on it.
This line a number 2 on it.
This line has a number 4 on it.
$ sed -n ‘/[0123]/p’ data7
This line has 1 number on it.
This line a number 2 on it.
$

www.it-ebooks.info

http://www.it-ebooks.info/

The regular expression pattern matches any lines that contain the numbers 0, 1, 2, or 3. Any other numbers are ignored, as

are lines without numbers in them.
You can combine character classes to check for properly formatted numbers, such as phone numbers and zip codes.

However, when you're trying to match a specific format, you must be careful. Here's an example of a zip code match gone

wrong:

$ cat data8
60633
46201
223001
4353
22203
$ sed -n ‘
>/[0123456789][0123456789][0123456789][0123456789][0123456789]/p
>’ data8
60633
46201
223001
22203
$
This might not have produced the result you were thinking of. It did a fine job of filtering out the number that was too

short to be a zip code, as the last character class didn't have a character to match against. However, it still passed the six-digit

number, even though we only defined five character classes.
Remember that the regular expression pattern can be found anywhere in the text of the data stream. There can always be

additional characters besides the matching pattern characters. If you want to ensure that you only match against five
numbers, you need to delineate them somehow, either with spaces, or as in this example, by showing that they're at the start

and end of the line:

$ sed -n ‘
> /ˆ[0123456789][0123456789][0123456789][0123456789][0123456789]$/p
> ’ data8
60633
46201
22203
$
Now that's much better! Later in this chapter we look at how to simplify this even further.
One extremely popular use for character classes is parsing words that might be misspelled, such as data entered from a

user form. You can easily create regular expressions that can accept common misspellings in data:

$ cat data9
I need to have some maintenence done on my car.
I'll pay that in a seperate invoice.
After I pay for the maintenance my car will be as good as new.
$ sed -n ‘
/maint[ea]n[ae]nce/p
/sep[ea]r[ea]te/p
’ data9
I need to have some maintenence done on my car.
I'll pay that in a seperate invoice.
After I pay for the maintenance my car will be as good as new.

www.it-ebooks.info

http://www.it-ebooks.info/

$
The two sed print commands in this example utilize regular expression character classes to help catch the misspelled

words, maintenance and separate, in the text. The same regular expression pattern also matches the properly spelled

occurrence of “maintenance.”

Negating Character Classes
In regular expression patterns, you can also reverse the effect of a character class. Instead of looking for a character
contained in the class, you can look for any character that's not in the class. To do that, just place a caret character at the

beginning of the character class range:

$ sed -n ‘/[ˆch]at/p’ data6
This test is at line two.
$
By negating the character class, the regular expression pattern matches any character that's neither a c nor an h, along

with the text pattern. Because the space character fits this category, it passed the pattern match. However, even with the
negation, the character class must still match a character, so the line with the at in the start of the line still doesn't match the

pattern.

Using Ranges
You may have noticed when I showed the zip code example earlier that it was somewhat awkward having to list all of the

possible digits in each character class. Fortunately, you can use a shortcut so you don't have to do that.
You can use a range of characters within a character class by using the dash symbol. Just specify the first character in the

range, a dash, and then the last character in the range. The regular expression includes any character that's within the specified

character range, according to the character set used by the Linux system (see Chapter 2).
Now you can simplify the zip code example by specifying a range of digits:

$ sed -n ‘/ˆ[0-9][0-9][0-9][0-9][0-9]$/p’ data8
60633
46201
45902
$
That saved a lot of typing! Each character class will match any digit from 0 to 9. The pattern will fail if a letter is present

anywhere in the data:

$ echo “a8392” | sed -n ‘/ˆ[0-9][0-9][0-9][0-9][0-9]$/p’
$
$ echo “1839a” | sed -n ‘/ˆ[0-9][0-9][0-9][0-9][0-9]$/p’
$
$ echo “18a92” | sed -n ‘/ˆ[0-9][0-9][0-9][0-9][0-9]$/p’
$
The same technique also works with letters:

$ sed -n ‘/[c-h]at/p’ data6
The cat is sleeping.
That is a very nice hat.
$
The new pattern [c-h]at matches words where the first letter is between the letter c and the letter h. In this case, the line

with only the word at failed to match the pattern.
You can also specify multiple, noncontinuous ranges in a single character class:

$ sed -n ‘/[a-ch-m]at/p’ data6

www.it-ebooks.info

http://www.it-ebooks.info/

The cat is sleeping.
That is a very nice hat.
$
The character class allows the ranges a through c, and h through m to appear before the at text. This range would reject

any letters between d and g:

$ echo “I'm getting too fat.” | sed -n ‘/[a-ch-m]at/p’
$
This pattern rejected the fat text, as it wasn't in the specified range.

Special Character Classes
In addition to defining your own character classes, the BRE contains special character classes you can use to match against

specific types of characters. Table 19.1 describes the BRE special characters you can use.

Table 19.1 BRE Special Character Classes

Class Description

[[:alpha:]] Match any alphabetical character, either upper or lower case.

[[:alnum:]] Match any alphanumeric character 0–9, A–Z, or a–z.

[[:blank:]] Match a space or Tab character.

[[:digit:]] Match a numerical digit from 0 through 9.

[[:lower:]] Match any lowercase alphabetical character a–z.

[[:print:]] Match any printable character.

[[:punct:]] Match a punctuation character.

[[:space:]] Match any whitespace character: space, Tab, NL, FF, VT, CR.

[[:upper:]] Match any uppercase alphabetical character A–Z.

You use the special character classes just as you would a normal character class in your regular expression patterns:

$ echo “abc” | sed -n ‘/[[:digit:]]/p’
$
$ echo “abc” | sed -n ‘/[[:alpha:]]/p’
abc
$ echo “abc123” | sed -n ‘/[[:digit:]]/p’
abc123
$ echo “This is, a test” | sed -n ‘/[[:punct:]]/p’
This is, a test
$ echo “This is a test” | sed -n ‘/[[:punct:]]/p’
$
Using the special character classes is an easy way to define ranges. Instead of having to use a range [0–9], you can just use

[[:digit:]].

The Asterisk

www.it-ebooks.info

#c19_tbl_0001
#c19_tbl_anc_0001
http://www.it-ebooks.info/

Placing an asterisk after a character signifies that the character must appear zero or more times in the text to match the

pattern:

$ echo “ik” | sed -n ‘/ie*k/p’
ik
$ echo “iek” | sed -n ‘/ie*k/p’
iek
$ echo “ieek” | sed -n ‘/ie*k/p’
ieek
$ echo “ieeek” | sed -n ‘/ie*k/p’
ieeek
$ echo “ieeeek” | sed -n ‘/ie*k/p’
ieeeek
$
This pattern symbol is commonly used for handling words that have a common misspelling or variations in language

spellings. For example, if you need to write a script that may be used in either American or British English, you could write:

$ echo “I'm getting a color TV” | sed -n ‘/colou*r/p’
I'm getting a color TV
$ echo “I'm getting a colour TV” | sed -n ‘/colou*r/p’
I'm getting a colour TV
$
The u* in the pattern indicates that the letter u may or may not appear in the text to match the pattern. Similarly, if you

know of a word that is commonly misspelled, you can accommodate it by using the asterisk:

$ echo “I ate a potatoe with my lunch.” | sed -n ‘/potatoe*/p’
I ate a potatoe with my lunch.
$ echo “I ate a potato with my lunch.” | sed -n ‘/potatoe*/p’
I ate a potato with my lunch.
$
Placing an asterisk next to the possible extra letter allows you to accept the misspelled word.
Another handy feature is combining the dot special character with the asterisk special character.This combination provides

a pattern to match any number of any characters. It's often used between two text strings that may or may not appear next

to each other in the data stream:

$ echo “this is a regular pattern expression” | sed -n ‘
> /regular.*expression/p’
this is a regular pattern expression
$
Using this pattern, you can easily search for multiple words that may appear anywhere in a line of text in the data stream.
The asterisk can also be applied to a character class. This allows you to specify a group or range of characters that can

appear more than once in the text:

$ echo “bt” | sed -n ‘/b[ae]*t/p’
bt
$ echo “bat” | sed -n ‘/b[ae]*t/p’
bat
$ echo “bet” | sed -n ‘/b[ae]*t/p’
bet
$ echo “btt” | sed -n ‘/b[ae]*t/p’

www.it-ebooks.info

http://www.it-ebooks.info/

btt
$
$ echo “baat” | sed -n ‘/b[ae]*t/p’
baat
$ echo “baaeeet” | sed -n ‘/b[ae]*t/p’
baaeeet
$ echo “baeeaeeat” | sed -n ‘/b[ae]*t/p’
baeeaeeat
$ echo “baakeeet” | sed -n ‘/b[ae]*t/p’
$
As long as the a and e characters appear in any combination between the b and t characters (including not appearing at

all), the pattern matches. If any other character outside of the defined character class appears, the pattern match fails.

Extended Regular Expressions
The POSIX ERE patterns include a few additional symbols that are used by some Linux applications and utilities. The gawk

program recognizes the ERE patterns, but the sed editor doesn't.

Caution

It's important to remember that there is a difference between the regular expression
engines in the sed editor and the gawk program. The gawk program can use most of the
extended regular expression pattern symbols, and it can provide some additional filtering
capabilities that the sed editor doesn't have. However, because of this, it is often slower in
processing data streams.

This section describes the more commonly found ERE pattern symbols that you can use in your gawk program scripts.

The Question Mark
The question mark is similar to the asterisk, but with a slight twist. The question mark indicates that the preceding character can

appear zero or one time, but that's all. It doesn't match repeating occurrences of the character:

$ echo “bt” | gawk ‘/be?t/{print $0}’
bt
$ echo “bet” | gawk ‘/be?t/{print $0}’
bet
$ echo “beet” | gawk ‘/be?t/{print $0}’
$
$ echo “beeet” | gawk ‘/be?t/{print $0}’
$
If the e character doesn't appear in the text, or as long as it appears only once in the text, the pattern matches.
As with the asterisk, you can use the question mark symbol along with a character class:

$ echo “bt” | gawk ‘/b[ae]?t/{print $0}’
bt
$ echo “bat” | gawk ‘/b[ae]?t/{print $0}’
bat
$ echo “bot” | gawk ‘/b[ae]?t/{print $0}’
$
$ echo “bet” | gawk ‘/b[ae]?t/{print $0}’
bet

www.it-ebooks.info

http://www.it-ebooks.info/

$ echo “baet” | gawk ‘/b[ae]?t/{print $0}’
$
$ echo “beat” | gawk ‘/b[ae]?t/{print $0}’
$
$ echo “beet” | gawk ‘/b[ae]?t/{print $0}’
$
If zero or one character from the character class appears, the pattern match passes. However, if both characters appear, or

if one of the characters appears twice, the pattern match fails.

The Plus Sign
The plus sign is another pattern symbol that's similar to the asterisk, but with a different twist than the question mark. The
plus sign indicates that the preceding character can appear one or more times, but must be present at least once. The pattern

doesn't match if the character is not present:

$ echo “beeet” | gawk ‘/be+t/{print $0}’
beeet
$ echo “beet” | gawk ‘/be+t/{print $0}’
beet
$ echo “bet” | gawk ‘/be+t/{print $0}’
bet
$ echo “bt” | gawk ‘/be+t/{print $0}’
$
If the e character is not present, the pattern match fails. The plus sign also works with character classes, the same way as the

asterisk and question mark do:

$ echo “bt” | gawk ‘/b[ae]+t/{print $0}’
$
$ echo “bat” | gawk ‘/b[ae]+t/{print $0}’
bat
$ echo “bet” | gawk ‘/b[ae]+t/{print $0}’
bet
$ echo “beat” | gawk ‘/b[ae]+t/{print $0}’
beat
$ echo “beet” | gawk ‘/b[ae]+t/{print $0}’
beet
$ echo “beeat” | gawk ‘/b[ae]+t/{print $0}’
beeat
$
This time if either character defined in the character class appears, the text matches the specified pattern.

Using Braces
Curly braces are available in ERE to allow you to specify a limit on a repeatable regular expression. This is often referred to as

an interval. You can express the interval in two formats:
m - The regular expression appears exactly m times.
m,n - The regular expression appears at least m times, but no more than n times.

This feature allows you to fine-tune exactly how many times you allow a character (or character class) to appear in a

pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

Caution

By default, the gawk program doesn't recognize regular expression intervals. You must
specify the --re-interval command line option for the gawk program to recognize
regular expression intervals.

Here's an example of using a simple interval of one value:

$ echo “bt” | gawk --re-interval ‘/be{1}t/{print $0}’
$
$ echo “bet” | gawk --re-interval ‘/be{1}t/{print $0}’
bet
$ echo “beet” | gawk --re-interval ‘/be{1}t/{print $0}’
$
By specifying an interval of one, you restrict the number of times the character can be present for the string to match the

pattern. If the character appears more times, the pattern match fails.
There are lots of times when specifying the lower and upper limit comes in handy:

$ echo “bt” | gawk --re-interval ‘/be{1,2}t/{print $0}’
$
$ echo “bet” | gawk --re-interval ‘/be{1,2}t/{print $0}’
bet
$ echo “beet” | gawk --re-interval ‘/be{1,2}t/{print $0}’
beet
$ echo “beeet” | gawk --re-interval ‘/be{1,2}t/{print $0}’
$
In this example, the e character can appear once or twice for the pattern match to pass; otherwise, the pattern match fails.
The interval pattern match also applies to character classes:

$ echo “bt” | gawk --re-interval ‘/b[ae]{1,2}t/{print $0}’
$
$ echo “bat” | gawk --re-interval ‘/b[ae]{1,2}t/{print $0}’
bat
$ echo “bet” | gawk --re-interval ‘/b[ae]{1,2}t/{print $0}’
bet
$ echo “beat” | gawk --re-interval ‘/b[ae]{1,2}t/{print $0}’
beat
$ echo “beet” | gawk --re-interval ‘/b[ae]{1,2}t/{print $0}’
beet
$ echo “beeat” | gawk --re-interval ‘/b[ae]{1,2}t/{print $0}’
$
$ echo “baeet” | gawk --re-interval ‘/b[ae]{1,2}t/{print $0}’
$
$ echo “baeaet” | gawk --re-interval ‘/b[ae]{1,2}t/{print $0}’
$
This regular expression pattern will match if there are exactly one or two instances of the letter a or e in the text pattern,

but it will fail if there are any more in any combination.

The Pipe Symbol

www.it-ebooks.info

http://www.it-ebooks.info/

The pipe symbol allows to you to specify two or more patterns that the regular expression engine uses in a logical OR
formula when examining the data stream. If any of the patterns match the data stream text, the text passes. If none of the

patterns match, the data stream text fails.
The format for using the pipe symbol is:

expr1|expr2|...
Here's an example of this:

$ echo “The cat is asleep” | gawk ‘/cat|dog/{print $0}’
The cat is asleep
$ echo “The dog is asleep” | gawk ‘/cat|dog/{print $0}’
The dog is asleep
$ echo “The sheep is asleep” | gawk ‘/cat|dog/{print $0}’
$
This example looks for the regular expression cat or dog in the data stream. You can't place any spaces within the

regular expressions and the pipe symbol, or they'll be added to the regular expression pattern.
The regular expressions on either side of the pipe symbol can use any regular expression pattern, including character

classes, to define the text:

$ echo “He has a hat.” | gawk ‘/[ch]at|dog/{print $0}’
He has a hat.
$
This example would match cat, hat, or dog in the data stream text.

Grouping Expressions
Regular expression patterns can also be grouped by using parentheses. When you group a regular expression pattern, the
group is treated like a standard character. You can apply a special character to the group just as you would to a regular

character. For example:

$ echo “Sat” | gawk ‘/Sat(urday)?/{print $0}’
Sat
$ echo “Saturday” | gawk ‘/Sat(urday)?/{print $0}’
Saturday
$
The grouping of the “urday” ending along with the question mark allows the pattern to match either the full day name

Saturday or the abbreviated name Sat.
It's common to use grouping along with the pipe symbol to create groups of possible pattern matches:

$ echo “cat” | gawk ‘/(c|b)a(b|t)/{print $0}’
cat
$ echo “cab” | gawk ‘/(c|b)a(b|t)/{print $0}’
cab
$ echo “bat” | gawk ‘/(c|b)a(b|t)/{print $0}’
bat
$ echo “bab” | gawk ‘/(c|b)a(b|t)/{print $0}’
bab
$ echo “tab” | gawk ‘/(c|b)a(b|t)/{print $0}’
$
$ echo “tac” | gawk ‘/(c|b)a(b|t)/{print $0}’
$

www.it-ebooks.info

http://www.it-ebooks.info/

The pattern (c|b)a(b|t) matches any combination of the letters in the first group along with any combination of the

letters in the second group.

Regular Expressions in Action
Now that you've seen the rules and a few simple demonstrations of using regular expression patterns, it's time to put that

knowledge into action. The following sections demonstrate some common regular expression examples within shell scripts.

Counting Directory Files
To start things out, let's look at a shell script that counts the executable files that are present in the directories defined in
your PATH environment variable. To do that, you'll need to parse out the PATH variable into separate directory names.

Chapter 5 showed you how to display the PATH environment variable:

$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/usr/games:/usr/java/
j2sdk1.4.1_01/bin
$
Your PATH environment variable will differ, depending on where the applications are located on your Linux system. The

key is to recognize that each directory in the PATH is separated by a colon. To get a listing of directories that you can use in a
script, you'll have to replace each colon with a space. You now recognize that the sed editor can do just that using a simple

regular expression:

$ echo $PATH | sed ‘s/:/ /g’
/usr/local/bin /bin /usr/bin /usr/X11R6/bin /usr/games /usr/java/
j2sdk1.4.1_01/bin
$
Once you've got the directories separated out, you can use them in a standard for statement (see Chapter 12) to iterate

through each directory:

mypath=‘echo $PATH | sed ‘s/:/ /g’‘
for directory in $mypath
do
...
done
Once you have each directory, you can use the ls command to list each file in each directory, and use another for

statement to iterate through each file, incrementing a counter for each file.
The final version of the script looks like this:

$ cat countfiles
#!/bin/bash
count number of files in your PATH
mypath=‘echo $PATH | sed ‘s/:/ /g’‘
count=0
for directory in $mypath
do
 check=‘ls $directory‘
 for item in $check
 do
 count=$[$count + 1]
 done
 echo “$directory - $count”

www.it-ebooks.info

http://www.it-ebooks.info/

 count=0
done
$./countfiles
/usr/local/bin - 79
/bin - 86
/usr/bin - 1502
/usr/X11R6/bin - 175
/usr/games - 2
/usr/java/j2sdk1.4.1_01/bin - 27
$
Now we're starting to see some of the power behind regular expressions!

Validating a Phone Number
The previous example showed how to incorporate the simple regular expression along with sed to replace characters in a data
stream to process data. Often regular expressions are used to validate data to ensure that data is in the correct format for a

script.
A common data validation application checks phone numbers. Often, data entry forms request phone numbers, and

often customers fail to enter a properly formatted phone number. In the United States, there are several common ways to

display a phone number:

(123)456-7890
(123) 456-7890
123-456-7890
123.456.7890
This leaves four possibilities for how customers can enter their phone number in a form. The regular expression must be

robust enough to be able to handle either situation.
When building a regular expression, it's best to start on the left-hand side, and build your pattern to match the possible

characters you'll run into. In this example, there may or may not be a left parenthesis in the phone number. This can be

matched by using the pattern:

ˆ\(?
The caret is used to indicate the beginning of the data. Because the left parenthesis is a special character, you must escape

it to use it as a normal character. The question mark indicates that the left parenthesis may or may not appear in the data to

match.
Next comes the three-digit area code. In the United States, area codes start with the number 2 (no area codes start with the

digits 0 or 1), and can go to 9. To match the area code, you'd use the following pattern:

[2-9][0-9]{2}
This requires that the first character be a digit between 2 and 9, followed by any two digits. After the area code, the ending

right parenthesis may or may not be there:

\)?
After the area code, there can be a space, no space, a dash, or a dot. You can group those using a character group along

with the pipe symbol:

(| |-|\.)
The very first pipe symbol appears immediately after the left parenthesis to match the no space condition. You must use

the escape character for the dot; otherwise, it will be interpreted to match any character.
Next comes the three-digit phone exchange number. Nothing special required here:

[0-9]{3}
After the phone exchange number, you must match a space, a dash, or a dot (this time you don't have to worry about

matching no space because there must be at least a space between the phone exchange number and the rest of the number):

www.it-ebooks.info

http://www.it-ebooks.info/

(|-|\.)
Then to finish things off, you must match the four-digit local phone extension at the end of the string:

[0-9]{4}$
Putting the entire pattern together results in this:

ˆ\(?[2-9][0-9]{2}\)?(| |-|\.)[0-9]{3}(|-|\.)[0-9]{4}$
You can use this regular expression pattern in the gawk program to filter out bad phone numbers. All you need to do

now is create a simple script using the regular expression in a gawk program, and then filter your phone list through the
script. Remember that when you use regular expression intervals in the gawk program, you must use the --re-interval

command line option or you won't get the correct results.
Here's the script:

$ cat isphone
#!/bin/bash
script to filter out bad phone numbers
gawk --re-interval ‘/ˆ\(?[2-9][0-9]{2}\)?(| |-|\.)
[0-9]{3}(|-|\.)[0-9]{4}/{print $0}’
$
While you can't tell from this listing, the gawk command is on a single line in the shell script. You can then redirect phone

numbers to the script for processing:

$ echo “317-555-1234” | ./isphone
317-555-1234
$ echo “000-555-1234” | ./isphone
$
Or you can redirect an entire file of phone numbers to filter out the invalid ones:

$ cat phonelist
000-000-0000
123-456-7890
212-555-1234
(317)555-1234
(202) 555-9876
33523
1234567890
234.123.4567
$ cat phonelist | ./isphone
212-555-1234
(317)555-1234
(202) 555-9876
234.123.4567
$
Only the valid phone numbers that match the regular expression pattern appear.

Parsing an E-mail Address
In this day and age, e-mail addresses have become a crucial form of communication. Trying to validate e-mail addresses has
become quite a challenge for script builders because there are a myriad of ways to create an e-mail address. The basic form of

an e-mail address is:

www.it-ebooks.info

http://www.it-ebooks.info/

username@hostname
The username value can use any alphanumeric character, along with several special characters:

Dot
Dash
Plus sign
Underscore

These characters can appear in any combination in a valid e-mail userid. The hostname portion of the e-mail address
consists of one or more domain names and a server name. The server and domain names must also follow strict naming rules,

allowing only alphanumeric characters, along with the special characters:
Dot
Underscore

The server and domain names are each separated by a dot, with the server name specified first, any subdomain names

specified next, and finally, the top-level domain name without a trailing dot.
At one time there were a fairly limited number of top-level domains, and regular expression pattern builders attempted

to add them all in patterns for validation. Unfortunately, as the Internet grew so did the possible top-level domains. This

technique is no longer a viable solution.
Let's start building the regular expression pattern from the left side. We know that there can be multiple valid characters

in the username. This should be fairly easy:

ˆ([a-zA-Z0-9_\-\.\+]+)@
This grouping specifies the allowable characters in the username, and the plus sign to indicate that there must be at least

one character present. The next character is obviously going to be the @ symbol, no surprises there.
The hostname pattern uses the same technique to match the server name and the subdomain names:

([a-zA-Z0-9_\-\.]+)
This pattern matches the text:

server
server.subdomain
server.subdomain.subdomain
There are special rules for the top-level domain. Top-level domains are only alphabetic characters, and they must be no

fewer than two characters (used in country codes) and no more than five characters in length. The following is the regular

expression pattern for the top-level domain:

\.([a-zA-Z]{2,5})$
Putting the entire pattern together results in the following:

ˆ([a-zA-Z0-9_\-\.\+]+)@([a-zA-Z0-9_\-\.]+)\.([a-zA-Z]{2,5})$
This pattern will filter out poorly formatted e-mail addresses from a data list. Now you can create your script to

implement the regular expression:

$ echo “rich@here.now” | ./isemail
rich@here.now
$ echo “rich@here.now.” | ./isemail
$
$ echo “rich@here.n” | ./isemail
$
$ echo “rich@here-now” | ./isemail
$
$ echo “rich.blum@here.now” | ./isemail
rich.blum@here.now
$ echo “rich_blum@here.now” | ./isemail

www.it-ebooks.info

http://www.it-ebooks.info/

rich_blum@here.now
$ echo “rich/blum@here.now” | ./isemail
$
$ echo “rich#blum@here.now” | ./isemail
$
$ echo “rich*blum@here.now” | ./isemail
$

Summary
If you manipulate data files in shell scripts, you'll need to become familiar with regular expressions. Regular expressions are
implemented in Linux utilities, programming languages, and applications using regular expression engines. A host of
different regular expression engines are available in the Linux world. The two most popular are the POSIX Basic Regular
Expression (BRE) engine and the POSIX Extended Regular Expression (ERE) engine. The sed editor conforms mainly to the

BRE engine, while the gawk program utilizes most features found in the ERE engine.
A regular expression defines a pattern template that's used to filter text in a data stream. The pattern consists of a

combination of standard text characters and special characters. The special characters are used by the regular expression

engine to match a series of one or more characters, similarly to how wildcard characters work in other applications.
By combining characters and special characters, you can define a pattern to match most any type of data. You can then

use the sed editor or gawk program to filter specific data from a larger data stream, or for validating data received from

data entry applications.
The next chapter digs deeper into using the sed editor to perform advanced text manipulation. Lots of advanced

features are available in the sed editor that make it useful for handling large data streams and filtering out just what you

need.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 20

Advanced sed

In This Chapter

Multiline commands
The hold space
Negating a command
Changing the flow
Pattern replacement
Using sed in scripts
Creating sed utilities

Chapter 18 showed you how to use the basics of the sed editor to manipulate text in data streams. The basic sed editor
commands are capable of handling most of your everyday text-editing requirements. This chapter takes a look at the more
advanced features that the sed editor has to offer. These are features that you might not use as often, but when you need

them, it's nice to know that they're there and how to use them.

Multiline Commands
When using the basic sed editor commands, you might have noticed a limitation. All of the sed editor commands perform
functions on a single line of data. As the sed editor reads a data stream, it divides the data into lines based on the presence of
newline characters. The sed editor processes each line of data one at a time, processing the defined script commands on a line

of text, and then moving on to the next line and repeating the process.
There are times when you need to perform actions on data that spans more than one line. This is especially true if you're

trying to find or replace a phrase.
For example, if you're looking for the phrase Linux System Administrators Group in your data, it's quite

possible that the phrase can be split into two lines between any of the words in the phrase. If you processed the text using a

normal sed editor command, it would be impossible to detect how the phrase was split.
Fortunately, the designers behind the sed editor thought of that situation and devised a solution. The sed editor includes

three special commands that you can use to process multiline text:
N: Add the next line in the data stream to create a multiline group for processing.
D: Delete a single line in a multiline group.
P: Print a single line in a multiline group.

The following sections examine these multiline commands more closely and demonstrate how you can use them in your

scripts.

The next Command
Before you can examine the multiline next command, you first need to take a look at how the single-line version of the next
command works. Once you know what that command does, it's a lot easier to understand how the multiline version of the

next command operates.

The Single-Line next Command
The lowercase n command tells the sed editor to move to the next line of text in the data stream, without going back to the
beginning of the commands. Remember that normally the sed editor processes all of the defined commands on a line before

moving to the next line of text in the data stream. The single-line next command alters this flow.
This may sound somewhat complicated, and sometimes it is. In this example, you have a data file that contains five lines,

two of them empty. The goal is to remove the blank line after the header line but leave the blank line before the last line

intact. If you write a sed script to just remove blank lines, you will remove both blank lines:

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat data1
This is the header line.

This is a data line.

This is the last line.
$
$ sed ‘/ˆ$/d’ data1
This is the header line.
This is a data line.
This is the last line.
$
Because the line you want to remove is blank, you don't have any text you can search for to uniquely identify the line. The

solution is to use the n command. In this next example, the script looks for a unique line, which contains the word header.

Once the script identifies that line, the n command moves the sed editor to the next line of text, which is the empty line.

$ sed ‘/header/{n ; d}’ data1
This is the header line.
This is a data line.

This is the last line.
$
At that point, the sed editor continues processing the command list, which uses the d command to delete the empty line.

When the sed editor reaches the end of the command script, it reads the next line of text from the data stream and starts
processing commands from the top of the command script. The sed editor does not find another line with the word header;

thus, no further lines are deleted.

Combining Lines of Text
Now that you've seen the single-line next command, you can look at the multiline version. The single-line next command
moves the next line of text from the data stream into the processing space (called the pattern space) of the sed editor. The
multiline version of the next command (which uses a capital N) adds the next line of text to the text already in the pattern

space.
This has the effect of combining two lines of text from the data stream into the same pattern space. The lines of text are

still separated by a newline character, but the sed editor can now treat both lines of text as one line.
Here's a demonstration of how the N command operates:

$ cat data2
This is the header line.
This is the first data line.
This is the second data line.
This is the last line.
$
$ sed ‘/first/{ N ; s/\n/ / }’ data2
This is the header line.
This is the first data line. This is the second data line.
This is the last line.
$
The sed editor script searches for the line of text that contains the word “first” in it. When it finds the line, it uses the N

command to combine the next line with that line. It then uses the substitution command (s) to replace the newline

www.it-ebooks.info

http://www.it-ebooks.info/

command to combine the next line with that line. It then uses the substitution command (s) to replace the newline

character with a space. The result is that the two lines in the text file appear as one line in the sed editor output.
This has a practical application if you're searching for a text phrase that may be split between two lines in the data file.

Here's an example:

$ cat data3
The first meeting of the Linux System
Administrator's group will be held on Tuesday.
All System Administrators should attend this meeting.
Thank you for your attendance.
$
$ sed ‘s/System Administrator/Desktop User/’ data3
The first meeting of the Linux System
Administrator's group will be held on Tuesday.
All Desktop Users should attend this meeting.
Thank you for your attendance.
$
The substitution command is looking for the specific two-word phrase System Administrator in the text file. In

the single line where the phrase appears, everything is fine; the substitution command can replace the text. But in the

situation where the phrase is split between two lines, the substitution command doesn't recognize the matching pattern.
The N command helps solve this problem:

$ sed ‘N ; s/System.Administrator/Desktop User/’ data3
The first meeting of the Linux Desktop User's group will be held on Tuesd
ay.
All Desktop Users should attend this meeting.
Thank you for your attendance.
$
By using the N command to combine the next line with the line where the first word is found, you can detect when a line

split occurs in the phrase.
Notice that the substitution command uses a wildcard pattern (.) between “System” and “Administration” to match

both the space and the newline situation. However, when it matched the newline character, it removed it from the string,

causing the two lines to merge into one line. This may not be exactly what you want.
To solve this problem, you can use two substitution commands in the sed editor script, one to match the multiline

occurrence and one to match the single-line occurrence:

$ sed ‘
> N
> s/System\nAdministrator/Desktop\nUser/
> s/System Administrator/Desktop User/
> ’ data3
The first meeting of the Linux Desktop
User's group will be held on Tuesday.
All Desktop Users should attend this meeting.
Thank you for your attendance.
$
The first substitution command specifically looks for the newline character between the two search words and

includes it in the replacement string. This allows you to add the newline character in the same place in the new text.
There's still one subtle problem with this script, however. The script always reads the next line of text into the pattern

space before executing the sed editor commands. When it reaches the last line of text, there isn't a next line of text to read, so
the N command causes the sed editor to stop. If the matching text is on the last line in the data stream, the commands won't

www.it-ebooks.info

http://www.it-ebooks.info/

the N command causes the sed editor to stop. If the matching text is on the last line in the data stream, the commands won't

catch the matching data:

$ cat data4
The first meeting of the Linux System
Administrator's group will be held on Tuesday.
All System Administrators should attend this meeting.
$
$ sed ‘
> N
> s/System\nAdministrator/Desktop\nUser/
> s/System Administrator/Desktop User/
> ’ data4
The first meeting of the Linux Desktop
User's group will be held on Tuesday.
All System Administrators should attend this meeting.
$
Because the System Administrator text appears in the last line in the data stream, the N command misses it, as there

isn't another line to read into the pattern space to combine. You can easily resolve this problem by moving your single-line

commands before the N command and having only the multiline commands appear after the N command, like this:

$ sed ‘
> s/System Administrator/Desktop User/
> N
> s/System\nAdministrator/Desktop\nUser/
> ’ data4
The first meeting of the Linux Desktop
User's group will be held on Tuesday.
All Desktop Users should attend this meeting.
$
Now, the substitution command that looks for the phrase in a single line works just fine on the last line in the data

stream, and the multiline substitution command covers the occurrence in the middle of the data stream.

The Multiline delete Command
Chapter 18 introduced the single-line delete command (d). The sed editor uses it to delete the current line in the pattern

space. When working with the N command, however, you must be careful when using the single-line delete command:

$ sed ‘N ; /System\nAdministrator/d’ data4
All System Administrators should attend this meeting.
$
The delete command looked for the words System and Administrator in separate lines and then deleted both of

the lines in the pattern space. This may or may not have been what you intended.
The sed editor provides the multiline delete command (D), which deletes only the first line in the pattern space. It

removes all characters up to and including the newline character:

$ sed ‘N ; /System\nAdministrator/d’ data4
Administrator's group will be held on Tuesday.
All System Administrators should attend this meeting.
$
The second line of text, added to the pattern space by the N command, remains intact. This comes in handy if you need to

www.it-ebooks.info

http://www.it-ebooks.info/

The second line of text, added to the pattern space by the N command, remains intact. This comes in handy if you need to

remove a line of text that appears before a line that you find a data string in.
Here's an example of removing a blank line that appears before the first line in a data stream:

$ cat data5

This is the header line.
This is a data line.

This is the last line.
$
$ sed ‘/ˆ$/{N ; /header/D}’ data5This is the header line.
This is a data line.

This is the last line.
$
This sed editor script looks for blank lines and then uses the N command to add the next line of text into the pattern

space. If the new pattern space contents contain the word header, the D command removes the first line in the pattern
space. Without the combination of the N and D commands, it would be impossible to remove the first blank line without

removing all other blank lines.

The Multiline print Command
By now, you're probably catching on to the difference between the single-line and multiline versions of the commands. The
multiline print command (P) follows along using the same technique. It prints only the first line in a multiline pattern space.
This includes all characters up to the newline character in the pattern space. It is used in much the same way as the single-line p

command to display text when you use the -n option to suppress output from the script.

$ sed -n ‘N ; /System\nAdministrator/P’ data3
The first meeting of the Linux System
$
When the multiline match occurs, the P command prints only the first line in the pattern space. The power of the multiline

P command comes into play when you combine it with the N and D multiline commands.
The D command has a unique feature in that it forces the sed editor to return to the beginning of the script and repeat

the commands on the same pattern space (it doesn't read a new line of text from the data stream). By including the N

command in the command script, you can effectively single-step through the pattern space, matching multiple lines together.
Next, by using the P command, you can print the first line, and then using the D command, you can delete the first line and

loop back to the beginning of the script. Once you are back at the script's beginning, the N command reads in the next line of

text and starts the process all over again. This loop continues until you reach the end of the data stream.

The Hold Space
The pattern space is an active buffer area that holds the text examined by the sed editor while it processes commands.

However, it isn't the only space available in the sed editor for storing text.
The sed editor utilizes another buffer area called the hold space. You can use the hold space to temporarily hold lines of

text while working on other lines in the pattern space. There are five commands associated with operating with the hold space,

as shown in Table 20.1.

Table 20.1 The sed Editor Hold Space Commands

Command Description

h Copy pattern space to hold space.

H Append pattern space to hold space.

www.it-ebooks.info

#c20_tbl_0001
#c20_tbl_anc_0001
http://www.it-ebooks.info/

g Copy hold space to pattern space.

G Append hold space to pattern space.

x Exchange contents of pattern and hold spaces.

These commands let you copy text from the pattern space to the hold space. This frees up the pattern space to load

another string for processing.
Usually, after using the h or H commands to move a string to the hold space, eventually you want to use the g, G, or x

commands to move the stored string back into the pattern space (otherwise, you wouldn't have cared about saving them in

the first place).
With two buffer areas, trying to determine what line of text is in which buffer area can sometimes get confusing. Here's a

short example that demonstrates how to use the h and g commands to move data back and forth between the sed editor

buffer spaces:

$ cat data2
This is the header line.
This is the first data line.
This is the second data line.
This is the last line.
$
$ sed -n ‘/first/{
> h
> p
> n
> p
> g
> p
> }’ data2
This is the first data line.
This is the second data line.
This is the first data line.
$
Take a look at the preceding code example step by step:

1. The sed script uses a regular expression in the address to filter the line containing the word first.
2. When the line containing the word first appears, the h command places the line in the hold space.
3. The p command prints the contents of the pattern space, which is still the first data line.
4. The n command retrieves the next line in the data stream (This is the second data line) and places it in the

pattern space.
5. The p command prints the contents of the pattern space, which is now the second data line.
6. The g command places the contents of the hold space (This is the first data line) back into the pattern

space, replacing the current text.
7. The p command prints the current contents of the pattern space, which is now back to the first data line.

By shuffling the text lines around using the hold space, you are able to force the first data line to appear after the second

data line in the output. If you just drop the first p command, you can output the two lines in reverse order:

$ sed -n ‘/first/{
> h
> n

www.it-ebooks.info

http://www.it-ebooks.info/

> p
> g
> p
> }’ data2
This is the second data line.
This is the first data line.
$
This is the start of something useful. You can use this technique to create a sed script that reverses an entire file of text

lines! To do that, however, you need to see the negating feature of the sed editor, which is what the next section is all about.

Negating a Command
Chapter 18 showed that the sed editor applies commands either to every text line in the data stream or to lines specifically
indicated by either a single address or an address range. You can also configure a command to not apply to a specific address

or address range in the data stream.
The exclamation mark command (!) is used to negate a command. This means in situations where the command would

normally have been activated, it isn't. Here's an example demonstrating this feature:

$ sed -n ‘/header/!p’ data2
This is the first data line.
This is the second data line.
This is the last line.
$
The normal p command would have printed only the line in the data2 file that contained the word header. By adding

the exclamation mark, all of the lines in the file printed except the one that contained the text referenced in the address.
There are several applications where using the exclamation mark comes in handy. Recall that earlier in the chapter, “The

next Commands” section showed a situation where a sed editor command wouldn't operate on the last line of text in the

data stream because there wasn't a line after it. You can use the exclamation point to fix that problem:

 $ sed ‘N; s/System.Administrator/Desktop User/’ data4
 The first meeting of the Linux Desktop User's group will be held on Tues
day
 All System Administrators should attend this meeting.
 $
 $ sed ‘$!N; s/System.Administrator/Desktop User/’ data4
 The first meeting of the Linux Desktop User's group will be held on Tues
day
 All Desktop Users should attend this meeting.
 $
This example shows the exclamation mark used with the N command, along with the dollar sign special address. The dollar

sign represents the last line of text in the data stream, so when the sed editor reaches the last line, it doesn't execute the N

command. For all other lines, however, it does execute the command.
Using this technique, you can reverse the order of text lines in a data stream. To reverse the order of the lines as they

appear in the text stream (display the last line first and the first line last), you need to do some fancy footwork using the hold

space.
The pattern you'll need to work with goes like this:

1. Place a line in the pattern space.
2. Place the line from the pattern space to the hold space.
3. Put the next line of text in the pattern space.
4. Append the hold space to the pattern space.
5. Place everything in the pattern space into the hold space.

www.it-ebooks.info

http://www.it-ebooks.info/

6–9. Repeat Steps 3 through 5 until you've put all of the lines in reverse order in the hold space.
10. Retrieve the lines and print them.

Figure 20.1 diagrams what this looks like in more detail.

Figure 20.1 Reversing the order of a text file using the hold space

When using this technique, you do not want to print lines as they are processed. This means using the -n command line

option for sed. The next thing to determine is how to append the hold space text to the pattern space text. This is done by
using the G command. The only problem is that you don't want to append the hold space to the first line of text processed.

This is easily solved by using the exclamation mark command:

1!G
The next step is to place the new pattern space (the text line with the appended reverse lines) into the hold space. This is

simple enough; just use the h command.
When you've got the entire data stream in the pattern space in reverse order, all you need to do is print the results. You

know you've got the entire data stream in the pattern space when you've reached the last line in the data stream. To print the

results, just use the following command:

$p
Those are the pieces you need to create your line-reversing sed editor script. Now try it out in a test run:

$ cat data2
This is the header line.

www.it-ebooks.info

#c20_fig_0001
#c20_fig_anc_0001
http://www.it-ebooks.info/

This is the first data line.
This is the second data line.
This is the last line.
$
$ sed -n ‘{1!G ; h ; $p }’ data2
This is the last line.
This is the second data line.
This is the first data line.
This is the header line.
$
The sed editor script performed as expected. The output from the script reverses the original lines in the text file. This

demonstrates the power of using the hold space in your sed scripts. It provides an easy way to manipulate the order of lines

in the script output.

Note

In case you're wondering, there's a Linux command that can perform the function
of reversing a text file. The tac command displays a text file in reverse order. You
probably noticed the clever name of the command because it performs the
reverse function of the cat command.

Changing the Flow
Normally, the sed editor processes commands starting at the top and proceeding toward the end of the script (the exception
is the D command, which forces the sed editor to return to the top of the script without reading a new line of text). The sed
editor provides a method for altering the flow of the command script, producing a result similar to that of a structured

programming environment.

Branching
In the previous section, you saw how the exclamation mark command is used to negate the effect of a command on a line of
text. The sed editor provides a way to negate an entire section of commands, based on an address, an address pattern, or an

address range. This allows you to perform a group of commands only on a specific subset within the data stream.
The format of the branch command is:

[address]b [label]
The address parameter determines which line or lines of data trigger the branch command. The label parameter

defines the location to branch to. If the label parameter is not present, the branch command proceeds to the end of the

script.

$ sed ‘{2,3b ; s/This is/Is this/;s/line./test?/}’ data2
Is this the header test?
This is the first data line.
This is the second data line.
Is this the last test?
$
The branch command skips the two substitution commands for the second and third lines in the data stream.
Instead of going to the end of the script, you can define a label for the branch command to jump to. Labels start with a

colon and can be up to seven characters in length:

:label2
To specify the label, just add it after the b command. Using labels allows you to skip commands that match the branch

address but still process other commands in the script:

$ sed ‘{/first/b jump1 ; s/This is the/No jump on/

www.it-ebooks.info

http://www.it-ebooks.info/

> :jump1
> s/This is the/Jump here on/}’ data2
No jump on header line
Jump here on first data line
No jump on second data line
No jump on last line
$
The branch command specifies that the program should jump to the script line labeled jump1 if the matching text “first”

appears in the line. If the branch command pattern doesn't match, the sed editor continues processing commands in the
script, including the command after the branch label. (Thus, all three substitution commands are processed on lines that

don't match the branch pattern.)
If a line matches the branch pattern, the sed editor branches to the branch label line. Thus, only the last

substitution command is executed.
The example shows branching to a label further down in the sed script. You can also branch to a label that appears

earlier in the script, thus creating a looping effect:

$ echo “This, is, a, test, to, remove, commas. ” | sed -n ‘{
> :start
> s/,//1p
> b start
> }’
This is, a, test, to, remove, commas.
This is a, test, to, remove, commas.
This is a test, to, remove, commas.
This is a test to, remove, commas.
This is a test to remove, commas.
This is a test to remove commas.
Each iteration of the script removes the first occurrence of a comma from the text string and prints the string. There's one

catch to this script: it never ends. This situation creates an endless loop, searching for commas until you manually stop it by

sending a signal with the Ctrl+C key combination.
To prevent this problem, you should specify an address pattern for the branch command to look for. If the pattern isn't

present, the branching should stop:

$ echo “This, is, a, test, to, remove, commas. ” | sed -n ‘{
> :start
> s/,//1p
> /,/b start
> }’
This is, a, test, to, remove, commas.
This is a, test, to, remove, commas.
This is a test, to, remove, commas.
This is a test to, remove, commas.
This is a test to remove, commas.
This is a test to remove commas.
$
Now the branch command branches only if there's a comma in the line. After the last comma has been removed, the

branch command won't execute, allowing the script to properly finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing
Similar to the branch command, the test command (t) is also used to modify the flow of the sed editor script. Instead of
jumping to a label based on an address, the test command jumps to a label based on the outcome of a substitution

command.
If the substitution command successfully matches and substitutes a pattern, the test command branches to the

specified label. If the substitution command doesn't match the specified pattern, the test command doesn't branch.
The test command uses the same format as the branch command:

[address]t [label]
Like the branch command, if you don't specify a label, sed branches to the end of the script if the test succeeds.
The test command provides a cheap way to perform a basic if-then statement on the text in the data stream. For

example, if you don't need to make a substitution if another substitution was made, the test command can help:

$ sed ‘{
> s/first/matched/
> t
> s/This is the/No match on/
> }’ data2
No match on header line
This is the matched data line
No match on second data line
No match on last line
$
The first substitution command looks for the pattern text first. If it matches the pattern in the line, it replaces the

text, and the test command jumps over the subsequent substitution command. If the first substitution command

doesn't match the pattern, the second substitution command is processed.
Using the test command, you can clean up the loop you tried using the branch command:

$ echo “This, is, a, test, to, remove, commas. ” | sed -n ‘{
> :start
> s/,//1p
> t start
> }’
This is, a, test, to, remove, commas.
This is a, test, to, remove, commas.
This is a test, to, remove, commas.
This is a test to, remove, commas.
This is a test to remove, commas.
This is a test to remove commas.
$
When there are no more substitutions to make, the test command doesn't branch and continues with the rest of the

script.

Pattern Replacement
You've seen how to use patterns in the sed commands to replace text in the data stream. However, when using wildcard

characters it's not easy to know exactly what text will match the pattern.
For example, say that you want to place double quotation marks around a word you match in a line. That's simple enough

if you're just looking for one word in the pattern to match:

$ echo “The cat sleeps in his hat. ” | sed ‘s/cat/“cat”/’
The “cat” sleeps in his hat.

www.it-ebooks.info

http://www.it-ebooks.info/

$
But what if you use a wildcard character (.) in the pattern to match more than one word?

$ echo “The cat sleeps in his hat. ” | sed ‘s/.at/“.at”/g’
The “.at” sleeps in his “.at”.
$
The substitution string used the dot wildcard character to match any occurrence of a letter followed by “at”.

Unfortunately, the replacement string doesn't match the wildcard character value of the matching word.

The Ampersand
The sed editor has a solution for you. The ampersand symbol (&) is used to represent the matching pattern in the
substitution command. Whatever text matches the pattern defined, you can use the ampersand symbol to recall it in the

replacement pattern. This lets you manipulate whatever word matches the pattern defined:

$ echo “The cat sleeps in his hat. ” | sed ‘s/.at/“&”/g’
The “cat” sleeps in his “hat”.
$
When the pattern matches the word cat, “cat” appears in the substituted word. When it matched the word hat, “hat”

appears in the substituted word.

Replacing Individual Words
The ampersand symbol retrieves the entire string that matches the pattern you specify in the substitution command.

There are times when you'll only want to retrieve a subset of the string. You can do that, too, but it's a little tricky.
The sed editor uses parentheses to define a substring component within the substitution pattern. You can then reference

each substring component using a special character in the replacement pattern. The replacement character consists of a
backslash and a number. The number indicates the position of the substring component. The sed editor assigns the first

component the character \1, the second component the character \2, and so on.

Caution

When you use parentheses in the substitution command, you must use the escape
character to identify them as grouping characters and not normal parentheses. This is the
reverse of when you escape other special characters.

Take a look at an example of using this feature in a sed editor script:

$ echo “The System Administrator manual” | sed ‘
> s/\(System\) Administrator/\1 User/’
The System User manual
$
This substitution command uses one set of parentheses around the word “System,” identifying it as a substring

component. It then uses the \1 in the replacement pattern to recall the first identified component. This wasn't too exciting,

but it can really be useful when working with wildcard patterns.
If you need to replace a phrase with just a single word, that's a substring of the phrase, but that substring just happens to

be using a wildcard character; using substring components is a lifesaver:

$ echo “That furry cat is pretty” | sed ‘s/furry \(.at\)/\1/’
That cat is pretty
$ echo “That furry hat is pretty” | sed ‘s/furry \(.at\)/\1/’
That hat is pretty
$
In this situation, you can't use the ampersand symbol, as it would replace the entire matching pattern. The substring

www.it-ebooks.info

http://www.it-ebooks.info/

In this situation, you can't use the ampersand symbol, as it would replace the entire matching pattern. The substring

component provides the answer, allowing you to select just which part of the pattern to use as the replacement pattern.
This feature can be especially helpful when you need to insert text between two or more substring components. Here's a

script that uses substring components to insert a comma in long numbers:

$ echo “1234567” | sed ‘{
> :start
> s/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/
> t start
> }’
1,234,567
$
The script divides the matching pattern into two components:

.*[0-9]
[0-9]{3}
This pattern looks for two substrings. The first substring is any number of characters, ending in a digit. The second

substring is a series of three digits (see Chapter 19 for information about how to use braces in a regular expression). If this
pattern is found in the text, the replacement text puts a comma between the two components, each identified by its

component position. The script uses the test command to iterate through the number until all commas have been placed.

Using sed in Scripts
Now that you've seen the various parts of the sed editor, it's time to put them together and use them in your shell scripts. This

section demonstrates some of the features that you should know about when using the sed editor in your bash shell scripts.

Using Wrappers
You may have noticed that trying to implement a sed editor script can be cumbersome, especially if the script is long. Instead
of having to retype the entire script each time you want to use it, you can place the sed editor command in a shell script

wrapper. The wrapper acts as a go-between for the sed editor script and the command line.
Once inside the shell script, you can use normal shell variables and parameters with your sed editor scripts. Here's an

example of using the command line parameter variable as the input to a sed script:

$ cat reverse
#!/bin/bash
shell wrapper for sed editor script to reverse lines

sed -n ‘{
1!G
h
$p
}’ $1
$
The shell script called reverse uses the sed editor script to reverse text lines in a data stream. It uses the $1 shell

parameter to retrieve the first parameter from the command line, which should be the name of the file to reverse:

$./reverse data2
This is the last line.
This is the second data line.
This is the first data line.
This is the header line.
$
Now you can easily use the sed editor script on any file, without having to constantly retype the entire command line.

www.it-ebooks.info

http://www.it-ebooks.info/

Redirecting sed Output
By default, the sed editor outputs the results of the script to STDOUT. You can employ all of the standard methods of

redirecting the output of the sed editor in your shell scripts.
You can use backticks to redirect the output of your sed editor command to a variable for use later on in the script. The

following is an example of using the sed script to add commas to the result of a numeric computation:

$ cat fact
#!/bin/bash
#add commas to numbers in factorial answer

factorial=1
counter=1
number=$1

while [$counter -le $number]
do
 factorial=$[$factorial * $counter]
 counter=$[$counter + 1]
done

result=‘echo $factorial | sed ‘{
:start
s/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/
t start
}’‘

echo “The result is $result”
$
$./fact 20
The result is 2,432,902,008,176,640,000
$
After you use the normal factorial calculation script, the result of that script is used as the input to the sed editor script,

which adds commas. This value is then used in the echo statement to produce the result.

Creating sed Utilities
As you've seen in the short examples presented so far in this chapter, there are lots of cool data-formatting things you can do
with the sed editor. This section shows a few handy well-known sed editor scripts for performing common data-handling

functions.

Double Spacing Lines

To start things off, take a look at a simple sed script to insert a blank line between lines in a text file:

$ sed ‘G’ data2
This is the header line.

This is the first data line.

www.it-ebooks.info

http://www.it-ebooks.info/

This is the second data line.

This is the last line.
$
That was pretty simple! The key to this trick is the default value of the hold space. Remember that the G command simply

appends the contents of the hold space to the current pattern space contents. When you start the sed editor, the hold space

contains an empty line. By appending that to an existing line, you create a blank line after the existing line.
You may have noticed that this script also adds a blank line to the last line in the data stream, producing a blank line at

the end of the file. If you want to get rid of this, you can use the negate symbol and the last line symbol to ensure that the

script doesn't add the blank line to the last line of the data stream:

$ sed ‘$!G’ data2
This is the header line.

This is the first data line.

This is the second data line.

This is the last line.
$
Now that looks a little better. As long as the line isn't the last line, the G command appends the contents of the hold space.

When the sed editor gets to the last line, it skips the G command.

Double Spacing Files That May Have Blanks
To take double spacing one step further, what if the text file already has a few blank lines, but you want to double space all
of the lines? If you use the previous script, you'll get some areas that have too many blank lines, as each existing blank line

gets doubled:

$ cat data6
This is line one.
This is line two.

This is line three.
This is line four.
$
$ sed ‘$!G’ data6
This is line one.

This is line two.

This is line three.

This is line four.
$
Now you have three blank lines where the original blank line was located. The solution to this problem is to first delete

any blank lines from the data stream and then use the G command to insert new blank lines after all of the lines. To delete

existing blank lines, you just need to use the d command with a pattern that matches a blank line:

www.it-ebooks.info

http://www.it-ebooks.info/

/$/d
This pattern uses the start line tag (the caret) and the end line tag (the dollar sign). Adding this pattern to the script

produces the desired results:

$ sed ‘/ˆ$/d;$!G’ data6
This is line one.

This is line two.

This is line three.

This is line four.
$
Perfect!

Numbering Lines in a File

Chapter 18 showed you how to use the equal sign to display the line numbers of lines in the data stream:

$ sed ‘=’ data2
1
This is the header line.
2
This is the first data line.
3
This is the second data line.
4
This is the last line.
$
This can be a little awkward to read, as the line number is on a line above the actual line in the data stream. A better

solution is to place the line number on the same line as the text.
Now that you've seen how to combine lines using the N command, it shouldn't be too hard to utilize that information in

the sed editor script. The trick to this utility, however, is that you can't combine the two commands in the same script.
Once you have the output for the equal sign command, you can pipe the output to another sed editor script that uses the

N command to combine the two lines. You also need to use the substitution command to replace the newline character

with either a space or a tab character. Here's what the final solution looks like:

$ sed ‘=’ data2 | sed ‘N; s/\n/ /’
1 This is the header line.
2 This is the first data line.
3 This is the second data line.
4 This is the last line.
$
Now that looks much better. This is a great little utility to have around when working on programs where you need to see

the line numbers used in error messages.

Printing Last Lines
So far, you've seen how to use the p command to print all of the lines in a data stream or just lines that match a specific

pattern. What if you just need to work with the last few lines of a long listing, such as a log file?

www.it-ebooks.info

http://www.it-ebooks.info/

The dollar sign represents the last line of a data stream, so it's easy to display just the last line:

$ sed -n ‘$p’ data2
This is the last line.
$
Now how can you use the dollar sign symbol to display a set number of lines at the end of the data stream? The answer is

to create a rolling window.
A rolling window is a common way to examine blocks of text lines in the pattern space by combining them using the N

command. The N command appends the next line of text to the text already in the pattern space. Once you have a block of 10
text lines in the pattern space, you can check if you're at the end of the data stream using the dollar sign. If you're not at the
end, continue adding more lines to the pattern space, while removing the original lines (remember the D command, which

deletes the first line in the pattern space).
By looping through the N and D commands, you add new lines to the block of lines in the pattern space while removing

old lines. The branch command is the perfect fit for the loop. To end the loop, just identify the last line and use the q

command to quit.
Here's what the final sed editor script looks like:

$ sed ‘{
> :start
> $q
> N
> 11,$D
> b start
> }’ /etc/passwd
user:x:1000:1000:user,,,:/home/user:/bin/bash
polkituser:x:113:121:PolicyKit,,,:/var/run/PolicyKit:/bin/false
sshd:x:114:65534::/var/run/sshd:/usr/sbin/nologin
Samantha:x:1001:1002:Samantha,4,,:/home/Samantha:/bin/bash
Debian-exim:x:115:124::/var/spool/exim4:/bin/false
usbmux:x:116:46:usbmux daemon,,,:/home/usbmux:/bin/false
rtkit:x:117:125:RealtimeKit,,,:/proc:/bin/false
Timothy:x:1002:1005::/home/Timothy:/bin/sh
Christine:x:1003:1006::/home/Christine:/bin/sh
kdm:x:118:65534::/home/kdm:/bin/false
$
The script first checks if the line is the last line in the data stream. If it is, the quit command stops the loop. The N command

appends the next line to the current line in the pattern space. The 11,$D command deletes the first line in the pattern space

if the current line is after line 10. This creates the sliding window effect in the pattern space.

Deleting Lines
Another useful utility for the sed editor is to remove unwanted blank lines in a data stream. It's easy to remove all the blank
lines from a data stream, but it takes a little ingenuity to selectively remove blank lines. This section shows you a couple of

quick sed editor scripts that you can use to help remove unwanted blank lines from your data.

Deleting Consecutive Blank Lines
It can be a nuisance when extra blank lines crop up in data files. Often you have a data file that contains blank lines, but

sometimes a data line is missing and produces too many blank lines (as you saw in the double-spacing example earlier).
The easiest way to remove consecutive blank lines is to check the data stream using a range address. Chapter 18 showed

you how to use ranges in addresses, including how to incorporate patterns in the address range. The sed editor executes the

www.it-ebooks.info

http://www.it-ebooks.info/

you how to use ranges in addresses, including how to incorporate patterns in the address range. The sed editor executes the

command for all lines that match within the specified address range.
The key to removing consecutive blank lines is to create an address range that includes a non-blank line and a blank line.

If the sed editor comes across this range, it shouldn't delete the line. However, for lines that don't match that range (two or

more blank lines in a row), it should delete the lines.
Here's the script to do this:

/./,/ˆ$/!d
The range is /./ to /ˆ$/. The start address in the range matches any line that contains at least one character. The end

address in the range matches a blank line. Lines within this range aren't deleted.
Here's the script in action:

$ cat data6
This is the first line.

This is the second line.

This is the third line.

This is the fourth line.
$
$ sed ‘/./,/ˆ$/!d’ data6
This is the first line.

This is the second line.

This is the third line.

This is the fourth line.
$
No matter how many blank lines appear between lines of data in the file, the output places only one blank line between

the lines.

Deleting Leading Blank Lines
It is also a nuisance when data files contain multiple blank lines at the start of the file. Often when trying to import data from

a text file into a database, the blank lines create null entries, throwing off any calculations using the data.
Removing blank lines from the top of a data stream is not a difficult task. Here's the script that accomplishes that

function:

/./,$!d
The script uses an address range to determine what lines are deleted. The range starts with a line that contains a character

and continues to the end of the data stream. Any line within this range is not deleted from the output. This means that any

lines before the first line that contain a character are deleted.
Take a look at this simple script in action:

$ cat data7

This is the first line.

This is the second line.

www.it-ebooks.info

http://www.it-ebooks.info/

$
$ sed ‘/./,$!d’ data7
This is the first line.

This is the second line.
$
The test file contains two blank lines before the data lines. The script successfully removes both of the leading blank lines,

while keeping the blank line within the data intact.

Deleting Trailing Blank Lines
Unfortunately, deleting trailing blank lines is not as simple as deleting leading blank lines. Just like printing the end of a

data stream, deleting blank lines at the end of a data stream requires a little ingenuity and looping.
Before we start the discussion, let's see what the script looks like:

sed ‘{
:start
/ˆ\n*$/{$d; N; b start }
}’
This may look a little odd to you at first. Notice that there are braces within the normal script braces. This allows you to

group commands together within the overall command script. The group of commands applies to the specified address
pattern. The address pattern matches any line that contains only a newline character. When one is found, if it's the last line,
the delete command deletes it. If it's not the last line, the N command appends the next line to it, and the branch command

loops to the beginning to start over.
Here's the script in action:

$ cat data8
This is the first line.
This is the second line.

$
$ sed ‘{
:start
/ˆ\n *$/{$d ; N; b start }
}’ data8
This is the first line.
This is the second line.
$
The script successfully removed the blank lines from the end of the text file.

Removing HTML Tags
In this day and age, it's not uncommon to download text from a Website to save or use as data in an application. Sometimes,
however, when you download text from the Website, you also get the HTML tags used to format the data. This can be a

problem when all you want to see is the data.
A standard HTML Web page contains several different types of HTML tags, identifying formatting features required to

properly display the page information. Here's a sample of what an HTML file looks like:

$ cat data9
<html>

www.it-ebooks.info

http://www.it-ebooks.info/

<head>
<title>This is the page title</title>
</head>
<body>
<p>
This is the first line in the Web page. This should provide
some <i>useful</i> information for us to use in our shell script.
</body>
</html>
$
HTML tags are identified by the less-than and greater-than symbols. Most HTML tags come in pairs. One tag starts the

formatting process (for example, for bolding), and another tag stops the formatting process (for example, to

turn off bolding).
Removing HTML tags creates a problem, however, if you're not careful. At first glance, you'd think that the way to remove

HTML tags would be to just look for a text string that starts with a less-than symbol (<), ends with a greater-than symbol (>),

and has data in between the symbols:

 s/<.*>//g
Unfortunately, this command has some unintended consequences:

$ sed ‘s/<.*>//g’ data9

This is the line in the Web page. This should provide
some information for us to use in our shell script.

$
Notice that the title text is missing, along with the text that was bolded and italicized. The sed editor literally interpreted

the script to mean any text between the less-than and greater-than sign, including other less-than and greater-than signs!

Each time the text was enclosed in HTML tags (such as first), the sed script removed the entire text.
The solution to this problem is to have the sed editor ignore any embedded greater-than signs between the original tags.

To do that, you can create a character class that negates the greater-than sign. This changes the script to:

s/<[ˆ>]*>//g
This script now works properly, displaying the data you need to see from the Web page HTML code:

$ sed ‘s/<[ˆ>]*>//g’ data9

This is the page title

This is the first line in the Web page. This should provide
some useful information for us to use in our shell script.

$
That's a little better. To clean things up some, you can add a delete command to get rid of those pesky blank lines:

$ sed ‘s/<[ˆ>]*>//g;/ˆ$/d’ data9
This is the page title

www.it-ebooks.info

http://www.it-ebooks.info/

This is the first line in the Web page. This should provide
some useful information for us to use in our shell script.
$
Now that's much more compact; there's only the data you need to see.

Summary
The sed editor provides some advanced features that allow you to work with text patterns across multiple lines. This chapter
showed you how to use the next command to retrieve the next line in a data stream and place it in the pattern space. Once in
the pattern space, you can perform complex substitution commands to replace phrases that span more than one line of

text.
The multiline delete command allows you to remove the first line when the pattern space contains two or more lines.

This is a convenient way to iterate through multiple lines in the data stream. Similarly, the multiline print command allows
you to print just the first line when the pattern space contains two or more lines of text. The combination of the multiline

commands allows you to iterate through the data stream and create a multiline substitution system.
Next, the chapter discussed the hold space. The hold space allows you to set aside a line of text while processing more lines

of text. You can recall the contents of the hold space at any time and either replace the text in the pattern space or append
the contents of the hold space to the text in the pattern space. Using the hold space allows you to sort through data streams,

reversing the order of text lines as they appear in the data.
The chapter also discussed the sed editor flow control commands. The branch command provides a way for you to alter

the normal flow of sed editor commands in the script, creating loops or skipping commands under certain conditions. The
test command provides an if-then type of statement for your sed editor command scripts. The test command branches

only if a prior substitution command succeeds in replacing text in a line.
The chapter concluded with a discussion of how to use sed scripts in your shell scripts. A common technique for large sed

scripts is to place the script in a shell wrapper. You can use command line parameter variables within the sed script to pass
shell command line values. This creates an easy way to utilize your sed editor scripts directly from the command line, or even

from other shell scripts.
The next chapter digs deeper into the gawk world. The gawk program supports many features of higher-level

programming languages. You can create some pretty involved data manipulation and reporting programs just by using
gawk. This chapter will describe the various programming features and demonstrate how to use them to generate your own

fancy reports from simple data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 21

Advanced gawk

In This Chapter

Reexamining gawk
Using variables in gawk
Using structured commands
Formatting your printing
Working with functions

Chapter 18 introduced the gawk program and demonstrated the basics of using it to produce formatted reports from raw
data files. This chapter dives more deeply into customizing gawk to produce reports. The gawk program is a full-fledged
programming language, providing features that allow you to write advanced programs to manipulate data. If you are
jumping into the shell script world from another programming language, you should feel right at home with gawk. In this
chapter, you'll see how to use the gawk programming language to write programs to handle just about any data-formatting

task you'll run into.

Using Variables
One important feature of any programming language is the ability to store and recall values using variables. The gawk

programming language supports two different types of variables:
Built-in variables
User-defined variables

Several built-in variables are available for you to use in gawk. The built-in variables contain information used in handling
the data fields and records in the data file. You can also create your own variables in your gawk programs. The following

sections walk you through how to use variables in your gawk programs.

Built-in Variables
The gawk program uses built-in variables to reference specific features within the program data. This section describes the

built-in variables available for you to use in your gawk programs and demonstrates how to use them.

The Field and Record Separator Variables
Chapter 18 demonstrated one type of built-in variable available in gawk, the data field variables. The data field variables
allow you to reference individual data fields within a data record using a dollar sign and the numerical position of the data
field in the record. Thus, to reference the first data field in the record, you use the $1 variable. To reference the second data

field, you use the $2 variable, and so on.
Data fields are delineated by a field separator character. By default, the field separator character is a whitespace character,

such as a space or a tab. Chapter 18 showed how to change the field separator character either on the command line by using

the -F command line parameter or within the gawk program by using the special FS built-in variable.
The FS built-in variable belongs to a group of built-in variables that control how gawk handles fields and records in both

input data and output data. Table 21.1 lists the built-in variables contained in this group.

Table 21.1 The gawk Data Field and Record Variables

Variable Description

FIELDWIDTHS A space-separated list of numbers defining the exact width (in spaces) of each
data field

www.it-ebooks.info

#c21_tbl_0001
#c21_tbl_anc_0001
http://www.it-ebooks.info/

FS Input field separator character

RS Input record separator character

OFS Output field separator character

ORS Output record separator character

The FS and OFS variables define how your gawk program handles data fields in the data stream. You've already seen how
to use the FS variable to define what character separates data fields in a record. The OFS variable performs the same function

but for the output by using the print command.
By default, gawk sets the OFS variable to a space, so when you use the command:

print $1,$2,$3
you see the output as:

field1 field2 field3
You can see this in the following example:

$ cat data1
data11,data12,data13,data14,data15
data21,data22,data23,data24,data25
data31,data32,data33,data34,data35
$ gawk ‘BEGIN{FS=“,”} {print $1,$2,$3}’ data1
data11 data12 data13
data21 data22 data23
data31 data32 data33
$
The print command automatically places the value of the OFS variable between each data field in the output. By setting

the OFS variable, you can use any string to separate data fields in the output:

$ gawk ‘BEGIN{FS=“,”; OFS=“-”} {print $1,$2,$3}’ data1
data11-data12-data13
data21-data22-data23
data31-data32-data33
$ gawk ‘BEGIN{FS=“,”; OFS=“--”} {print $1,$2,$3}’ data1
data11--data12--data13
data21--data22--data23
data31--data32--data33
$ gawk ‘BEGIN{FS=“,”; OFS=“<-->”} {print $1,$2,$3}’ data1
data11<-->data12<-->data13
data21<-->data22<-->data23
data31<-->data32<-->data33
$
The FIELDWIDTHS variable allows you to read records without using a field separator character. In some applications,

instead of using a field separator character, data is placed in specific columns within the record. In these instances, you must

set the FIELDWIDTHS variable to the match the layout of the data in the records.
Once you set the FIELDWIDTHS variable, gawk ignores the FS and calculates data fields based on the provided field

width sizes. Here's an example using field widths instead of field separator characters:

$ cat data1b

www.it-ebooks.info

http://www.it-ebooks.info/

1005.3247596.37
115-2.349194.00
05810.1298100.1
$ gawk ‘BEGIN{FIELDWIDTHS=“3 5 2 5”}{print $1,$2,$3,$4}’ data1b
100 5.324 75 96.37
115 -2.34 91 94.00
058 10.12 98 100.1
$
The FIELDWIDTHS variable defines four data fields, and gawk parses the data record accordingly. The string of numbers

in each record is split based on the defined field width values.

Caution

It's important to remember that once you set the FIELDWIDTHS variable, those values
must remain constant. This method can't accommodate variable-length data fields.

The RS and ORS variables define how your gawk program handles records in the data stream. By default, gawk sets the RS
and ORS variables to the newline character. The default RS variable value indicates that each new line of text in the input data

stream is a new record.
Sometimes you run into situations where data fields are spread across multiple lines in the data stream. A classic example

of this is data that includes an address and phone number, each on a separate line:

Riley Mullen
123 Main Street
Chicago, IL 60601
(312)555-1234
If you try to read this data using the default FS and RS variable values, gawk will read each line as a separate record and

interpret each space in the record as a field separator. This isn't what you intended.
To solve this problem, you need to set the FS variable to the newline character. This indicates that each line in the data

stream is a separate field and all of the data on a line belongs to the data field. However, when you do that, you don't know

where a new record starts.
To solve this problem, set the RS variable to an empty string, and then leave a blank line between data records in the data

stream. The gawk program will interpret each blank line as a record separator.
The following is an example of using this technique:

$ cat data2
Riley Mullen
123 Main Street
Chicago, IL 60601
(312)555-1234

Frank Williams
456 Oak Street
Indianapolis, IN 46201
(317)555-9876

Haley Snell
4231 Elm Street
Detroit, MI 48201
(313)555-4938
$ gawk ‘BEGIN{FS=“\n”; RS=“”} {print $1,$4}’ data2

www.it-ebooks.info

http://www.it-ebooks.info/

Riley Mullen (312)555-1234
Frank Williams (317)555-9876
Haley Snell (313)555-4938
$
Perfect—the gawk program interpreted each line in the file as a data field and the blank lines as record separators.

Data Variables
Besides the field and record separator variables, gawk provides some other built-in variables to help you know what's going

on with your data and extract information from the shell environment. Table 21.2 shows the other built-in variables in gawk.

Table 21.2 More gawk Built-in Variables

Variable Description

ARGC The number of command line parameters present.

ARGIND The index in ARGV of the current file being processed.

ARGV An array of command line parameters.

CONVFMT The conversion format for numbers (see the printf statement). The default
value is %.6 g.

ENVIRON An associative array of the current shell environment variables and their values.

ERRNO The system error if an error occurs when reading or closing input files.

FILENAME The file name of the data file used for input to the gawk program.

FNR The current record number in the data file.

IGNORECASE If set to a non-zero value, ignore the case of characters in strings used in the
gawk command.

NF The total number of data fields in the data file.

NR The number of input records processed.

OFMT The output format for displaying numbers. The default is %.6 g.

RLENGTH The length of the substring matched in the match function.

RSTART The start index of the substring matched in the match function.

You should recognize a few of these variables from your shell script programming. The ARGC and ARGV variables allow
you to retrieve the number of command line parameters and their values from the shell. This can be a little tricky, however, as

gawk doesn't count the program script as part of the command line parameters:

$ gawk ‘BEGIN{print ARGC,ARGV[1]}’ data1
2 data1
$
The ARGC variable indicates that there are two parameters on the command line. This includes the gawk command and the

data1 parameter (remember, the program script doesn't count as a parameter). The ARGV array starts with an index of 0,

which represents the command. The first array value is the first command line parameter after the gawk command.

Note

www.it-ebooks.info

#c21_tbl_0002
#c21_tbl_anc_0002
http://www.it-ebooks.info/

Note that unlike shell variables, when you reference a gawk variable in the script,
you don't add a dollar sign before the variable name.

The ENVIRON variable may seem a little odd to you. It uses an associative array to retrieve shell environment variables. An

associative array uses text for the array index values instead of numeric values.
The text in the array index is the shell environment variable. The value of the array is the value of the shell environment

variable. The following is an example of this:

$ gawk ‘
> BEGIN{
> print ENVIRON[“HOME”]
> print ENVIRON[“PATH”]
> }’
/home/rich
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin
$
The ENVIRON[“HOME”] variable retrieves the HOME environment variable value from the shell. Likewise, the

ENVIRON[“PATH”] variable retrieves the PATH environment variable value. You can use this technique to retrieve any

environment variable value from the shell to use in your gawk programs.
The FNR, NF, and NR variables come in handy when you're trying to keep track of data fields and records in your gawk

program. Sometimes you're in a situation where you don't know exactly how many data fields are in a record. The NF variable

allows you to specify the last data field in the record without having to know its position:

$ gawk ‘BEGIN{FS=“:”; OFS=“:”} {print $1,$NF}’ /etc/passwd
rich:/bin/bash
testy:/bin/csh
mark:/bin/bash
dan:/bin/bash
mike:/bin/bash
test:/bin/bash
$
The NF variable contains the numerical value of the last data field in the data file. You can then use it as a data field

variable by placing a dollar sign in front of it.
The FNR and NR variables are similar to each other, but slightly different. The FNR variable contains the number of records

processed in the current data file. The NR variable contains the total number of records processed. Let's look at a couple of

examples to see this difference:

$ gawk ‘BEGIN{FS=“,”}{print $1,“FNR=”FNR}’ data1 data1
data11 FNR=1
data21 FNR=2
data31 FNR=3
data11 FNR=1
data21 FNR=2
data31 FNR=3
$
In this example, the gawk program command line defines two input files. (It specifies the same input file twice.) The script

prints the first data field value and the current value of the FNR variable. Notice that the FNR value was reset back to 1 when

the gawk program processed the second data file.
Now, let's add the NR variable and see what that produces:

$ gawk ‘
> BEGIN {FS=“,”}

www.it-ebooks.info

http://www.it-ebooks.info/

> {print $1,“FNR=”FNR,“NR=”NR}
> END{print “There were”,NR,“records processed”}’ data1 data1
data11 FNR=1 NR=1
data21 FNR=2 NR=2
data31 FNR=3 NR=3
data11 FNR=1 NR=4
data21 FNR=2 NR=5
data31 FNR=3 NR=6
There were 6 records processed
$
The FNR variable value was reset when gawk processed the second data file, but the NR variable maintained its count into

the second data file. The bottom line is that if you're using only one data file for input, the FNR and NR values will be the
same. If you're using multiple data files for input, the FNR value will be reset for each data file, and the NR value will keep

count throughout all the data files.

Note

You'll notice when using gawk that often the gawk script can become larger than
the rest of your shell script. In the examples in this chapter, for simplicity we just
run the gawk scripts directly from the command line, using the multiline feature of
the shell. When you use gawk in a shell script, you should place different gawk
commands on separate lines. This will make it much easier for you to read and
follow, rather than trying to cram it all onto one line in the shell script. Also, if you
find yourself using the same gawk scripts in different shell scripts, remember you
can save the gawk script in a separate file and reference it using the –f parameter
(see Chapter 18).

User-Defined Variables
Just like any other self-respecting programming language, gawk allows you to define your own variables for use within the
program code. A gawk user-defined variable name can be any number of letters, digits, and underscores, but it can't begin

with a digit. It is also important to remember that gawk variable names are case sensitive.

Assigning Variables in Scripts

Assigning values to variables in gawk programs is similar to doing so in a shell script, using an assignment statement:

$ gawk ‘
> BEGIN{
> testing=“This is a test”
> print testing
> }’
This is a test
$
The output of the print statement is the current value of the testing variable. Like shell script variables, gawk

variables can hold either numeric or text values:

$ gawk ‘
> BEGIN{
> testing=“This is a test”
> print testing

www.it-ebooks.info

http://www.it-ebooks.info/

> testing=45
> print testing
> }’
This is a test
45
$
In this example, the value of the testing variable is changed from a text value to a numeric value.
Assignment statements can also include mathematical algorithms to handle numeric values:

$ gawk ‘BEGIN{x=4; x= x * 2 + 3; print x}’
11
$
As you can see from this example, the gawk programming language includes the standard mathematical operators for

processing numerical values. These can include the remainder symbol (%) and the exponentiation symbol (using either ˆ or

**).

Assigning Variables on the Command Line
You can also use the gawk command line to assign values to variables for the gawk program. This allows you to set values
outside of the normal code, changing values on the fly. Here's an example of using a command line variable to display a

specific data field in the file:

$ cat script1
BEGIN{FS=“,”}
{print $n}
$ gawk -f script1 n=2 data1
data12
data22
data32
$ gawk -f script1 n=3 data1
data13
data23
data33
$
This feature allows you to change the behavior of the script without necessitating that you change the actual script code.

The first example displays the second data field in the file, while the second example displays the third data field, just by

setting the value of the n variable in the command line.
There's one problem with using command line parameters to define variable values. When you set the variable, the value

isn't available in the BEGIN section of the code:

$ cat script2
BEGIN{print “The starting value is”,n; FS=“,”}
{print $n}
$ gawk -f script2 n=3 data1
The starting value is
data13
data23
data33
$
You can solve this using the -v command line parameter. This allows you to specify variables that are set before the

www.it-ebooks.info

http://www.it-ebooks.info/

You can solve this using the -v command line parameter. This allows you to specify variables that are set before the

BEGIN section of code. The -v command line parameter must be placed before the script code in the command line:

$ gawk -v n=3 -f script2 data1
The starting value is 3
data13
data23
data33
$
Now the n variable contains the value set in the command line during the BEGIN section of code.

Working with Arrays
Many programming languages provide arrays for storing multiple values in a single variable. The gawk programming

language provides the array feature using associative arrays.
Associative arrays are different from numerical arrays in that the index value can be any text string. You don't have to use

sequential numbers to identify data elements contained in the array. Instead, an associative array consists of a hodge-podge
of strings referencing values. Each index string must be unique and uniquely identifies the data element that's assigned to it.

If you're familiar with other programming languages, this is the same concept as hash maps or dictionaries.
The following sections walk you through using associative array variables in your gawk programs.

Defining Array Variables

You can define an array variable using a standard assignment statement. The format of the array variable assignment is:

var[index] = element
where var is the variable name, index is the associative array index value, and element is the data element value. Here are

some examples of array variables in gawk:

capital[“Illinois”] = “Springfield”
capital[“Indiana”] = “Indianapolis”
capital[“Ohio”] = “Columbus”
When you reference an array variable, you must include the index value to retrieve the appropriate data element value:

$ gawk ‘BEGIN{
> capital[“Illinois”] = “Springfield”
> print capital[“Illinois”]
> }’
Springfield
$
When you reference the array variable, the data element value appears. This also works with numeric data element values:

$ gawk ‘BEGIN{
> var[1] = 34
> var[2] = 3
> total = var[1] + var[2]
> print total
> }’
37
$
As you can see from this example, you can use array variables just as you would any other variable in the gawk program.

Iterating Through Array Variables

www.it-ebooks.info

http://www.it-ebooks.info/

The problem with associative array variables is that you might not have any way of knowing what the index values are. Unlike

numeric arrays, which use sequential numbers for index values, an associative array index can be anything.
If you need to iterate through an associate array in gawk, you can use a special format of the for statement:

for (var in array)
{
 statements
}
The for statement loops through the statements, each time assigning the variable var the next index value from the

array associative array. It's important to remember that the variable is the value of the index and not the data element value.

You can easily extract the data element value by using the variable as the array index:

$ gawk ‘BEGIN{
> var[“a”] = 1
> var[“g”] = 2
> var[“m”] = 3
> var[“u”] = 4
> for (test in var)
> {
> print “Index:”,test,“ - Value:”,var[test]
> }
> }’
Index: u - Value: 4
Index: m - Value: 3
Index: a - Value: 1
Index: g - Value: 2
$
Notice that the index values aren't returned in any particular order, but they each reference the appropriate data

element value. This is somewhat important to know, as you can't count on the returned values being in the same order, just

that the index and data values match.

Deleting Array Variables

Removing an array index from an associative array requires a special command:

delete array[index]
The delete command removes the associative index value and the associated data element value from the array:

$ gawk ‘BEGIN{
> var[“a”] = 1
> var[“g”] = 2
> for (test in var)
> {
> print “Index:”,test,“ - Value:”,var[test]
> }
> delete var[“g”]
> print “---”
> for (test in var)
> print “Index:”,test,“ - Value:”,var[test]
> }’

www.it-ebooks.info

http://www.it-ebooks.info/

Index: a - Value: 1
Index: g - Value: 2

Index: a - Value: 1
$
Once you delete an index value from the associative array, you can't retrieve it.

Using Patterns
The gawk program supports several types of matching patterns to filter data records, in much the same way as the sed editor.
Chapter 18 already showed two special patterns in action. The BEGIN and END keywords are special patterns that execute
statements before or after the data stream data has been read. Similarly, you can create other patterns to execute

statements when matching data appears in the data stream.
This section demonstrates how to use matching patterns in your gawk scripts to limit what records a program script

applies to.

Regular Expressions
Chapter 19 showed how to use regular expressions as matching patterns. You can use either a Basic Regular Expression (BRE)

or an Extended Regular Expression (ERE) to filter which lines in the data stream the program script applies to.
When using a regular expression, the regular expression must appear before the left brace of the program script that it

controls:

$ gawk ‘BEGIN{FS=“,”} /11/{print $1}’ data1
data11
$
The regular expression /11/ matches records that contain the string 11 anywhere in the data fields. The gawk program

matches the defined regular expression against all the data fields in the record, including the field separator character:

$ gawk ‘BEGIN{FS=“,”} /,d/{print $1}’ data1
data11
data21
data31
$
This example matches the comma used as the field separator in the regular expression. This is not always a good thing. It

can lead to problems trying to match data specific to one data field that may also appear in another data field. If you need to

match a regular expression to a specific data instance, you should use the matching operator.

The Matching Operator
The matching operator allows you to restrict a regular expression to a specific data field in the records. The matching operator
is the tilde symbol (∼). You specify the matching operator, along with the data field variable, and the regular expression to

match:

$1 ∼ /ˆdata/
The $1 variable represents the first data field in the record. This expression filters records where the first data field starts

with the text data. The following is an example of using the matching operator in a gawk program script:

$ gawk ‘BEGIN{FS=“,”} $2 ∼ /ˆdata2/{print $0}’ data1
data21,data22,data23,data24,data25
$
The matching operator compares the second data field with the regular expression /ˆdata2/, which indicates the string

starts with the text data2.
This is a powerful tool that is commonly used in gawk program scripts to search for specific data elements in a data file:

www.it-ebooks.info

http://www.it-ebooks.info/

$ gawk -F: ‘$1 ∼ /rich/{print $1,$NF}’ /etc/passwd
rich /bin/bash
$
This example searches the first data field for the text rich. When it finds the pattern in a record, it prints the first and last

data field values of the record.
You can also negate the regular expression match by using the ! symbol:

$1 !∼ /expression/
If the regular expression isn't found in the record, the program script is applied to the record data:

$ gawk –F: ‘$1 !∼ /rich/{print $1,$NF}’ /etc/passwd
root /bin/bash
daemon /bin/sh
bin /bin/sh
sys /bin/sh
--- output truncated ---
$
In this example, the gawk program script prints the userid and shell for all of the entries in the /etc/passwd file that

don't match the userid rich!

Mathematical Expressions
In addition to regular expressions, you can also use mathematical expressions in the matching pattern. This feature comes in
handy when matching numerical values in data fields. For example, if you want to display all of the system users who belong

to the root users group (group number 0), you could use this script:

$ gawk -F: ‘$4 == 0{print $1}’ /etc/passwd
root
sync
shutdown
halt
operator
$
The script checks for records where the fourth data field contains the value 0. On this Linux system there are five user

accounts that belong to the root user group.
You can use any of the normal mathematical comparison expressions:

x == y: Value x is equal to y.
x <= y: Value x is less than or equal to y.
x < y: Value x is less than y.
x >= y: Value x is greater than or equal to y.
x > y: Value x is greater than y.

You can also use expressions with text data, but you must be careful. Unlike regular expressions, expressions are an exact

match. The data must match exactly with the pattern:

$ gawk -F, ‘$1 == “data”{print $1}’ data1
$
$ gawk -F, ‘$1 == “data11”{print $1}’ data1
data11
$
The first test doesn't match any records as the first data field value isn't data in any of the records. The second test

www.it-ebooks.info

http://www.it-ebooks.info/

The first test doesn't match any records as the first data field value isn't data in any of the records. The second test

matches one record with the value data11.

Structured Commands
The gawk programming language supports the usual cast of structured programming commands. This section describes each

of these commands and demonstrates how to use them within a gawk programming environment.

The if Statement
The gawk programming language supports the standard if-then-else format of the if statement. You must define a
condition for the if statement to evaluate, enclosed in parentheses. If the condition evaluates to a TRUE condition, the
statement immediately following the if statement is executed. If the condition evaluates to a FALSE condition, the

statement is skipped. This can use the format:

if (condition)
 statement1

or you can place it on one line, like this:

if (condition) statement1
Here's a simple example demonstrating this format:

$ cat data4
10
5
13
50
34
$ gawk ‘{if ($1 > 20) print $1}’ data4
50
34
$
Not too complicated. If you need to execute multiple statements in the if statement, you must enclose them with braces:

$ gawk ‘{
> if ($1 > 20)
> {
> x = $1 * 2
> print x
> }
> }’ data4
100
68
$
Be careful that you don't confuse the if statement braces with the braces used to start and stop the program script. The

gawk program can detect missing braces and will produce an error message if you mess up:

$ gawk ‘{
> if ($1 > 20)
> {
> x = $1 * 2
> print x
> }’ data4

www.it-ebooks.info

http://www.it-ebooks.info/

gawk: cmd. line:7: (END OF FILE)
gawk: cmd. line:7: parse error
$
The gawk if statement also supports the else clause, allowing you to execute one or more statements if the if

statement condition fails. Here's an example of using the else clause:

$ gawk ‘{
> if ($1 > 20)
> {
> x = $1 * 2
> print x
> } else
> {
> x = $1 / 2
> print x
> }}’ data4
5
2.5
6.5
100
68
$
You can use the else clause on a single line, but you must use a semicolon after the if statement section:

if (condition) statement1; else statement2
Here's the same example using the single line format:

$ gawk ‘{if ($1 > 20) print $1 * 2; else print $1 / 2}’ data4
5
2.5
6.5
100
68
$
This format is more compact but can be harder to follow.

The while Statement
The while statement provides a basic looping feature for gawk programs. The following is the format of the while

statement:

while (condition)
{
 statements
}
The while loop allows you to iterate over a set of data, checking a condition that stops the iteration. This is useful if you

have multiple data values in each record that you must use in calculations:

$ cat data5

www.it-ebooks.info

http://www.it-ebooks.info/

130 120 135
160 113 140
145 170 215
$ gawk ‘{
> total = 0
> i = 1
> while (i < 4)
> {
> total += $i
> i++
> }
> avg = total / 3
> print “Average:”,avg
> }’ data5
Average: 128.333
Average: 137.667
Average: 176.667
$
The while statement iterates through the data fields in the record, adding each value to the total variable, and then

incrementing the counter variable, i. When the counter value is equal to 4, the while condition becomes FALSE, and the
loop terminates, dropping through to the next statement in the script. That statement calculates the average; then the

average is printed. This process is repeated for each record in the data file.
The gawk programming language supports using the break and continue statements in while loops, allowing you to

jump out of the middle of the loop:

$ gawk ‘{
> total = 0
> i = 1
> while (i < 4)
> {
> total += $i
> if (i == 2)
> break
> i++
> }
> avg = total / 2
> print “The average of the first two data elements is:”,avg
> }’ data5
The average of the first two data elements is: 125
The average of the first two data elements is: 136.5
The average of the first two data elements is: 157.5
$
The break statement is used to break out of the while loop if the value of the i variable is 2.

The do-while Statement
The do-while statement is similar to the while statement but performs the statements before checking the condition

www.it-ebooks.info

http://www.it-ebooks.info/

The do-while statement is similar to the while statement but performs the statements before checking the condition

statement. The following is the format for the do-while statement:

do
{
 statements
} while (condition)
This format guarantees that the statements are executed at least one time before the condition is evaluated. This comes in

handy when you need to perform statements before evaluating the condition:

$ gawk ‘{
> total = 0
> i = 1
> do
> {
> total += $i
> i++
> } while (total < 150)
> print total }’ data5
250
160
315
$
The script reads the data fields from each record and totals them until the cumulative value reaches 150. If the first data

field is over 150 (as seen in the second record), the script is guaranteed to read at least the first data field before evaluating

the condition.

The for Statement
The for statement is a common method using in many programming languages for looping. The gawk programming

language supports the C-style of for loops:

for(variable assignment; condition; iteration process)
This helps simplify the loop by combining several functions in one statement:

$ gawk ‘{
> total = 0
> for (i = 1; i < 4; i++)
> {
> total += $i
> }
> avg = total / 3
> print “Average:”,avg
> }’ data5
Average: 128.333
Average: 137.667
Average: 176.667
$
By defining the iteration counter in the for loop, you don't have to worry about incrementing it yourself as you did

when using the while statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Formatted Printing
You may have noticed that the print statement doesn't exactly give you much control over how gawk displays your data.
About all you can do is control the output field separator character (OFS). If you're creating detailed reports, often you'll

need to place data in a specific format and location.
The solution is to use the formatted printing command, called printf. If you're familiar with C programming, the

printf command in gawk performs the same way, allowing you to specify detailed instructions on how to display data.
The following is the format of the printf command:

printf “format string”, var1, var2 . . .
The format string is the key to the formatted output. It specifies exactly how the formatted output should appear, using

both text elements and format specifiers. A format specifier is a special code that indicates what type of variable is displayed
and how to display it. The gawk program uses each format specifier as a placeholder for each variable listed in the command.

The first format specifier matches the first variable listed, the second matches the second variable, and so on.
The format specifiers use the following format:

%[modifier]control-letter
where control-letter is a one-character code that indicates what type of data value will be displayed, and modifier

defines an optional formatting feature.
Table 21.3 lists the control letters that can be used in the format specifier.

Table 21.3 Format Specifier Control Letters

Control Letter Description

c Displays a number as an ASCII character.

d Displays an integer value.

i Displays an integer value (same as d).

e Displays a number in scientific notation.

f Displays a floating-point value.

g Displays either scientific notation or floating point, whichever is shorter.

o Displays an octal value.

s Displays a text string.

x Displays a hexadecimal value.

X Displays a hexadecimal value, but using capital letters for A through F.

Thus, if you need to display a string variable, you'd use the format specifier %s. If you need to display an integer variable,
you'd use either %d or %i (%d is the C-style for decimals). If you want to display a large value using scientific notation, you'd

use the %e format specifier:

$ gawk ‘BEGIN{
> x = 10 * 100
> printf “The answer is: %e\n”, x
> }’
The answer is: 1.000000e+03
$
In addition to the control letters, there are three modifiers that you can use for even more control over your output:

width: A numeric value that specifies the minimum width of the output field. If the output is shorter, printf pads

www.it-ebooks.info

#c21_tbl_0003
#c21_tbl_anc_0003
http://www.it-ebooks.info/

width: A numeric value that specifies the minimum width of the output field. If the output is shorter, printf pads

the space with spaces, using right justification for the text. If the output is longer than the specified width, it

overrides the width value.
prec: A numeric value that specifies the number of digits to the right of the decimal place in floating-point

numbers, or the maximum number of characters displayed in a text string.
- (minus sign): The minus sign indicates that left justification should be used instead of right justification when

placing data in the formatted space.
When using the printf statement, you have complete control over how your output appears. For example, in the “Built-

in Variables” section, we used the print command to display data fields from our records:

$ gawk ‘BEGIN{FS=“\n”; RS=“”} {print $1,$4}’ data2
Riley Mullen (312)555-1234
Frank Williams (317)555-9876
Haley Snell (313)555-4938
$
You can use the printf command to help format the output so it looks better. First, let's just convert the print

command to a printf command and see what that does:

$ gawk ‘BEGIN{FS=“\n”; RS=“”} {printf “%s %s\n”, $1, $4}’ data 2
Riley Mullen (312)555-1234
Frank Williams (317)555-9876
Haley Snell (313)555-4938
$
That produces the same output as the print command. The printf command uses the %s format specifier as a

placeholder for the two string values.
Notice that you have to manually add the newline character at the end of the printf command to force a new line.

Without it, the printf command will continue to use the same line on subsequent prints.
This is useful if you need to print multiple things on the same line, but using separate printf commands:

$ gawk ‘BEGIN{FS=“,”} {printf “%s ”, $1} END{printf “\n”}’ data1
data11 data21 data31
$
Each of the printf outputs appears on the same line. To be able to terminate the line, the END section prints a single

newline character.
Next, let's use a modifier to format the first string value:

$ gawk ‘BEGIN{FS=“\n”; RS=“”} {printf “%16s %s\n”, $1, $4}’ data2
 Riley Mullen (312)555-1234
 Frank Williams (317)555-9876
 Haley Snell (313)555-4938
$
By adding the 16 modifier value, we force the output for the first string to use 16 spaces. By default, the printf

command uses right justification to place the data in the format space. To make it left justified, just add a minus sign to the

modifier:

$ gawk ‘BEGIN{FS=“\n”; RS=“”} {printf “%-16s %s\n”, $1, $4}’ data2
Riley Mullen (312)555-1234
Frank Williams (317)555-9876
Haley Snell (313)555-4938
$
Now that looks pretty professional!
The printf command also comes in handy when dealing with floating-point values. By specifying a format for the

variable, you can make the output look more uniform:

www.it-ebooks.info

http://www.it-ebooks.info/

$ gawk ‘{
> total = 0
> for (i = 1; i < 4; i++)
> {
> total += $i
> }
> avg = total / 3
> printf “Average: %5.1f\n”,avg
> }’ data5
Average: 128.3
Average: 137.7
Average: 176.7
$
By using the %5.1f format specifier, you can force the printf command to round the floating-point values to a single

decimal place.

Built-in Functions
The gawk programming language provides quite a few built-in functions that perform common mathematical, string, and
even time functions. You can utilize these functions in your gawk programs to help cut down on the coding requirements in

your scripts. This section walks you through the different built-in functions available in gawk.

Mathematical Functions
If you've done programming in any type of language, you're probably familiar with using built-in functions in your code to
perform common mathematical functions. The gawk programming language doesn't disappoint those looking for advanced

mathematical features.
Table 21.4 shows the mathematical built-in functions available in gawk.

Table 21.4 The gawk Mathematical Functions

Function Description

atan2(x, y) The arctangent of x / y, with x and y specified in radians.

cos(x) The cosine of x, with x specified in radians.

exp(x) The exponential of x.

int(x) The integer part of x, truncated toward 0.

log(x) The natural logarithm of x.

rand() A random floating point value larger than 0 and less than 1.

sin(x) The sine of x, with x specified in radians.

sqrt(x) The square root of x.

srand(x) Specify a seed value for calculating random numbers.

While it does not have an extensive list of mathematical functions, gawk does provide some of the basic elements you
need for standard mathematical processing. The int() function produces the integer portion of a value, but it doesn't
round the value. It behaves much like a floor function found in other programming languages. It produces the nearest

integer to a value between the value and 0.

www.it-ebooks.info

#c21_tbl_0004
#c21_tbl_anc_0004
http://www.it-ebooks.info/

This means that the int() function of the value 5.6 will return 5, while the int() function of the value -5.6 will return -5.
The rand() function is great for creating random numbers, but you'll need to use a trick to get meaningful values. The

rand() function returns a random number, but only between the values 0 and 1 (not including 0 or 1). To get a larger

number, you'll need to scale the returned value.
A common method for producing larger integer random numbers is to create an algorithm that uses the rand()

function, along with the int() function:

x = int(10 * rand())
This returns a random integer value between (and including) 0 and 9. Just substitute the 10 in the equation with the

upper limit value for your application, and you're ready to go.
Be careful when using some of the mathematical functions, as the gawk programming language does have a limited range

of numeric values it can work with. If you go over that range, you'll get an error message:

$ gawk ‘BEGIN{x=exp(100); print x}’
26881171418161356094253400435962903554686976
$ gawk ‘BEGIN{x=exp(1000); print x}’
gawk: warning: exp argument 1000 is out of range
inf
$
The first example calculates the exponential of 100, which is a very large number but within the range of the system. The

second example attempts to calculate the exponential of 1000, which goes over the numerical range limit of the system and

produces an error message.
Besides the standard mathematical functions, gawk also provides a few functions for bitwise manipulating of data:

and(v1, v2): Performs a bitwise AND of values v1 and v2.
compl(val): Performs the bitwise complement of val.
lshift(val, count): Shifts the value val count number of bits left.
or(v1, v2): Performs a bitwise OR of values v1 and v2.
rshift(val, count): Shifts the value val count number of bits right.
xor(v1, v2): Performs a bitwise XOR of values v1 and v2.

The bit manipulation functions are useful when working with binary values in your data.

String Functions
The gawk programming language also provides several functions you can use to manipulate string values, shown in Table

21.5.

Table 21.5 The gawk String Functions

Function Description

asort(s [,d]) Sort an array s based on the data element values. The index
values are replaced with sequential numbers indicating the
new sort order. Alternatively, the new sorted array is stored
in array d if specified.

asorti(s [,d]) Sort an array s based on the index values. The resulting array
contains the index values as the data element values, with
sequential number indexes indicating the sort order.
Alternatively, the new sorted array is stored in array d if
specified.

gensub(r, s, h [, t]) Search either the variable $0, or the target string t if

www.it-ebooks.info

#c21_tbl_0005
#c21_tbl_anc_0005
http://www.it-ebooks.info/

Search either the variable $0, or the target string t if

supplied, for matches of the regular expression r. If h is a
string beginning with either g or G, replaces the matching
text with s. If h is a number, it represents which occurrence
of r to replace.

gsub(r, s [,t]) Search either the variable $0, or the target string t if
supplied, for matches of the regular expression r. If found,
substitute the string s globally.

index(s, t) Returns the index of the string t in string s, or 0 if not
found.

length([s]) Returns the length of string s, or if not specified, the length
of $0.

match(s, r [,a]) Returns the index of the string s where the regular
expression r occurs. If array a is specified, it contains the
portion of s that matches the regular expression.

split(s, a [,r]) Splits s into array a using either the FS character, or the
regular expression r if supplied. Returns the number of
fields.

sprintf(format, variables) Returns a string similar to the output of printf using the
format and variables supplied.

sub(r, s [,t]) Search either the variable $0, or the target string t, for
matches of the regular expression r. If found, substitutes
the string s for the first occurrence.

substr(s, i [,n]) Returns the nth character substring of s, starting at index i.
If n is not supplied, the rest of s is used.

tolower(s) Converts all characters in s to lowercase.

toupper(s) Converts all characters in s to uppercase.

Some of the string functions are relatively self-explanatory:

$ gawk ‘BEGIN{x = “testing”; print toupper(x); print length(x) }’
TESTING
7
$
However, some of the string functions can get pretty complicated. The asort and asorti functions are new gawk

functions that allow you to sort an array variable based on either the data element values (asort) or the index values

(asorti). Here's an example of using asort:

$ gawk ‘BEGIN{
> var[“a”] = 1
> var[“g”] = 2
> var[“m”] = 3
> var[“u”] = 4
> asort(var, test)

www.it-ebooks.info

http://www.it-ebooks.info/

> for (i in test)
> print “Index:”,i,“ - value:”,test[i]
> }’
Index: 4 - value: 4
Index: 1 - value: 1
Index: 2 - value: 2
Index: 3 - value: 3
$
The new array, test, contains the newly sorted data elements of the original array, but the index values are now changed

to numerical values, indicating the proper sort order.
The split function is a great way to push data fields into an array for further processing:

$ gawk ‘BEGIN{ FS=“,”}{
> split($0, var)
> print var[1], var[5]
> }’ data1
data11 data15
data21 data25
data31 data35
$
The new array uses sequential numbers for the array index, starting with index value 1 containing the first data field.

Time Functions

The gawk programming language contains a few functions to help you deal with time values, shown in Table 21.6.

Table 21.6 The gawk Time Functions

Function Description

mktime(datespec) Converts a date specified in the format YYYY MM DD
HH MM SS [DST] into a timestamp value.

strftime(format [, timestamp]) Formats either the current time of day timestamp, or
timestamp if provided, into a formatted day and date,
using the date() shell function format.

systime() Returns the timestamp for the current time of day.

The time functions are often used when working with log files that contain dates that you need to compare. By
converting the text representation of a date to the epoch time (the number of seconds since midnight, January 1, 1970) you

can easily compare dates.
The following is an example of using the time functions in a gawk program:

$ gawk ‘BEGIN{
> date = systime()
> day = strftime(“%A, %B %d, %Y”, date)
> print day
> }’
Friday, December 28, 2010
$

www.it-ebooks.info

#c21_tbl_0006
#c21_tbl_anc_0006
http://www.it-ebooks.info/

This example uses the systime function to retrieve the current epoch timestamp from the system and then uses the

strftime function to convert it into a human-readable format using the date shell command's date format characters.

User-Defined Functions
You're not limited to just using the built-in functions available in gawk. You can create your own functions for use in your

gawk programs. This section shows you how to define and use your own functions in your gawk programs.

Defining a Function

To define you own function, you must use the function keyword:

function name([variables])
{
 statements
}
The function name must uniquely identify your function. You can pass one or more variables into the function from the

calling gawk program:

function printthird()
{
 print $3
}
This function will print the third data field in the record.
The function can also return a value using the return statement:

return value
The value can be a variable, or an equation that evaluates to a value:

function myrand(limit)
{
 return int(limit * rand())
}
You can assign the value returned from the function to a variable in the gawk program:

x = myrand(100)
The variable will contain the value returned from the function.

Using Your Functions
When you define a function, it must appear by itself before you define any programming sections (including the BEGIN

section). This may look a little odd at first, but it helps keep the function code separate from the rest of the gawk program:

$ gawk ‘
> function myprint()
> {
> printf “%-16s - %s\n”, $1, $4
> }
> BEGIN{FS=“\n”; RS=“”}
> {
> myprint()
> }’ data2
Riley Mullen - (312)555-1234

www.it-ebooks.info

http://www.it-ebooks.info/

Frank Williams - (317)555-9876
Haley Snell - (313)555-4938
$
The function defines the myprint() function, which formats the first and fourth data fields in the record for printing.

The gawk program then uses the function to display the data from the data file.
Once you define a function, you can use it as often as necessary in the program section of the code. This saves lots of work

when using long algorithms.

Creating a Function Library
Obviously, having to rewrite your gawk functions every time you need them is not all that pleasant of an experience.
However, gawk provides a way for you to combine your functions into a single library file that you can use in all of your

gawk programming.
First, you need to create a file that contains all of your gawk functions:

$ cat funclib
function myprint()
{
 printf “%-16s - %s\n”, $1, $4
}
function myrand(limit)
{
 return int(limit * rand())
}
function printthird()
{
 print $3
}
$
The funclib file contains three function definitions. To use them, you need to use the -f command line parameter.

Unfortunately, you can't combine the -f command line parameter with an inline gawk script, but you can use multiple -f

parameters on the same command line.
Thus, to use your library, just create a file that contains your gawk program, and specify both the library file and your

program file on the command line:

$ cat script4
BEGIN{ FS=“\n”; RS=“”}
{
 myprint()
}
$ gawk -f funclib -f script4 data2
Riley Mullen - (312)555-1234
Frank Williams - (317)555-9876
Haley Snell - (313)555-4938
$
Now all you need to do is add the funclib file to your gawk command line whenever you need to use a function

defined in the library.

Summary
This chapter walked you through the more advanced features of the gawk programming language. Every programming

www.it-ebooks.info

http://www.it-ebooks.info/

This chapter walked you through the more advanced features of the gawk programming language. Every programming

language requires using variables, and gawk is no different. The gawk programming language includes some built-in
variables that you can use to reference specific data field values and retrieve information about the number of data fields

and records processed in the data file. You can also create your own variables for use in your scripts.
The gawk programming language also provides many of the standard structured commands you'd expect from a

programming language. You can easily create fancy programs using if-then logic, while, and do-while and for loops.
Each of these commands allows you to alter the flow of your gawk program script to iterate through data field values to

create detailed data reports.
The printf command is a great tool to have if you need to customize your report output. It allows you to specify the

exact format for displaying data from the gawk program script. You can easily create formatted reports, placing data

elements in exactly the correct position.
Finally, this chapter discussed the many built-in functions available in the gawk programming language and showed you

how to create your own functions. The gawk program contains many useful functions for handling mathematical features,
such as standard square roots and logarithms, as well as trigonometric functions. There are also several string-related

functions that make extracting substrings from larger strings a breeze.
You aren't limited to the built-in functions in the gawk program. If you're working on an application that uses lots of

specialized algorithms, you can create your own functions to process the algorithms, and then use those functions in your
own code. You can also set up a library file containing all of the functions you use in your gawk programs, saving you time

and effort in all of your coding.
The next chapter switches gears a little. It examines a few other shell environments you may run into in your Linux shell-

scripting endeavors. While the bash shell is the most common shell used in Linux, it's not the only shell. It helps to know a little

about some of the other shells available and how they differ from the bash shell.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 22

Working with Alternative Shells

In This Chapter

Understanding the dash shell
Programming in the dash shell
Introducing the zsh shell
Writing scripts for zsh

While the bash shell is the most widely used shell in Linux distributions, it's not the only one. Now that you've seen the
standard Linux bash shell, and what you can do with it, it's time to examine a few other shells available in the Linux world. This

chapter describes two other shells that you may run into in your Linux journey and how they differ from the bash shell.

What Is the dash Shell?
The Debian dash shell has had an interesting past. It's a direct descendant of the ash shell, a simple copy of the original Bourne
shell available on Unix systems (see Chapter 1). Kenneth Almquist created a small-scale version of the Bourne shell for Unix
systems and called it the Almquist shell, which was then shortened to ash. This original version of the ash shell was extremely
small and fast but without many advanced features, such as command line editing or history features, making it difficult to

use as an interactive shell.
The NetBSD Unix operating system adopted the ash shell and still uses it today as the default shell. The NetBSD

developers customized the ash shell by adding several new features, making it closer to the Bourne shell. The new features
include command line editing using both emacs and vi editor commands, as well as a history command to recall previously

entered commands. This version of the ash shell is also used by the FreeBSD operating system as the default login shell.
The Debian Linux distribution created its own version of the ash shell (called Debian ash, or dash) for inclusion in its

version of Linux. For the most part, dash copies the features of the NetBSD version of the ash shell, providing the advanced

command line editing capabilities.
However, to add to the shell confusion, the dash shell is actually not the default shell in many Debian-based Linux

distributions. Because of the popularity of the bash shell in Linux, most Debian-based Linux distributions use the bash shell as
the normal login shell, and only use the dash shell as a quick-start shell for the installation script to install the distribution

files.
The exception is the popular Ubuntu distribution. This often confuses shell script programmers and causes a great

number of problems with running shell scripts in a Linux environment. The Ubuntu Linux distribution uses the bash shell as
the default interactive shell, but uses the dash shell as the default /bin/sh shell. This “feature” really confuses shell script

programmers.
As you saw in Chapter 10, every shell script must start with a line that declares the shell used for the script. In our bash

shell scripts, we've been using the following:

#!/bin/bash
This tells the shell to use the shell program located at /bin/bash to execute the script. In the Unix world, the default

shell was always /bin/sh. Many shell script programmers familiar with the Unix environment copy this into their Linux shell

scripts:

#!/bin/sh
On most Linux distributions, the /bin/sh file is a symbolic link (see Chapter 3) to the /bin/bash shell program. This

allows you to easily port shell scripts designed for the Unix Bourne shell to the Linux environment without having to modify

them.
Unfortunately, the Ubuntu Linux distribution links the /bin/sh file to the /bin/dash shell program. Because the dash

shell contains only a subset of the commands available in the original Bourne shell, this can (and often does) cause some shell

scripts to not work properly.
The next section walks you through the basics of the dash shell and how it differs from the bash shell. This is especially

important to know if you write bash shell scripts that may need to be run in an Ubuntu environment.

The dash Shell Features

www.it-ebooks.info

http://www.it-ebooks.info/

While both the bash shell and the dash shell are modeled after the Bourne shell, they have some differences. This section walks
you through the features found in the Debian dash shell to acquaint you with how the dash shell works before we dive into

the shell scripting features.

The dash Command Line Parameters
The dash shell uses command line parameters to control its behavior. Table 22.1 lists the command line parameters and

describes what each one does.

Table 22.1 The dash Command Line Parameters

Parameter Description

-a Export all variables assigned to the shell.

-c Read commands from a specified command string.

-e If not interactive, exit immediately if any untested command fails.

-f Display pathname wildcard characters.

-n If not interactive, read commands but don't execute them.

-u Write an error message to STDERR when attempting to expand a variable that is
not set.

-v Write input to STDERR as it is read.

-x Write each command to STDERR as it's executed.

-I Ignore EOF characters from the input when in interactive mode.

-i Force the shell to operate in interactive mode.

-m Turn on job control (enabled by default in interactive mode).

-s Read commands from STDIN (the default behavior if no file arguments are
present).

-E Enable the emacs command line editor.

-V Enable the vi command line editor.

There are just a few additional command line parameters that Debian added to the original ash shell command line

parameter list. The -E and -V command line parameters enable the special command line editing features of the dash shell.
The -E command line parameter allows you to use the emacs editor commands for editing command line text (see

Chapter 9). You can use all of the emacs commands for manipulating text on a single line using the Ctrl and Meta key

combinations.
The -V command line parameter allows you to use the vi editor commands for editing command line text (again, see

Chapter 9). This feature allows you to switch between normal mode and vi editor mode on the command line by using the Esc
key. When you're in vi editor mode, you can use all of the standard vi editor commands (such as x to delete a character, and i

to insert text). Once you are finished editing the command line, you must hit the Esc key again to exit vi editor mode.

The dash Environment Variables
There are quite a few default environment variables that the dash shell uses to track information, and you can create your

own environment variables as well. This section describes the environment variables and how dash handles them.

www.it-ebooks.info

#c22_tbl_0001
#c22_tbl_anc_0001
http://www.it-ebooks.info/

Default Environment Variables

Table 22.2 shows the default dash environment variables and describes what they are used for.

Table 22.2 The dash Shell Environment Variables

Variable Description

CDPATH The search path used for the cd command.

HISTSIZE The number of lines stored in the history file.

HOME The user's default login directory.

IFS The input field separator characters. The default value is a space, tab, and
newline.

MAIL The name of the user's mailbox file.

MAILCHECK The frequency with which to check the mailbox file for new mail.

MAILPATH A colon-separated list of multiple mailbox filenames. If set, this value overrides the
MAIL environment variable.

OLDPWD The value of the previous working directory.

PATH The default search path for executable files.

PPID The Process ID of the current shell's parent.

PS1 The primary shell command line interface prompt.

PS2 The secondary shell command line interface prompt.

PS4 A character printed before each line when an execution trace is enabled.

PWD The value of the current working directory.

TERM The default terminal setting for the shell.

You should notice that the dash environment variables are very similar to the environment variables used in bash (see
Chapter 5). This is not by accident. Remember that both the dash and bash shells are extensions of the Bourne shell, so they
both incorporate many of its features. However, because of its goal of simplicity, the dash shell contains significantly fewer
environment variables than the bash shell. You need to take this into consideration when creating shell scripts in an ash shell

environment.
The dash shell uses the set command to display environment variables:

$set
COLORTERM=‘’
DESKTOP_SESSION=‘default’
DISPLAY=‘:0.0’
DM_CONTROL=‘/var/run/xdmctl’
GS_LIB=‘/home/atest/.fonts’
HOME=‘/home/atest’
IFS=‘
’
KDEROOTHOME=‘/root/.kde’

www.it-ebooks.info

#c22_tbl_0002
#c22_tbl_anc_0002
http://www.it-ebooks.info/

KDE_FULL_SESSION=‘true’
KDE_MULTIHEAD=‘false’
KONSOLE_DCOP=‘DCOPRef(konsole-5293,konsole)’
KONSOLE_DCOP_SESSION=‘DCOPRef(konsole-5293,session-1)’
LANG=‘en_US’
LANGUAGE=‘en’
LC_ALL=‘en_US’
LOGNAME=‘atest’
OPTIND=‘1’
PATH=‘/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin’
PPID=‘5293’
PS1=‘$ ’
PS2=‘> ’
PS4=‘+ ’
PWD=‘/home/atest’
SESSION_MANAGER=‘local/testbox:/tmp/.ICE-unix/5051’
SHELL=‘/bin/dash’
SHLVL=‘1’
TERM=‘xterm’
USER=‘atest’
XCURSOR_THEME=‘default’
_=‘ash’
$
Your default dash shell environment will most likely differ, as different Linux distributions assign different default

environment variables at login.

Positional Parameters
In addition to the default environment variables, the dash shell also assigns special variables to any parameters defined in

the command line. Here are the positional parameter variables available for use in the dash shell:
$0: The name of the shell
$n: The nth position parameter
$*: A single value with the contents of all of the parameters, separated by the first character in the IFS environment

variable, or a space if IFS isn't defined
$@: Expands to multiple arguments consisting of all the command line parameters
$#: The number of positional parameters
$?: The exit status of the most recent command
$-: The current option flags
$$: The process ID (PID) of the current shell
$!: The process ID (PID) of the most recent background command

All of the dash positional parameters mimic the same positional parameters available in the bash shell. You can use each of

the positional parameters in your shell scripts just as you would in the bash shell.

User-Defined Environment Variables
The dash shell also allows you to set your own environment variables. As with bash, you can define a new environment

variable on the command line by using the assign statement:

www.it-ebooks.info

http://www.it-ebooks.info/

$ testing=10
$ echo $testing
10
$
By default, environment variables are only visible in the shell session in which they're defined. To allow an environment

variable to be visible in a child shell or process, you must use the export command:

$ testing=10 ; export testing
$ dash
$ echo $testing
10
$
Without the export command, user-defined environment variables are only visible in the current shell or process.

Caution

There's one huge difference between dash variables and bash variables. The dash shell
doesn't support variable arrays. This small feature causes all sorts of problems for
advanced shell script writers.

The dash Built-in Commands
Just as with the bash shell, the dash shell contains a set of built-in commands that it recognizes. You can use these commands
directly from the command line interface or you can incorporate them in your shell scripts. Table 22.3 lists the dash shell built-

in commands.

Table 22.3 The dash Shell Built-In Commands

Command Description

alias Create an alias string to represent a text string.

bg Continue specified job in background mode.

cd Switch to the specified directory.

echo Display a text string and environment variables.

eval Concatenate all arguments with a space.

exec Replace the shell process with the specified command.

exit Terminate the shell process.

export Export the specified environment variable for use in all child shells.

fc List, edit, or re-execute commands previously entered on the command line.

fg Continue specified job in foreground mode.

getopts Obtain options and arguments from a list of parameters.

hash Maintain and retrieve a hash table of recent commands and their locations.

pwd Display the value of the current working directory.

www.it-ebooks.info

#c22_tbl_0003
#c22_tbl_anc_0003
http://www.it-ebooks.info/

read Read a line from STDIN and assign the value to a variable.

readonly Read a line from STDIN to a variable that can't be changed.

printf Display text and variables using a formatted string.

set List or set option flags and environment variables.

shift Shift the positional parameters a specified number of times.

test Evaluate an expression and return 0 if true, or 1 if false.

times Display the accumulated user and system times for the shell and all shell processes.

trap Parse and execute an action when the shell receives a specified signal.

type Interpret the specified name and display the resolution (alias, built-in, command,
keyword).

ulimit Query or set limits on processes.

umask Set the value of the default file and directory permissions.

unalias Remove the specified alias.

unset Remove the specified variable or option flag from the exported variables.

wait Wait for the specified job to complete and return the exit status.

You probably recognize all of these built-in commands from the bash shell. The dash shell supports many of the same
built-in commands as the bash shell. You'll notice that there aren't any commands for the command history file, nor for the

directory stack. The dash shell doesn't support these features.

Scripting in dash
Unfortunately, the dash shell doesn't recognize all of the scripting features of the bash shell. Shell scripts written for the
bash environment often fail when run in the dash shell, causing all sorts of grief for shell script programmers. This section

describes the differences you'll need to be aware of to get your shell scripts to run properly in a dash shell environment.

Creating dash Scripts
You probably guessed by now that creating shell scripts for the dash shell is pretty similar to creating shell scripts for the
bash shell. You should always specify which shell you want to use in your script to ensure that the script runs with the proper

shell.
You do this on the first line of the shell:

#!/bin/dash
You can also specify a shell command line parameter on this line, as was demonstrated earlier in “The dash Command Line

Parameters” section.

Things That Won't Work
Unfortunately, because the dash shell is only a subset of the Bourne shell features, there are a few things in bash shell scripts
that won't work in the dash shell. These are often called bashisms. This section is a quick summary of bash shell features you

may be used to using in your bash shell scripts that won't work if you're in a dash shell environment.

Using Arithmetic

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 showed three ways to express a mathematical operation in the bash shell script:
Using the expr command: expr operation
Using square brackets: $[operation]
Using double parentheses: $((operation))

The dash shell supports the expr command and the double parentheses method but doesn't support the square bracket

method. This can be a problem if you've got lots of mathematical operations that use the square brackets:

$ cat test5
#!/bin/dash
testing mathematical operations

value1=10
value2=15

value3=$[$value1 * $value2]
echo “The answer is $value3”
$./test5
./test5: 7: value1: not found
The answer is
$
The proper format for performing mathematical operations in dash shell scripts is to use the double parentheses method:

$ cat test5b
#!/bin/dash
testing mathematical operations

value1=10
value2=15

value3=$(($value1 * $value2))
echo “The answer is $value3”
$./test5b
The answer is 150
$
Now the shell can perform the calculation properly.

The test Command
While the dash shell supports the test command, you must be careful how you use it. The bash shell version of the test

command is slightly different than the dash shell version.
The bash shell test command allows you to use the double equal sign (==) to test if two strings are equal. This is an add-

on to accommodate programmers familiar with using this format in other programming languages:

$ cat test6
#!/bin/bash
testing the == comparison

test1=abcdef

www.it-ebooks.info

http://www.it-ebooks.info/

test2=abcdef

if [$test1 == $test2]
then
 echo “They're the same!”
else
 echo “They're different”
fi
$./test6
They're the same!
$
Simple enough. However, if you run this script in a dash shell environment, you'll get an unwelcome outcome:

$./test6
[: ==: unexpected operator
They're different
$
The test command available in the dash shell doesn't recognize the == symbol for text comparisons. Instead, it only

recognizes the = symbol. If you change the text comparison symbol to just a single equal sign, things are just fine in both the

bash and dash shell environments:

$ cat test7
#!/bin/dash
testing the = comparison

test1=abcdef
test2=abcdef

if [$test1 = $test2]
then
 echo “They're the same!”
else
 echo “They're different”
fi
$./test7
They're the same!
$
This little bashism is responsible for many hours of frustration for shell programmers!

The echo Statement Options
The simple echo statement is also another source of frustration for dash shell programmers. It doesn't behave the same way

in the dash and bash shells.
In the bash shell, if you want to display a special character in the output, you must use the -e command line parameter:

echo -e “This line contains\ta special character”
The echo statement contains the \t special character to represent a tab. Without the -e command line parameter, the

bash version of the echo statement ignores the special character. Here's a test that demonstrates this in the bash shell:

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat test8
#!/bin/bash
testing echo commands

echo “This is a normal test”
echo “This test uses a\tspecial character”
echo -e “This test uses a\tspecial character”
echo -n “Does this work: ”
read test
echo “This is the end of the test”
$./test8
This is a normal test
This test uses a\tspecial character
This test uses a special character
Does this work: N
This is the end of the test
$
The echo statement that didn't use the -e command line parameter just displayed the \t character as normal text, so to

get the tab character, you must use the -e command line parameter.
In the dash shell, things are a little different. The echo statement in the dash shell automatically recognizes and displays

special characters. Because of this, there is no -e command line parameter. If you try to run the same script in a dash

environment, you get this output:

$./test8
This is a simple test
This line uses a special character
-e This line uses a special character
Does this work: N
This is the end of the test
$
As you can see from the output, the dash shell version of the echo command recognizes the special character in the line

without the -e command line parameter just fine, but for the line that does contain the -e command line parameter, it gets

confused and displays the -e as normal text.
Unfortunately, there's no simple solution to this problem. If you must write scripts that work in both the bash and dash

shell environments, the best solution is to use the printf command to display text. This command works the same way in

both shell environments, and it can display special characters just fine.

The function Command
Chapter 16 showed you how to define your own functions in your shell scripts. The bash shell supports two methods for

defining functions. The first method is to use the function statement:

function name {
 commands
}
The name attribute defines a unique name assigned to the function. Each function you define in your script must be

assigned a unique name.
The commands are one or more bash shell commands that make up your function. When you call the function, the bash

shell executes each of the commands in the order they appear in the function, just as in a normal script.
The second format for defining a function in a bash shell script more closely follows how functions are defined in other

www.it-ebooks.info

http://www.it-ebooks.info/

The second format for defining a function in a bash shell script more closely follows how functions are defined in other

programming languages:

name() {
commands
}

The empty parentheses after the function name indicate that you're defining a function. The same naming rules apply in

this format as the original shell script function format.
The dash shell doesn't support the first method of defining functions (it doesn't support the function statement).

Instead, in the dash shell you must define a function using the function name with parentheses. If you try to run a function

designed for the bash shell in a dash shell, you'll get an error message:

$ cat test9
#!/bin/dash
testing functions

function func1() {
 echo “This is an example of a function”
}
count=1
while [$count -le 5]
do
 func1
 count=$(($count + 1))
done
echo “This is the end of the loop”
func1
echo “This is the end of the script”
$./test9
./test9: 4: Syntax error: “(” unexpected
$
Instead of assigning the function code to the function, the dash shell executed the code within the function definition and

then complained about the format of the shell script.
If you're writing shell scripts that may be used in the dash environment, always use the second method of defining your

functions:

$ cat test10
#!/bin/dash
testing functions

func1() {
 echo “This is an example of a function”
}

count=1
while [$count -le 5]
do
 func1

www.it-ebooks.info

http://www.it-ebooks.info/

 count=$(($count + 1))
done
echo “This is the end of the loop”
func1
echo “This is the end of the script”
$./test10
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
This is an example of a function
This is the end of the script
$
Now the dash shell recognized the function defined in the script just fine and was able to use it within the script.

The zsh Shell
Another popular shell that you may run into is the Z shell (called zsh). The zsh shell is an open source Unix shell developed by
Paul Falstad. It takes ideas from all of the existing shells and adds many unique features to create a full-blown advanced

shell designed for programmers.
The following are some of the features that make the zsh shell unique:

Improved shell option handling
Shell compatibility modes
Loadable modules

Of all these features, a loadable module is the most advanced feature in shell design. As you've seen in the bash and dash
shells, each shell contains a set of built-in commands that are available without the need for external utility programs. The
benefit of built-in commands is execution speed. The shell doesn't have to load a utility program into memory before

running it; the built-in commands are already in the shell memory, ready to go.
The zsh shell provides a core set of built-in commands, plus the capability to add additional command modules. Each

command module provides a set of additional built-in commands for specific circumstances, such as network support and

advanced math functions. You can add only the modules you think you need for your specific situation.
This feature provides a great way to either limit the size of the zsh shell for situations that require a small shell size and

few commands or expand the number of available built-in commands for situations that require faster execution speeds.

Parts of the zsh Shell
This section walks you through the basics of the zsh shell, showing the built-in commands that are available (or can be added

by installing modules), as well as the command line parameters and environment variables used by the zsh shell.

Shell Options
Most shells use command line parameters to define the behavior of the shell. The zsh shell uses a few command line
parameters to define the operation of the shell, but mostly it uses options to customize the behavior of the shell. You can set

shell options either on the command line or within the shell itself using the set command.
Table 22.4 lists the command line parameters available for the zsh shell.

Table 22.4 The zsh Shell Command Line Parameters

Parameter Description

-c Execute only the specified command and exit.

www.it-ebooks.info

#c22_tbl_0004
#c22_tbl_anc_0004
http://www.it-ebooks.info/

-i Start as an interactive shell, providing a command line interface prompt.

-s Force the shell to read commands from STDIN.

-o Specify command line options.

While this may seem like a small set of command line parameters, the -o parameter is somewhat misleading. It allows you
to set shell options that define features within the shell. By far the zsh shell is the most customizable shell available. There are

lots of features that you can alter for your shell environment. The different options fit into several general categories:
Changing directories: Options that control how the cd and dirs commands handle directory changes
Completion: Options that control command completion features
Expansion and globbing: Options that control file expansion in commands
History: Options that control command history recall
Initialization: Options that control how the shell handles variables and startup files when started
Input/Output: Options that control command handling
Job Control: Options that dictate how the shell handles and starts jobs
Prompting: Options that define how the shell works with command line prompts
Scripts and functions: Options that control how the shell processes shell scripts and defines shell functions
Shell emulation: Options that allow you to set the behavior of the zsh shell to mimic the behavior of other shell

types
Shell state: Options that define what type of shell to start
zle: Options for controlling the zsh line editor (zle) feature
Option aliases: Special options that can be used as aliases for other option names

With this many different categories of shell options, you can imagine just how many actual options the zsh shell supports.
The following sections show a sampling of the different zsh shell options available for you to use when customizing your zsh

shell environment.

Shell State

There are six different zsh shell options that define the type of shell to start:
interactive (-i): Provides a command line interface prompt for entering built-in commands and program names.
login (-l): The default zsh shell type, processes the zsh shell startup files, and provides a command line interface

prompt.
privileged (-p): The default if the effective user ID (UID) of the user is not the same as the real UID (the user has

become the root user). This option disables the user startup files.
restricted (-r): Restricts the user to a specified directory structure in the shell.
shin_stdin (-s): Commands are read from STDIN.
single_command (-t): Executes a single command from STDIN and exits.

The shell states define whether or not the shell starts with a command line interface prompt and what access the user has

within the shell.

Shell Emulation
The shell emulation options allow you to customize the zsh shell to perform similar to the C shell (csh) or Korn shell (ksh), two

other shells popular with programmers. These options are as follows:
bsd_echo: Make the echo statement compatible with the C shell echo command.
csh_junkie_history: Use the history command without a specifier to reference the previous command.
csh_junkie_loops: Allow while and for loops to use end like the C shell instead of do and done.
csh_junkie_quotes: Change the rules of using single and double quotation marks to match the C shell.
csh_nullcmd: Don't use the values of the NULLCMD and READNULLCMD variables when executing redirections with

www.it-ebooks.info

http://www.it-ebooks.info/

csh_nullcmd: Don't use the values of the NULLCMD and READNULLCMD variables when executing redirections with

no commands.
ksh_arrays: Use Korn-style arrays, starting numeric arrays at 0, and require braces to reference array elements.
ksh_autoload: Emulate the Korn shell autoload function feature.
ksh_option_print: Emulate the Korn shell method of printing options.
ksh_typeset: Alter the way that the typeset command arguments are processed.
posix_builtins: Use the builtin command to execute built-in commands.
sh_file_expansion: Perform file name expansion before any other expansion.
sh_nullcmd: Don't use the NULLCMD and READNULLCMD variables when performing redirections.
sh_option_letters: Interpret single letter shell command line options similar to the Korn shell.
sh_word_split: Perform field splitting on unquoted parameter expansions.
traps_async: While waiting for a program to exit, handle signals and run traps immediately.

By having multiple options you can pick and choose which csh or ksh shell feature you need to emulate in your zsh shell,

instead of having to emulate the entire shell.

Initialization

There are a few options for handling the shell startup features:
all_export: All parameters and variables are exported to child shell processes automatically.
global_export: Parameters exported to the environment will not be made local to the function.
global_rcs: If not set, the zsh shell doesn't run the global startup files, but it still runs local startup files.
rcs: If not set, the zsh shell runs the /etc/zshenv startup file, but no others.

The initialization options allow you to specify which (if any) zsh shell startup files are run in your shell environment. You

can also set these values within startup files themselves to limit which ones the shell executes.

Scripts and Functions
The script and function options allow you to customize the shell scripting environment in the zsh shell. This is a handy way to

set the way functions perform within the shell.
c_bases: Display hexadecimal numbers in C format (0xdddd) instead of shell format (16#dddd).
err_exit: If a command exits with a non-zero exit status, perform the command in the ZERR trap and exit.
err_return: If a command has a non-zero exit status, return immediately from the enclosing function.
eval_lineno: If set, the line numbers of expressions evaluated using the eval built-in command are tracked

separately from the rest of the shell environment.
exec: Execute commands. If this option isn't set, read commands and report errors, but don't execute the

commands.
function_argzero: Set $0 to the name of the function or script.
local_options: If set, when a shell function returns, all of the options that were set before the function are

restored.
local_traps: If set, when a signal trap is set within a function, the previous status of the trap is restored when the

function exits.
multios: Perform implicit tee or cat commands when multiple redirections are attempted.
octal_zeroes: Interpret any integer string starting with a zero as an octal number.
typeset_silent: If not set, using typeset with the name of a parameter displays the current value of the

parameter.
verbose: Displays shell input lines as they are read by the shell.
xtrace: Displays commands and their arguments as the shell executes them.

The zsh shell allows you to customize lots of features that occur when you're exiting functions defined in the shell.

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in Commands
The zsh shell is unique in that it allows you to expand the built-in commands available in the shell. This provides for a wealth

of speedy utilities at your fingertips for a host of different applications.
This section describes the core built-in commands, along with the various modules available at the time of this writing.

Core Built-in Commands
The core of the zsh shell contains the basic built-in commands you're used to seeing in other shells. Table 22.5 describes the

built-in commands available for you.

Table 22.5 The zsh Core Built-In Commands

Command Description

alias Define an alternate name for a command and arguments.

autoload Preload a shell function into memory for quicker access.

bg Execute a job in background mode.

bindkey Bind keyboard combinations to commands.

builtin Execute the specified built-in command instead of an executable file of the same
name.

bye The same as exit.

cd Change the current working directory.

chdir Change the current working directory.

command Execute the specified command as an external file instead of a function or built-
in command.

declare Set the data type of a variable (same as typeset).

dirs Display the contents of the directory stack.

disable Temporarily disable the specified hash table elements.

disown Remove the specified job from the job table.

echo Display variables and text.

emulate Set zsh to emulate another shell, such as the Bourne, Korn, or C shells.

enable Enable the specified hash table elements.

eval Execute the specified command and arguments in the current shell process.

exec Execute the specified command and arguments replacing the current shell
process.

exit Exit the shell with the specified exit status. If none specified, use the exit status
of the last command.

export Allow the specified environment variable names and values to be used in child

www.it-ebooks.info

#c22_tbl_0005
#c22_tbl_anc_0005
http://www.it-ebooks.info/

Allow the specified environment variable names and values to be used in child

shell processes.

false Return an exit status of 1.

fc Select a range of commands from the history list.

fg Execute the specified job in foreground mode.

float Set the specified variable for use as a floating point variable.

functions Set the specified name as a function.

getln Read the next value in the buffer stack and place it in the specified variable.

getopts Retrieve the next valid option in the command line arguments and place it in the
specified variable.

hash Directly modify the contents of the command hash table.

history List the commands contained in the history file.

integer Set the specified variable for use as an integer value.

jobs List information about the specified job, or all jobs assigned to the shell process.

kill Send a signal (Default SIGTERM) to the specified process or job.

let Evaluate a mathematical operation and assign the result to a variable.

limit Set or display resource limits.

local Set the data features for the specified variable.

log Display all users currently logged in who are affected by the watch parameter.

logout Same as exit, but only works when the shell is a login shell.

popd Remove the next entry from the directory stack.

print Display variables and text.

printf Display variables and text using C-style format strings.

pushd Change the current working directory, and put the previous directory in the
directory stack.

pushln Place the specified arguments into the editing buffer stack.

pwd Display the full pathname of the current working directory.

read Read a line and assign data fields to the specified variables using the IFS
characters.

readonly Assign a value to a variable that can't be changed.

rehash Rebuild the command hash table.

set Set options or positional parameters for the shell.

www.it-ebooks.info

http://www.it-ebooks.info/

setopt Set the options for a shell.

shift Read and delete the first positional parameter, and then shift the remaining ones
down one position.

source Find the specified file and copy its contents into the current location.

suspend Suspend the execution of the shell until it receives a SIGCONT signal.

test Return an exit status of 0 if the specified condition is TRUE.

times Display the cumulative user and system times for the shell and processes that run
in the shell.

trap Block the specified signals from being processed by the shell, and execute the
specified commands if the signals are received.

true Return a zero exit status.

ttyctl Lock and unlock the display.

type Display how the specified command would be interpreted by the shell.

typeset Set or display attributes of variables.

ulimit Set or display resource limits of the shell or processes running in the shell.

umask Set or display the default permissions for creating files and directories.

unalias Remove the specified command alias.

unfunction Remove the specified defined function.

unhash Remove the specified command from the hash table.

unlimit Remove the specified resource limit.

unset Remove the specified variable attribute.

unsetopt Remove the specified shell option.

wait Wait for the specified job or process to complete.

whence Display how the specified command would be interpreted by the shell.

where Display the pathname of the specified command if found by the shell.

which Display the pathname of the specified command using csh-style output.

zcompile Compile the specified function or script for faster autoloading.

zmodload Perform operations on loadable zsh modules.

The zsh shell is no slouch when it comes to providing built-in commands! You should recognize most of these commands

from their bash counterparts. The most important features of the zsh shell built-in commands are modules.

Add-in Modules

www.it-ebooks.info

http://www.it-ebooks.info/

There's a long list of modules that provide additional built-in commands for the zsh shell, and the list continues to grow as

resourceful programmers create new modules. Table 22.6 shows the modules available at the time of this writing.

Table 22.6 The zsh Modules

Module Description

zsh/cap POSIX compatibility commands

zsh/clone Commands to clone a running shell to another terminal

zsh/compctl Commands to control command completion

zsh/complete Command line completion commands

zsh/complist Commands for command line completion listing extensions

zsh/computil Utility commands for command line completion

zsh/datetime Additional date and time commands and variables

zsh/deltochar A line editor function replicating emacs functionality

zsh/files Commands for basic file handling

zsh/mapfile Access to external files via associative arrays

zsh/mathfunc Additional scientific functions

zsh/parameter Access to command hash tables via associative arrays

zsh/pcre The extended regular expression library

zsh/sched Scheduling commands for providing timed command execution

zsh/net/socket Unix domain socket support

zsh/stat Access to the stat system call to provide system statistics

zsh/system Interface for various low-level system features

zsh/net/tcp Access to TCP sockets

zsh/termcap Interface to the termcap database

zsh/terminfo Interface to the terminfo database

zsh/zftp A specialized FTP client command

zsh/zle The zshell line editor

zsh/zleparameter Access to modify zle using variables

zsh/zprof Allow profiling for shell functions

zsh/zpty Start a command in a pseudo-terminal

zsh/zselect Block and return when file descriptors are ready

zsh/zutil Various shell utilities

www.it-ebooks.info

#c22_tbl_0006
#c22_tbl_anc_0006
http://www.it-ebooks.info/

The zsh shell modules cover a wide range of topics, from providing simple command line editing features to advanced
networking functions. The idea behind the zsh shell is to provide a basic minimum shell environment and let you add on the

pieces you need to accomplish your programming job.

Viewing, Adding, and Removing Modules
The zmodload command is the interface to the zsh modules. You use this command to view, add, and remove modules from

the zsh shell session.
Using the zmodload command without any command line parameters displays the currently installed modules in your

zsh shell:

% zmodload
zsh/zutil
zsh/complete
zsh/main
zsh/terminfo
zsh/zle
zsh/parameter
%
Different zsh shell implementations include different modules by default. To add a new module, just specify the module

name on the zmodload command line:

% zmodload zsh/zftp
%
Nothing indicates that the module loaded. You can perform another zmodload command, and the new module should

appear in the list of installed modules.
Once you load a module, the commands associated with the module are available as built-in commands:

% zftp open myhost.com rich testing1
Welcome to the myhost FTP server.
% zftp cd test
% zftp dir
01-21-11 11:21PM 120823 test1
01-21-11 11:23PM 118432 test2
% zftp get test1 > test1.txt
% zftp close
%

The zftp command allows you to conduct a complete FTP session directly from your zsh shell command line! You can

incorporate these commands into your zsh shell scripts to perform file transfers directly from your scripts.
To remove an installed module, use the -u parameter, along with the module name:

% zmodload -u zsh/zftp
% zftp
zsh: command not found: zftp
%

Note

It's a common practice to place zmodload commands in the $HOME/.zshrc
startup file so that your favorite functions load automatically when the zsh shell
starts.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting with zsh
The main purpose of the zsh shell was to provide an advanced programming environment for shell programmers. With that in

mind, it's no surprise that the zsh shell offers many features that make shell scripting easier.

Mathematical Operations
As you would expect, the zsh shell allows you to perform mathematical functions with ease. In the past, the Korn shell has led
the way in supporting mathematical operations by providing support for floating-point numbers. The zsh shell has full

support for floating-point numbers in all of its mathematical operations!

Performing Calculations

The zsh shell supports two methods for performing mathematical operations:
The let command
Double parentheses

When you use the let command, you should enclose the operation in double quotation marks to allow for spaces:

% let value1=“ 4 * 5.1 / 3.2 ”
% echo $value1
6.3749999999999991
%
Notice that using floating point numbers introduces a precision problem. To solve this, it's always a good idea to use the

printf command, and specify the decimal precision needed to correctly display the answer:

% printf “%6.3f\n” $value1
6.375
%
Now that's much better!
The second method is to use the double parentheses. This method incorporates two techniques for defining the

mathematical operation:

% value1=$((4 * 5.1))
% ((value2 = 4 * 5.1))
% printf “%6.3f\n” $value1 $value2
20.400
20.400
%
Notice that you can place the double parentheses either around just the operation (preceded by a dollar sign) or around

the entire assignment statement. Both methods produce the same results.
If you don't use the typeset command to declare the data type of a variable beforehand, the zsh shell attempts to

automatically assign the data type. This can be dangerous when working with both integer and floating-point numbers. Take

a look at this example:

% value=10
% value2=$(($value1 / 3))
% echo $value2
3
%
Now that's probably not the answer you want to come out from the calculation. When you specify numbers without

decimal places, the zsh shell interprets them as integer values and performs integer calculations. To ensure that the result is a

floating-point number, you must specify the numbers with decimal places:

www.it-ebooks.info

http://www.it-ebooks.info/

% value=10.
% value2=$(($value1 / 3.))
% echo $value2
3.3333333333333335
%
Now the result is in the floating-point format.

Mathematical Functions
With the zsh shell, built-in mathematical functions are either feast or famine. The default zsh shell doesn't include any special
mathematical function. However, if you install the zsh/mathfunc module, you'll have more math functions than you'll most

likely ever need:

% value1=$((sqrt(9)))
zsh: unknown function: sqrt
% zmodload zsh/mathfunc
% value1=$((sqrt(9)))
% echo $value1
3.
%
That was simple! Now you have an entire math library of functions at your fingertips.

Note

There are lots of mathematical functions supported in zsh. For a complete listing of
all the math functions that the zsh/mathfunc module provides, look at the
manual page for zshmodules.

Structured Commands

The zsh shell provides the usual set of structured commands for your shell scripts:
if-then-else statements
for loops (including the C-style)
while loops
until loops
select statements
case statements

The zsh shell uses the same syntax for each of these structured commands that you're used to from the bash shell. The zsh

shell also includes a different structured command called repeat. The repeat command uses the following format:

repeat param
do
 commands
done
The param parameter must be a number or a mathematical operation that evaluates to a number. The repeat command

then performs the specified commands that number of times:

% cat test1
#!/bin/zsh
using the repeat command

www.it-ebooks.info

http://www.it-ebooks.info/

value1=$((10 / 2))
repeat $value1
do
 echo “This is a test”
done
$./test1
This is a test
This is a test
This is a test
This is a test
This is a test
%
This command allows you to repeat sections of code for a set number of times based on a calculation.

Functions
The zsh shell supports the creation of your own functions using either the function command, or by defining the function

name with parentheses:

% function functest1 {
> echo “This is the test1 function”
}
% functest2() {
> echo “This is the test2 function”
}
% functest1
This is the test1 function
% functest2
This is the test2 function
%
As with bash shell functions (see Chapter 16), you can define functions within your shell script and then either use global

variables or pass parameters to your functions. Here's an example using a global variable:

% cat test3
#!/bin/zsh
testing functions in zsh

dbl() {
 value=$(($value * 2))
 return $value
}

value=10
dbl
echo The answer is $?
% ./test3
The answer is 20

www.it-ebooks.info

http://www.it-ebooks.info/

%
You don't have to place your functions within your shell scripts. The zsh shell allows you to define your functions in

separate files that it can access when trying to resolve a function name.
The zsh shell finds functions via the fpath environment variable. You can store your function files in any directory in this

path. Here's the fpath value on a typical Linux workstation:

% echo $fpath
/usr/local/share/zsh/site-functions
/usr/share/zsh/4.2.5/functions/Completion
/usr/share/zsh/4.2.5/functions/Completion/AIX
/usr/share/zsh/4.2.5/functions/Completion/BSD
/usr/share/zsh/4.2.5/functions/Completion/Base
/usr/share/zsh/4.2.5/functions/Completion/Cygwin
/usr/share/zsh/4.2.5/functions/Completion/Darwin
/usr/share/zsh/4.2.5/functions/Completion/Debian
/usr/share/zsh/4.2.5/functions/Completion/Linux
/usr/share/zsh/4.2.5/functions/Completion/Mandrake
/usr/share/zsh/4.2.5/functions/Completion/Redhat
/usr/share/zsh/4.2.5/functions/Completion/Unix
/usr/share/zsh/4.2.5/functions/Completion/X
/usr/share/zsh/4.2.5/functions/Completion/Zsh
/usr/share/zsh/4.2.5/functions/MIME
/usr/share/zsh/4.2.5/functions/Misc
/usr/share/zsh/4.2.5/functions/Prompts
/usr/share/zsh/4.2.5/functions/TCP
/usr/share/zsh/4.2.5/functions/Zftp
/usr/share/zsh/4.2.5/functions/Zle
%
As you can see, there are lots of places the zsh shell goes hunting to resolve function names. On this system, you could

place my functions in the /usr/local/share/zsh/site-functions directory, and the zsh shell will be able to resolve

them.
However, before the zsh shell can resolve the function, you must use the autoload command. This command loads the

function into memory for the shell to access.
Here's an example of a standalone function:

% cat dbl
#!/bin/zsh
a function to double a value
dbl() {
 value=$(($1 * 2))
 return $value
}
% cp dbl /usr/local/share/zsh/site-functions
%
Depending on how your Linux system is set up, you may have to be the root user (or use the sudo command) to copy files

into the zsh library directories. Okay, now the function is created in a file and stored in a directory in the fpath. If you try to

use it, however, you'll get an error message until you load it into memory:

% dbl 5

www.it-ebooks.info

http://www.it-ebooks.info/

zsh: command not found: dbl
% autoload dbl
% dbl 5
% echo $?
10
%
This also applies to shell scripts. If you have a function you need to use, you'll need to use the autoload command to

make sure that it's available:

% cat test4
#!/bin/zsh
testing an external function

autoload dbl

dbl $1
echo The answer is $?
% ./test4 5
The answer is 10
%
Another interesting feature of the zsh shell is the zcompile command. This command processes a function file and

creates a “compiled” version for the shell. This isn't really the same type of compiling you're used to in other programming

languages. It does, however, put the function into a binary format that the zsh shell can load more quickly.
When you run the zcompile command, it creates a .zwc version of the function file. When the autoload command

looks for the command in the fpath, it will see the .zwc version and load it instead of the text function file.

Summary
This chapter discussed two popular alternative Linux shells that you may run into. The dash shell was developed as part of the
Debian Linux distribution and is mainly found in the Ubuntu Linux distribution. It's a smaller version of the Bourne shell, so it

doesn't support as many features as the bash shell, which can cause problems for script writing.
The zsh shell is often found in programming environments, as it provides lots of cool features for shell script

programmers. It uses loadable modules to load separate code libraries, which make using advanced functions as easy as
running command line commands! There are loadable modules for lots of different functions, from complex mathematical

algorithms to network applications such as FTP and HTTP.
The next section of this book dives into some specific scripting applications you might run into in the Linux environment.

The next chapter shows you how to incorporate the two most popular database packages in the Linux world, MySQL and

PostgreSQL, into your shell scripts for handling data.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV

Advanced Shell Scripting Topics

In This Part
Chapter 23: Using a Database

Chapter 24: Using the Web

Chapter 25: Using e-mail

Chapter 26: Writing Script Utilities

Chapter 27: Advanced Shell Scripts

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 23

Using a Database

In This Chapter

Introducing MySQL
Introducing PostgreSQL
Creating database objects
Writing database shell scripts

One of the problems with shell scripts is persistent data. You can store all the information you want in your shell script
variables, but at the end of the script, the variables just go away. There are times when you'd like for your scripts to be able to
store data that you can use later. In the old days, to store and retrieve data from a shell script required creating a file, reading
data from the file, parsing the data, and then saving the data back into the file. Search for data in the file meant reading every
record in the file to look for your data. Nowadays with databases being all the rage, it's a snap to interface your shell scripts
with professional-quality open source databases. The two most popular open source databases used in the Linux world are
MySQL and PostgreSQL. This chapter shows you how to get these databases running on your Linux system and then spends
some time getting you used to working with them from the command line. It then goes on to show you how to interact with

each one using normal bash shell scripts.

The MySQL Database
By far the most popular database available in the Linux environment is the MySQL database. Its popularity has grown as a
part of the Linux-Apache-MySQL-PHP (LAMP) server environment, which many Internet Web servers use for hosting online

stores, blogs, and applications.
This section describes how to install a MySQL database in your Linux environment and how to create the necessary

database objects to use in your shell scripts.

Installing MySQL
Installing MySQL on a Linux system used to be somewhat involved, but these days it's not uncommon for Linux distributions
to use automated software installation programs (see Chapter 8). These programs not only allow you to easily download
and install new software from network repositories, but also automatically check for updates for your installed software

packages and install those, too.
Figure 23.1 demonstrates the Add Software feature in the Ubuntu Linux distribution.

Figure 23.1 Installing MySQL on an Ubuntu Linux system

www.it-ebooks.info

#c23_fig_0001
#c23_fig_anc_0001
http://www.it-ebooks.info/

Figure 23.1 Installing MySQL on an Ubuntu Linux system

You just have to select the option for the mysql-server, and the Synaptic Package Manager downloads and installs the

complete MySQL server (and client) software. It doesn't get any easier than that!
The openSUSE Linux distribution also uses an advanced software management system. Figure 23.2 shows the Software

Management window, where you can select packages based on software category or search for specific packages.

Figure 23.2 Installing MySQL on an openSUSE Linux system

www.it-ebooks.info

#c23_fig_anc_0001
#c23_fig_0002
#c23_fig_anc_0002
http://www.it-ebooks.info/

Figure 23.2 Installing MySQL on an openSUSE Linux system

Again, you can select the option for the MySQL software to download and install the software packages required.
If you're using a Linux distribution that doesn't support automatic software loads, or you just want to have the latest-

and-greatest version of the MySQL server, you can download an installation file directly from the MySQL Website

(www.mysql.com) and install it yourself.
The MySQL Website contains both pre-built binary packages for specific Linux distributions (using either the Red Hat RPM

package format or the Debian DEB package format) and source code packages. The pre-built binary packages are easier to
install, so if one is available for your Linux system, try to use it. Refer back to Chapter 8 if you need help installing either the

binary or source code package for your Linux distribution.

Note

If you select to manually download and install MySQL (either the pre-built binary
package or the source code download), you'll have to do some extra work
configuring the MySQL server, whereas the Linux distribution installation package

www.it-ebooks.info

#c23_fig_anc_0002
http://www.mysql.com
http://www.it-ebooks.info/

configuring the MySQL server, whereas the Linux distribution installation package

will install a pre-configured setup, requiring little to no work on your part!

The MySQL Client Interface
The portal to the MySQL database is the mysql command line interface program. This section describes the mysql client

program and shows how to use it to interact with your database.

Connecting to the Server
The mysql client program allows you to connect to any MySQL database server anywhere on the network, using any user
account and password. By default, if you enter the mysql program on a command line without any parameters, it will

attempt to connect to a MySQL server running on the same Linux system, using the Linux login username.
Most likely, this isn't how you want to connect to the database. There are lots of command line parameters that allow you

to control not only which MySQL server you connect to but also the behavior of the mysql interface. Table 23.1 shows the

command line parameters you can use with the mysql program.

Table 23.1 The mysql Command Line Parameters

Parameter Description

-A Disable automatic rehashing.

-b Disable beep after error.

-B Don't use a history file.

-C Compress all information sent between the client and the server.

-D Specify the database to use.

-e Execute the specified statement and exit.

-E Display query output vertically, one data field per line.

-f Continue if an SQL error occurs.

-G Enable named mysql commands.

-h Specify the MySQL server hostname (the default is localhost).

-H Display query output in HTML code.

-i Ignore spaces after function names.

-N Don't display column names in results.

-o Ignore statements except those for the default database named on the command
line.

-p Prompt for the password for the user account.

-P Specify the TCP port number to use for the network connection.

-q Don't cache each query result.

-r Display column values without escape conversion.

-s Use silent mode.

www.it-ebooks.info

#c23_tbl_0001
#c23_tbl_anc_0001
http://www.it-ebooks.info/

-S Specify a socket for connection to the localhost.

-t Display output in table form.

-T Display debugging information, memory, and CPU statistics when the program
exits.

-u Specify the user account to log in as.

-U Allow only UPDATE and DELETE statements that specify key values.

-v Use verbose mode.

-w If the connection can't be established, wait and retry.

-X Display query output in XHTML code.

As you can see, quite a lot of command line options are available for modifying how you log into the MySQL server.
By default, the mysql client program attempts to log in to the MySQL server using your Linux login name. If this name

isn't configured in MySQL as a user account, you'll need to use the -u parameter to specify the name to log in as:

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 39
Server version: 5.1.49-1ubuntu8.1 (Ubuntu)

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserv
ed.
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL v2 license

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the current input state
ment.

mysql>
The -p parameter tells the mysql program to prompt for a password to use with the user account to log in. Once you're

logged in to the server, you can start entering commands.

The mysql Commands

The mysql program uses two different types of commands:
Special mysql commands
Standard SQL statements

The mysql program uses its own set of commands that let you easily control the environment and retrieve information

about the MySQL server. Table 23.2 shows these commands.

Table 23.2 The mysql Commands

Command Shortcut Description

? \? Help.

www.it-ebooks.info

#c23_tbl_0002
#c23_tbl_anc_0002
http://www.it-ebooks.info/

clear \c Clear command.

connect \r Connect to database and server.

delimiter \d Set SQL statement delimiter.

edit \e Edit the command with the command line editor.

ego \G Send the command to the MySQL server and display results vertically.

exit \q Exit from the mysql program.

go \g Send command to the MySQL server.

help \h Display help.

nopager \n Disable output pager and send output to STDOUT.

note \t Don't send output to output file.

pager \P Set pager command to specified program (use more as default).

print \p Print current command.

prompt \R Change the mysql command prompt.

quit \q Quit from the mysql program (same as exit).

rehash \# Rebuild the command completion hash table.

source \. Execute the SQL script in the specified file.

status \s Retrieve status information from the MySQL server.

system \! Execute a shell command on the system.

tee \T Append all output to the specified file.

use \u Use another database.

charset \C Change to another character set.

warnings \W Show warnings after every statement.

nowarning \w Don't show warnings after every statement.

You can use either the full command or the shortcut command directly from the mysql command prompt:

mysql> \s

mysql Ver 14.12 Distrib 5.0.45, for redhat-linux-gnu (i386) using
readline 5.0

Connection id: 10
Current database:
Current user: root@localhost

www.it-ebooks.info

http://www.it-ebooks.info/

SSL: Not in use
Current pager: stdout
Using outfile: ‘’
Using delimiter: ;
Server version: 5.1.49-1ubuntu8.1 (Ubuntu)
Protocol version: 10
Connection: Localhost via UNIX socket
Server characterset: latin1
Db characterset: latin1
Client characterset: latin1
Conn. characterset: latin1
UNIX socket: /var/lib/mysql/mysql.sock
Uptime: 4 hours 15 min 24 sec

Threads: 1 Questions: 53 Slow queries: 0 Opens: 23 Flush tables:
1 Open tables: 17 Queries per second avg: 0.003

mysql>
The mysql program implements all of the standard Structured Query Language (SQL) commands supported by the

MySQL server. The “Creating MySQL Database Objects” section in this chapter discusses this in more detail.
One uncommon SQL command that the mysql program implements is the SHOW command. Using this command, you can

extract information about the MySQL server, such as the databases and tables created:

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
+--------------------+
2 rows in set (0.04 sec)

mysql> USE mysql;
Database changed
mysql> SHOW TABLES;
+---------------------------+
| Tables_in_mysql |
+---------------------------+
| columns_priv |
| db |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |

www.it-ebooks.info

http://www.it-ebooks.info/

| proc |
| procs_priv |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
17 rows in set (0.00 sec)
mysql>
In this example, we used the SHOW SQL command to display the databases currently configured on the MySQL server, and

then the USE SQL command to connect to a single database. Your mysql session can be connected to only one database at a

time.
You'll notice that after each command we added a semicolon. The semicolon indicates the end of a command to the mysql

program. If you don't use a semicolon, it prompts for more data:

mysql> SHOW
 -> DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
+--------------------+
2 rows in set (0.00 sec)

mysql>
This feature can come in handy when you're working with long commands. You can enter part of the command on a line

and press the Enter key, and then continue on the next line. This can continue for as many lines as you like until you use the

semicolon to indicate the end of the command.

Note

Throughout this chapter, we use uppercase letters for SQL commands. This has
become a common way to write SQL commands, but the mysql program allows you
to specify SQL commands using either uppercase or lowercase.

Creating MySQL Database Objects
Before you can start writing your shell scripts to interact with a database, you'll need a few database objects to work with. At

a minimum, you'll want to have the following:
A unique database to store your application data
A unique user account to access the database from your scripts
One or more data tables to organize your data

You build all of these objects using the mysql program. The mysql program interfaces directly with the MySQL server,

using SQL commands to create and modify each of the objects.
You can send any type of SQL commands to the MySQL server using the mysql program. This section walks you through

the different SQL statements you'll need to build the basic database objects for your shell scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Database
The MySQL server organizes data into databases. A database usually holds the data for a single application, separating it
from other applications that use the database server. Creating a separate database for each shell script application helps

eliminate confusion and data mix-ups.
The SQL statement required to create a new database is:

CREATE DATABASE name;
That's pretty simple. Of course, you must have the proper privileges to create new databases on the MySQL server. The

easiest way to do that is to log in as the root user account:

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 39
Server version: 5.1.49-1ubuntu8.1 (Ubuntu)

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserv
ed.
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL v2 license

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the current input state
ment.

mysql> CREATE DATABASE test;
Query OK, 1 row affected (0.02 sec)

mysql>
You can see if the new database was created by using the SHOW command:

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
3 rows in set (0.01 sec)

mysql>
Yes, it was successfully created. You should now be able to connect to the new database:

mysql> USE test;
Database changed;
mysql> SHOW TABLES;
Empty set (0.00 sec)
mysql>
The SHOW TABLES command allows you to see if there are any tables created. The Empty set result indicates that there

www.it-ebooks.info

http://www.it-ebooks.info/

The SHOW TABLES command allows you to see if there are any tables created. The Empty set result indicates that there

aren't any tables to work with yet. Before we start creating tables, however, there's one other thing we need to do.

Creating a User Account
So far, you've seen how to connect to the MySQL server using the root administrator account. This account has total control

over all of the MySQL server objects (much like how the root Linux account has complete control over the Linux system).
It's extremely dangerous to use the root MySQL account for normal applications. If there should be a breach of security

and someone figured out the password for the root user account, all sorts of bad things could happen to your system (and

data).
To prevent that, it's wise to create a separate user account in MySQL that has privileges only for the database used in the

application. You do this with the GRANT SQL statement:

mysql> GRANT SELECT,INSERT,DELETE,UPDATE ON test.* TO test IDENTIFIED
by ‘test’;
Query OK, 0 rows affected (0.35 sec)

mysql>
That's quite a long command. Let's walk through the pieces and see what it's doing.
The first section defines the privileges the user account has on what database(s). This statement allows the user account to

query the database data (the select privilege), insert new data records, delete existing data records, and update existing data

records.
The test.* entry defines the database and tables the privileges apply to. This is specified in the following format:

database.table
As you can see from this example, you're allowed to use wildcard characters when specifying the database and tables. This

format applies the specified privileges to all of the tables contained in the database named test.
Finally, you specify the user account(s) to which the privileges apply. The neat thing about the grant command is that if

the user account doesn't exist, it creates it. The identified by portion allows you to set a default password for the new

user account.
You can test the new user account directly from the mysql program:

$ mysql test -u test -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 40
Server version: 5.1.49-1ubuntu8.1 (Ubuntu)

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql>
The first parameter specifies the default database to use (test), and as you've already seen, the -u parameter defines the

user account to log in as, along with the -p to prompt for the password. After entering the password assigned to the test

user account, you're connected to the server.
Now that you've got a database and a user account, you're ready to create some tables for the data. But first, let's take a

look at the other database server you can use.

The PostgreSQL Database
The PostgreSQL database started out as an academic project, demonstrating how to incorporate advanced database
techniques into a functional database server. Over the years, PostgreSQL has evolved into one of the most advanced open

source database servers available for the Linux environment.
This section walks you through getting a PostgreSQL database server installed and running, and then setting up a user

account and database to work with in your shell scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing PostgreSQL
Just like MySQL, you can install the PostgreSQL database server package either by using your system's automated software

installation system, or manually by downloading it from the PostgreSQL Website (www.postgresql.org).
To use your Linux distribution's automated software installation, follow the same procedures outlined in the “Installing

MySQL” section earlier in the chapter. Similar to MySQL, the PostgreSQL download area contains both pre-built packages for
several Linux distributions, as well as a source code package. Again, refer back to Chapter 8 to determine if your Linux
distribution uses the package management system supported by a PostgreSQL binary package. If not, you'll need to
download the source code package for PostgreSQL and manually compile it on your Linux system. This can be an interesting

project.

Note

Compiling a source code package requires that you have the C software
development package loaded onto your Linux system. These days this is a fairly
common thing for servers, but it may not be loaded if you're using a desktop Linux
distribution. Please consult your individual Linux distribution documentation
regarding compiling software and what software packages are required for
compiling C source code projects.

Once you've installed the PostgreSQL database server, logging into the PostgreSQL server is slightly different from the
MySQL server. If you remember, the MySQL server maintains its own internal database of users that can be granted access to
database objects. While PostgreSQL also has this capability, most PostgreSQL implementations (including the default source

code installation) utilize the existing Linux system user accounts to authenticate PostgreSQL users.
While this can sometimes be confusing, it does make for a nice, clean way to control user accounts in PostgreSQL. You

simply need to ensure that each PostgreSQL user has a valid account on the Linux system, rather than having to worry about

a whole separate set of user accounts.
Another major difference for PostgreSQL is that the administrator account in PostgreSQL is called postgres, not root.

Because of this requirement, when you install PostgreSQL on your Linux system, there must be a Linux user account named

postgres.
The next section looks at how to use the postgres account to access the PostgreSQL server.

The PostgreSQL Command Interface
The PostgreSQL command line client program is called psql. This program provides complete access to the database objects
configured in the PostgreSQL server. This section describes the psql command and shows you how to use it to interact with

your PostgreSQL server.

Connecting to the Server
The psql client program provides the command line interface to the PostgreSQL server. As you would expect, it uses
command line parameters to control what features are enabled in the client interface. Each option uses either a long or short

name format. Table 23.3 shows the command line parameters available.

Table 23.3 The psql Command Line Parameters

Short Name Long Name Description

-a --echo-all Display all SQL lines processed from a script file in the
output.

-A --no-align Set the output format to unaligned mode. Data is not
displayed as a formatted table.

-c --command Execute the specified SQL statement and exit.

-d --dbname Specify the database to connect with.

www.it-ebooks.info

http://www.postgresql.org
#c23_tbl_0003
#c23_tbl_anc_0003
http://www.it-ebooks.info/

-e --echo-queries Echo all queries to the screen.

-E --echo-hidden Echo hidden psql meta-commands to the screen.

-f --file Execute SQL commands from the specified file and exit.

-F --field-separator Specify the character used to separate column data
when in unaligned mode. The default is a comma.

-h --host Specify the IP address or hostname of the remote
PostgreSQL server.

-l --list Display a list of available databases on the server and
exit.

-o --output Redirect query output to the specified file.

-p --post Specify the PostgreSQL server TCP port to connect with.

-P --pset Set the table printing option specified to a specified
value.

-q --quiet Quiet mode, doesn't display output messages.

-R --record-separator Use the specified character as the record separator. The
default is the newline character.

-s --single-step Prompt to continue or cancel after every SQL query.

-S --single-line Specify that the Enter key defines the end of a SQL
query instead of a semicolon.

-t --tuples-only Disables column headers and footers in table output.

-T --table-attr Use the HTML table tag specified when in HTML mode.

-U --username Use the specified username to connect to the
PostgreSQL server.

-v --variable Set the specified variable to a specified value.

-V --version Display the psql version number and exit.

-W --password Force a password prompt.

-x --expanded Enable expanded table output to display additional
information for records.

-X --nopsqlrc Don't process the psql startup file.

-? --help Display the psql command line help and exit.

As mentioned in the previous section, the administrative account for PostgreSQL is called postgres. Because
PostgreSQL uses Linux user accounts to validate users, you must be logged in as the postgres Linux account to access the

PostgreSQL server as the postgres user.
To get around this problem, you can use the sudo command to run the psql command line program as the postgres

user account.

www.it-ebooks.info

http://www.it-ebooks.info/

$ sudo -u postgres psql
[sudo password for rich]:
psql (8.4.5)
Type “help” for help.

postgres=#
The default psql prompt indicates the database you are connected to. The pound sign (#) in the prompt indicates that

you're logged in with the administrative user account. You're now ready to start entering some commands to interact with

the PostgreSQL server.

The psql Commands

Similarly to the mysql program, the psql program uses two different types of commands:
Standard SQL statements
PostgreSQL meta-commands

PostgreSQL meta-commands allow you to easily extract information about the database environment, plus set features
for the psql session. A meta-command is indicated by using a backslash. There are lots of PostgreSQL meta-commands for
lots of different settings and features, but there's no reason to start worrying about them all right away. The most

commonly used ones are:
\l to list the available databases
\c to connect to a database
\dt to list the tables in a database
\du to list the PostgreSQL users
\z to list table privileges
\? to list all of the available meta-commands
\h to list all of the available SQL commands
\q to exit the database

If you ever need to find a meta-command, just enter the \? meta-command. You'll see a list, along with an explanation,

of all the available meta-commands.
To test the meta-commands, use the \l meta-command to list the available databases:

postgres=# \l
List of databases
 Name | Owner | Encoding | Collation | Ctype | Access
-----------+----------+----------+------------+------------+----------
 postgres | postgres | UTF8 | en_US.utf8 | en_US.utf8 |
 template0 | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =c/postgres
 template1 | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =c/postgres
(3 rows)
postgres=#
The listing shows the available databases on the server, along with their features (we truncated the Access column entries

so they would fit on the page). These are the default databases provided by the PostgreSQL server. The postgres database
maintains all of the system data for the server. The template0 and template1 databases provide default database

templates for you to copy when creating a new database.
You're now ready to start working on your own data in PostgreSQL.

Creating PostgreSQL Database Objects
This section walks you through the process of creating your database and a user account to access it. You'll see that while

www.it-ebooks.info

http://www.it-ebooks.info/

This section walks you through the process of creating your database and a user account to access it. You'll see that while

some of the work in PostgreSQL is exactly the same as in MySQL, some of it is completely different.

Creating a Database Object
Creating a database is one of those actions that's the same as in MySQL. Remember to be logged in as the postgres

administrative account to create the new database:

$ sudo –u postgres psql
psql (8.4.5)
Type “help” for help.

postgres=# CREATE DATABASE test;
CREATE DATABASE
postgres=#
After you create the database, use the \l meta-command to see if it appears in the listing, then the \c meta-command to

connect to it:

postgres=# \l
List of databases
 Name | Owner | Encoding | Collation | Ctype | Access
-----------+----------+----------+------------+------------+----------
 postgres | postgres | UTF8 | en_US.utf8 | en_US.utf8 |
 template0 | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =c/postgres
 template1 | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =c/postgres
 test | postgres | UTF8 | en_US.utf8 | en_US.utf8 |
(4 rows)

postgres=# \c test
psql (8.4.5)
You are now connected to database “test”.
test=#
When you connect to the test database, the psql prompt changes to indicate the new database name. This is a great

reminder when you're ready to create your database objects, so you can easily tell where you are in the system.

Note

PostgreSQL adds another layer of control to the database called the schema. A
database can contain multiple schemas, each schema containing multiple tables.
This allows you to subdivide a database for specific applications or users.

By default, every database contains one schema, called public. If you're only going
to have one application use the database, you're fine with just using the public
schema. If you'd like to really get fancy, you can create new schemas. For this
example, use the public schema for tables.

Creating User Accounts
After creating the new database, the next step is to create a user account that has access to it for your shell scripts. As you've

already seen, user accounts in PostgreSQL are significantly different from those in MySQL.
User accounts in PostgreSQL are called Login Roles. The PostgreSQL server matches Login Roles to the Linux system user

accounts. Because of this, there are two common approaches to creating Login Roles to run shell scripts that access the

PostgreSQL database:

www.it-ebooks.info

http://www.it-ebooks.info/

Create a special Linux account with a matching PostgreSQL Login Role to run all your shell scripts.
Create PostgreSQL accounts for each Linux user account that needs to run shell scripts to access the database.

For this example, let's choose the second method and create a PostgreSQL account that matches our Linux system

account. This way, you can run shell scripts that access the PostgreSQL database directly from your Linux user account.
First, you must create the Login Role:

test=# CREATE ROLE rich login;
CREATE ROLE
test=#
That was simple enough. Without the login parameter, the role is not allowed to log in to the PostgreSQL server, but it

can be assigned privileges. This type of role is called a group role. Group roles are great if you're working in a large
environment with lots of users and tables. Instead of having to keep track of which user has which type of privileges for which
tables, you just create group roles for specific types of access to tables, and then assign the login roles to the proper group

role.
For simple shell scripting, you most likely won't need to worry about creating group roles, and just assign privileges

directly to the login roles. That's what we'll do in this example.
However, PostgreSQL handles privileges a bit differently than MySQL. It doesn't allow you to grant overall privileges to

all objects in a database that filter down to the table level. Instead, you'll need to grant privileges for each individual table
you create. While this is somewhat of a pain, it certainly helps enforce strict security policies. You'll have to hold off assigning

privileges until you've created a table. That's the next step in our process.

Working with Tables
Now that you've got your MySQL or PostgreSQL server running and created a new database and a user account for accessing
it, it's time to start working with data! Fortunately, both the mysql and psql programs use standard SQL to create and
manage data tables. This section walks you through the SQL required to create tables, insert and remove data, and query

existing data in both environments.

Creating a Table
Both the MySQL and PostgreSQL servers are considered relational databases. In a relational database, data is organized by
data fields, records, and tables. A data field is a single piece of information, such as an employee's last name or a salary. A
record is a collection of related data fields, such as the employee ID number, last name, first name, address, and salary. Each

record indicates one set of the data fields.
The table contains all of the records that hold the related data. Thus, you'll have a table called Employees that holds the

records for each employee.
To create a new table in the database, you need to use the CREATE TABLE SQL command:

$ mysql test -u root -p
Enter password:
mysql> CREATE TABLE employees (
 -> empid int not null,
 -> lastname varchar(30),
 -> firstname varchar(30),
 -> salary float,
 -> primary key (empid));
Query OK, 0 rows affected (0.14 sec)

mysql>
First, notice that to create the new table we needed to log in to MySQL using the root user account because the test

user doesn't have privileges to create a new table. Next, notice that we specified the test database on the mysql program

command line. If we hadn't done that, we would need to use the USE SQL command to connect to the test database.

Caution

www.it-ebooks.info

http://www.it-ebooks.info/

It's extremely important that you make sure you're in the right database before creating
the new table. Also, make sure that you're logged in using the administrative user account
(root for MySQL and postgres for PostgreSQL) to create the tables.

Each data field in the table is defined using a data type. The MySQL and PostgreSQL databases support lots of different

data types. Table 23.4 shows some of the more popular data types you may need.

Table 23.4 MySQL and PostgreSQL Data Types

Data Type Description

char A fixed-length string value

varchar A variable-length string value

int An integer value

float A floating-point value

Boolean A Boolean true/false value

Date A date value in YYYY-MM-DD format

Time A time value in HH:mm:ss format

Timestamp A date and time value together

Text A long string value

BLOB A large binary value, such as an image or video clip

The empid data field also specifies a data constraint. A data constraint restricts what type of data you can enter to create

a valid record. The not null data constraint indicates that every record must have an empid value specified.
Finally, the primary key defines a data field that uniquely identifies each individual record. This means that each data

record must have a unique empid value in the table.
After creating the new table, you can use the appropriate command to ensure that it's created. In mysql, it's the show

tables command:

mysql> show tables;
+----------------+
| Tables_in_test |
+----------------+
| employees |
+----------------+
1 row in set (0.00 sec)

mysql>
And in psql it's the \dt meta-command:

test=# \dt
 List of relations
Schema | Name | Type | Owner
--------+-----------+-------+----------
public | employees | table | postgres
(1 row)

www.it-ebooks.info

#c23_tbl_0004
#c23_tbl_anc_0004
http://www.it-ebooks.info/

test=#
As you may remember from the “Creating PostgreSQL Database Objects” section earlier in this chapter, in PostgreSQL you

need to assign privileges at the table level. Now that you have a table, you'll need to give your Login Role access to it:

$ sudo -u postgres psql
psql (8.4.5)
Type “help” for help.

postgres=# \c test
psql (8.4.5)
You are now connected to database “test”.
test=# GRANT SELECT, INSERT, DELETE, UPDATE ON public.employees TO rich;
GRANT
test=#
The format to specify the table must include the schema name, which by default is public. Also, remember to perform

this command as the postgres login role, and to connect to the test database.
With the table created, you're now ready to start saving some data. The next section covers how to do that.

Inserting and Deleting Data
Not surprisingly, you use the INSERT SQL command to insert new data records into the table. Each INSERT command must

specify the data field values for the MySQL or PostgreSQL server to accept the record.
The format of the INSERT SQL command is:

INSERT INTO table VALUES (...)
The values are a comma-separated list of the data values for each data field:

$ mysql test -u test -p
Enter password:

mysql> INSERT INTO employees VALUES (1, ‘Blum’, ‘Rich’, 25000.00);
Query OK, 1 row affected (0.35 sec)

or, in PostgreSQL:

$ psql test
psql (8.4.5)
Type “help” for help.

test=> INSERT INTO employees VALUES (1, ‘Blum’, ‘Rich’, 25000.00);
INSERT 0 1
test=>
The MySQL example uses the –u command line prompt to log in as the test user account that was created in MySQL. The

PostgreSQL example uses the current Linux user account, so it just uses the rich user account that was created.
The INSERT command pushes the data values you specify into the data fields in the table. If you attempt to add another

record that duplicates the empid data field value, you'll get an error message:

mysql> INSERT INTO employees VALUES (1, ‘Blum’, ‘Barbara’, 45000.00);
ERROR 1062 (23000): Duplicate entry ‘1’ for key 1
However, if you change the empid value to a unique value, everything should be okay:

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> INSERT INTO employees VALUES (2, ‘Blum’, ‘Barbara’, 45000.00);
Query OK, 1 row affected (0.00 sec)
You should now have two data records in your table.
If you need to remove data from your table, you use the DELETE SQL command. However, you need to be very careful

with it.
The basic DELETE command format is:

DELETE FROM table;
where table specifies the table to delete records from. There's just one small problem with this command: It removes all of

the records in the table.
To just specify a single record or a group of records to delete, you must use the WHERE clause. The WHERE clause allows

you to create a filter that identifies which records to remove. You use the WHERE clause like this:

DELETE FROM employees WHERE empid = 2;
This restricts the deletion process to all of the records that have an empid value of 2. When you execute this command,

the mysql program returns a message indicating how many records matched the filter:

mysql> DELETE FROM employees WHERE empid = 2;
Query OK, 1 row affected (0.29 sec)
As expected, only one record matched the filter and was removed.

Querying Data

Once you've got all of your data in your database, it's time to start running reports to extract information.
The workhorse for all of your querying is the SQL SELECT command. The SELECT command is extremely versatile, but

with versatility comes complexity.
The basic format of a SELECT statement is:

SELECT datafields FROM table
The datafields parameter is a comma-separated list of the data field names you want the query to return. If you want

to receive all of the data field values, you can use an asterisk as a wildcard character.
You must also specify the specific table you want the query to search. To get meaningful results, you must match your

query data fields with the proper table.
By default, the SELECT command returns all of the data records in the specified table:

mysql> SELECT * FROM employees;
+-------+----------+------------+--------+
| empid | lastname | firstname | salary |
+-------+----------+------------+--------+
1	Blum	Rich	25000
2	Blum	Barbara	45000
3	Blum	Katie Jane	34500
4	Blum	Jessica	52340
+-------+----------+------------+--------+
4 rows in set (0.00 sec)

mysql>
You can use one or more modifiers to define how the database server returns the data requested by the query. Here's a

list of commonly used modifiers:
WHERE: Displays a subset of records that meet a specific condition
ORDER BY: Displays records in a specified order

www.it-ebooks.info

http://www.it-ebooks.info/

LIMIT: Displays only a subset of records
The WHERE clause is the most common SELECT command modifier. It allows you to specify conditions to filter data from

the result set. Here's an example of using the WHERE clause:

mysql> SELECT * FROM employees WHERE salary > 40000;
+-------+----------+-----------+--------+
| empid | lastname | firstname | salary |
+-------+----------+-----------+--------+
| 2 | Blum | Barbara | 45000 |
| 4 | Blum | Jessica | 52340 |
+-------+----------+-----------+--------+
2 rows in set (0.01 sec)

mysql>
Now you can see the power of adding database access to your shell scripts! You can easily control your data

management needs just with a few SQL commands and the mysql or psql programs. The next section describes how you can

incorporate these features into your shell scripts.

Using the Database in Your Scripts
Now that you've got a working database going, it's finally time to turn our attention back to the shell scripting world. This

section describes what you need to do to interact with your databases using shell scripts.

Connecting to the Databases
Obviously, to connect to the databases you'll need to somehow utilize the mysql or psql programs in your shell script. This

isn't too complicated a process, but there are a few things you'll need to watch out for.

Finding the Programs
The first hurdle you'll need to complete is to figure out just where the mysql and psql command line client programs are on
the Linux system. The one downside to Linux software installs is that often different Linux distributions place software

packages in different locations.
Fortunately, there's the which command. The which command tells you where the shell would find a command if it

attempted to run it from the command line:

$ which mysql
/usr/bin/mysql
$ which psql
/usr/bin/psql
$
The easiest way to handle this information is to assign it to an environment variable and then use that in your shell script

when you want to reference the appropriate program:

MYSQL=‘which mysql‘
PSQL=‘which psql‘
Now the $MYSQL variable points to the executable for the mysql program, and the $PSQL variable points to the

executable for the psql program.

Logging into the Server
After finding the location of the client programs, you can use them in your scripts to access the database servers. For the

PostgreSQL server, this is easy:

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat ptest1
#!/bin/bash
test connecting to the PostgreSQL server

PSQL=‘which psql‘

$PSQL test
$./ptest1
psql (8.4.5)
Type “help” for help.

test=>
Because the script is being run from a Linux user account, and a PostgreSQL account exists with the same name, all you

need to specify on the psql command line is the name of the database to connect with. The ptest1 script connected to the

test database and left you at the psql prompt inside that database.
If you've created a special user account in MySQL for your shell scripts, you'll need to specify that on the mysql command

line:

$ cat mtest1
#!/bin/bash
test connecting to the MySQL server

MYSQL=‘which mysql‘

$MYSQL test -u test -p
$./mtest1
Enter password:
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 43
Server version: 5.1.49-1ubuntu8.1 (Ubuntu)

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserv
ed.
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL v2 license

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the current input state
ment.

mysql>
That worked but not all that well for a non-interactive script. The -p command line parameter caused mysql to pause

and ask for the password. You can solve that problem by including the password on the command line:

$MYSQL test -u test -ptest
This, however, is not a good idea. Anyone who has access to your script will know the user account and password for your

www.it-ebooks.info

http://www.it-ebooks.info/

This, however, is not a good idea. Anyone who has access to your script will know the user account and password for your

database.
To solve this problem, you can use a special configuration file used by the mysql program. The mysql program uses the

$HOME/.my.cnf file to read special startup commands and settings. One of those settings is the default password for

mysql sessions started by the user account.
To set the default password in this file, just create the following:

$ cat .my.cnf
[client]
password = test
$ chmod 400 .my.cnf
$
The chmod command is used to restrict the .my.cnf file so that only you can view it. You can test this now from the

command line:

$ mysql test -u test
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 44
Server version: 5.1.49-1ubuntu8.1 (Ubuntu)

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserv
ed.
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL v2 license

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the current input state
ment.

mysql>
Perfect! Now you don't have to include the password on the command line in your shell scripts.

Sending Commands to the Server
After establishing the connection to the server, you'll want to send commands to interact with your database. There are two

methods to do this:
Send a single command and exit.
Send multiple commands.

To send a single command, you must include the command as part of the mysql or psql command line.
For the mysql command, you do this using the -e parameter:

$ cat mtest2
#!/bin/bash
send a command to the MySQL server

MYSQL=‘which mysql‘

$MYSQL test -u test -e ‘select * from employees’

www.it-ebooks.info

http://www.it-ebooks.info/

$./mtest2
+-------+----------+------------+---------+
| empid | lastname | firstname | salary |
+-------+----------+------------+---------+
1	Blum	Rich	25000
2	Blum	Barbara	45000
3	Blum	Katie Jane	34500
4	Blum	Jessica	52340
+-------+----------+------------+---------+
$
For the psql command, you do this using the -c parameter:

$ cat ptest2
#!/bin/bash
send a command to the PostgreSQL server

PSQL=‘which psql‘

$PSQL test -c ‘select * from employees’
$./ptest2
 empid | lastname | firstname | salary
-------+----------+------------+--------
 1 | Blum | Rich | 25000
 2 | Blum | Barbara | 45000
 3 | Blum | Katie Jane | 34500
 4 | Blum | Jessica | 52340
(4 rows)
$
The database servers return the results from the SQL commands to the shell scripts, which display them in STDOUT.
If you need to send more than one SQL command, you can use file redirection (see Chapter 14). To redirect lines in the

shell script, you must define an end of file string. The end of file string indicates the beginning and end of the redirected data.
The following is an example of defining an end of file string, with data in it:

$ cat mtest3
#!/bin/bash
sending multiple commands to MySQL

MYSQL=‘which mysql‘
$MYSQL test -u test <<EOF
show tables;
select * from employees where salary > 40000;
EOF
$./mtest3
Tables_in_test
employees
empid lastname firstname salary

www.it-ebooks.info

http://www.it-ebooks.info/

2 Blum Barbara 45000
4 Blum Jessica 52340
$
The shell redirects everything with the EOF delimiters to the mysql command, which executes the lines as if you typed

them yourself at the prompt. Using this method, you can send as many commands to the MySQL server as you need. You'll
notice, however, that there's no separation between the output from each command. In the next section, “Formatting Data,”

you'll see how to fix this problem.

Note

You should also notice that the mysql program changed the default output style
when you used the redirected input method. Instead of creating the ASCII symbol
boxes around the data, the mysql program detected that the input was
redirected, so it returned just the raw data. This will come in handy when you need
to extract the individual data elements.

The same technique also works for the psql program:

$ cat ptest3
#!/bin/bash
sending multiple commands to PostgreSQL

PSQL=‘which psql‘

$PSQL test <<EOF
\dt
select * from employees where salary > 40000;
EOF
$./ptest3
 List of relations
 Schema | Name | Type | Owner
--------+-----------+-------+----------
 public | employees | table | postgres
(1 row)

 empid | lastname | firstname | salary
-------+----------+-----------+--------
 2 | Blum | Barbara | 45000
 4 | Blum | Jessica | 52340
(2 rows)
$
The psql program displays the output from each command directly to STDOUT in the order in which you specify them.
Of course, you're not limited to just retrieving data from the tables. You can use any type of SQL command in your script,

such as an INSERT statement:

$ cat mtest4
#!/bin/bash
send data to the table in the MySQL database

MYSQL=‘which mysql‘

www.it-ebooks.info

http://www.it-ebooks.info/

if [$# -ne 4]
then
 echo “Usage: mtest4 empid lastname firstname salary”
else
 statement=“INSERT INTO employees VALUES ($1, ‘$2’, ‘$3’, $4)”
 $MYSQL test -u test << EOF
 $statement
EOF
 if [$? -eq 0]
 then
 echo Data successfully added
 else
 echo Problem adding data
 fi
fi
$./mtest4
Usage: mtest4 empid lastname firstname salary
$./mtest4 5 Blum Jasper 100000
Data added successfully
$
$./mtest4 5 Blum Jasper 100000
ERROR 1062 (23000) at line 1: Duplicate entry ‘5’ for key 1
Problem adding data
$
This example demonstrates a few things about using this technique. When you specify the end of file string, it must be the

only thing on the line, and the line must start with the string. If we had indented the EOF text to match the rest of the if-then

indentation, it wouldn't work.
Inside the INSERT statement, notice that there are single quotes around the text values and double quotes around the

entire INSERT statement. It's important not to mix up the quotes used for the string values with the quotes used to define

the script variable text.
Also, notice how we used the special $? variable to test the exit status of the mysql program. This helps you determine

whether the command failed or not.
Just sending output from the commands to STDOUT is not the easiest way to manage and manipulate the data. The next

section shows you some tricks you can use to help your scripts capture data retrieved from the database.

Formatting Data
The standard output from the mysql and psql commands doesn't lend itself too well for data retrieval. If you need to
actually do something with the data you retrieve, you'll need to do some fancy data manipulation. This section describes

some of the tricks you can use to help extract data from your database reports.

Assigning Output to a Variable
The first step in trying to capture database data is to redirect the output from the mysql and psql commands in an

environment variable. This allows you to use the output information in other commands. Here's an example:

$ cat mtest5
#!/bin/bash

www.it-ebooks.info

http://www.it-ebooks.info/

redirecting SQL output to a variable

MYSQL=‘which mysql‘

dbs=‘$MYSQL test -u test -Bse ‘show databases’‘
for db in $dbs
do
 echo $db
done
$./mtest5
information_schema
test
$
This example uses two additional parameters on the mysql program command line. The -B parameter specifies for the

mysql program to work in batch mode, and in combination with the -s (silent) parameter, the column headings and

formatting symbols are suppressed.
By redirecting the output of the mysql command to a variable, this example is able to step through the individual values

of each returned record.

Using Formatting Tags
In the previous example, you saw how adding the -B and -s parameters to the mysql program command line allows you to
suppress the output heading information, so all you get is data. There are a few other parameters that you can use to help

make life easier for you.
Generating data for Web pages is a popular thing these days. Both the mysql and psql programs provide an option to

display the output using HTML format. In both, this is enabled using the -H command line parameter:

$ psql test -H -c ‘select * from employees where empid = 1’
<table border=“1”>
<tr>
 <th align=“center”>empid</th>
 <th align=“center”>lastname</th>
 <th align=“center”>firstname</th>
 <th align=“center”>salary</th>
</tr>
<tr valign=“top”>
 <td align=“right”>1</td>
 <td align=“left”>Blum</td>
 <td align=“left”>Rich</td>
 <td align=“right”>25000</td>
</tr>
</table>
<p>(1 row)

</p>
$
The mysql program also supports an additional popular format, called the Extensible Markup Language (XML). This

language uses HTML-like tags to identify data names and values.
For the mysql program, you do this using the -X command line parameter:

www.it-ebooks.info

http://www.it-ebooks.info/

$ mysql test -u test -X -e ‘select * from employees where empid = 1’
<?xml version=“1.0”?>

<resultset statement=“select * from employees”>
<row>
 <field name=“empid”>1</field>
 <field name=“lastname”>Blum</field>
 <field name=“firstname”>Rich</field>
 <field name=“salary”>25000</field>
</row>
</resultset>
$
Using XML, you can easily identify individual rows of data, along with the individual data values in each record.

Summary
This chapter discussed the ability to save, modify, and retrieve data from your shell scripts in databases. You can easily access

both the MySQL and PostgreSQL database servers directly from your shell scripts.
After installing the MySQL and PostgreSQL servers, you can use their respective client programs to access the servers

from the command line, or from shell scripts. The mysql client program provides the command line interface to the MySQL
server. You can send SQL commands as well as customized MySQL commands to the server from your shell scripts and then

retrieve the results.
The psql client program operates the same way for the PostgreSQL server. There are plenty of command line parameters

you can use to help format your data in just the right way.
Both client programs allow you to send either a single command to the server or use input redirection to send a batch of

commands. The programs normally send the output data from the server to STDOUT, but you can redirect the output to a

variable and use that information in your shell script.
The next chapter examines the World Wide Web. Getting your shell scripts to interface with Websites on the Internet is a

tricky task, but once you master it the world is yours from which to retrieve data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 24

Using the Web

In This Chapter

Surfing with Lynx
Exploring with cURL
Client/server programming in zsh

Often when you think of shell script programming, the last thing you think of is the Internet. The command line world often
seems foreign to the fancy, graphical world of the Internet. There are, however, several different utilities you can easily use in
your shell scripts to gain access to data content on the Web, as well as on other network devices. This chapter walks you

through three popular methods for getting your shell scripts to interact with the network world.

The Lynx Program
Almost as old as the Internet itself, the Lynx program was created in 1992 by students at the University of Kansas as a text-
based browser. Because it's text-based, the Lynx program allows you to browse Websites directly from a terminal session,
replacing the fancy graphics on Web pages with HTML text tags. This allows you to surf the Internet from just about any type

of Linux terminal. A sample Lynx screen is shown in Figure 24.1.

Figure 24.1 Viewing a Web page using Lynx

Lynx uses the standard keyboard keys to navigate around the Web page. Links appear as highlighted text within the Web

page. Using the right arrow key allows you to follow a link to the next Web page.

www.it-ebooks.info

#c24_fig_0001
#c24_fig_anc_0001
http://www.it-ebooks.info/

You may be wondering how you can use a graphical text program in your shell scripts. The Lynx program also provides a
feature that allows you to dump the text contents of a Web page to STDOUT. This feature is great for mining for data
contained within a Web page. This section describes how to use the Lynx program within your shell scripts to extract data

from Internet Websites.

Installing Lynx
Even though the Lynx program is somewhat old, it's still in active development. At the time of this writing, the latest version
of Lynx is version 2.8.8, released in June 2010, with a new release in development. Because of its popularity among shell script

programmers, many Linux distributions install the Lynx program in their default installations.
If you're using an installation that doesn't provide the Lynx program, check your distribution's installation packages.

Most likely you'll find it there for easy installation.
If your distribution doesn't include the Lynx package, or if you just want the latest version, you can download the source

code from the lynx.isc.org website and compile it yourself (assuming that you've got the C development libraries installed on

your Linux system). See Chapter 8 for information on how to compile and install source code distribution packages.

Note

The Lynx program uses the curses text-graphics library in Linux. Most distributions
have this installed by default. If your distribution doesn't, consult your particular
distribution's instructions on installing the curses library before trying to compile
Lynx.

The next section describes how to use the lynx command from the command line.

The lynx Command Line
The lynx command line command is extremely versatile in what information it can retrieve from the remote Website. When
you view a Web page in your browser, you're only seeing part of the information that's transferred to your browser. Web

pages consist of three types of data elements:
HTTP headers
Cookies
HTML content

HTTP headers provide information about the type of data sent in the connection, the server sending the data, and the
type of security used in the connection. If you're sending special types of data, such as video or audio clips, the server
identifies that in the HTTP headers. The Lynx program allows you to view all of the HTTP headers sent within a Web page

session.
If you've done any type of Web browsing, no doubt you're familiar with Web page cookies. Websites use cookies to store

data about your Website visit for future use. Each individual site can store information, but only access the information that
it sets. The lynx command provides options for you to view cookies sent by Web servers, as well as reject or accept specific

cookies sent from servers.
The Lynx program allows you to view the actual HTML content of the Web page in three different formats:

In a text-graphics display on the terminal session using the curses graphical library
As a text file, dumping the raw data from the Web page
As a text file, dumping the raw HTML source code from the Web page

For shell scripts, viewing the raw data or HTML source code is a gold mine. Once you capture the data retrieved from a

Website, you can easily extract individual pieces of information.
As you can see, the Lynx program is extremely versatile in what it can do. However, with versatility comes complexity,

especially when it comes to command line parameters. The Lynx program is one of the more complex programs you'll run

into in the Linux world.
The basic format of the lynx command is:

lynx options URL
where URL is the HTTP or HTTPS destination you want to connect to, and options are one or more options that modify the
behavior of Lynx as it interacts with the remote Website. There are options for just about any type of Web interaction

required by Lynx. Table 24.1 shows all of the available command line parameters you can use with the lynx command.

www.it-ebooks.info

http://lynx.isc.org
#c24_tbl_0001
http://www.it-ebooks.info/

Table 24.1 The lynx Command Parameters

Parameter Description

- Receive options and arguments from STDIN.

-accept_all_cookies Accept cookies without prompting if Set-Cookie handling
is on. Set to off by default.

-anonymous Apply restrictions for anonymous account.

-assume_charset=name Default charset for documents that don't specify one.

-assume_local_charset=name Default charset for local files.

-assume_unrec_charset=name Default charset to use instead of unrecognized charsets.

-auth=id:pw Authentication information for protected documents.

-base Prepend a request URL comment and BASE tag to
text/HTML outputs for -source dumps.

-bibhost=URL Local bibp server URL (default http://bibhost/).

-book Use the bookmark page as the start page. Set to off by
default.

-buried_news Toggle scanning of news articles for buried references. Set
to on by default.

-cache=n Number of documents cached in memory.

-case Enable case-sensitive user searching. Set to off by default.

-center Toggle center alignment in HTML <table> tags. Set to off
by default.

-cfg=filename Specify a configuration file other than the default
lynx.cfg file.

-child Exit on left arrow in startfile, and disable save to disk.

-cmd_log=filename Log keystroke commands to the specified file.

-cmd_script=filename Read keystroke commands from the specified file.

-connect_timeout=n Set the connection timeout (in seconds). The default is
18,000 seconds.

-cookie_file=filename Specify the file to use to read cookies.

-cookie_save_file=filename Specify the file to use to store cookies.

-cookies Toggle handling of Set-Cookie headers. Set to on by
default.

-core Toggle forced core dumps on fatal errors. Set to off by
default.

www.it-ebooks.info

#c24_tbl_anc_0001
http://bibhost/
http://www.it-ebooks.info/

-crawl With -traversal, output each page to a file with -dump,
format output as with -traversal, but to STDOUT.

-curses_pads Use curses pad feature to support left/right shifting. Set to
on by default.

-debug_partial Display incremental display stages with MessageSecs delay.
Set to off by default.

-delay=n Set delay at statusline message (in seconds). Set to 0.000
by default.

-display=display Set the display variable for X Window programs.

-display_charset=name The charset for the terminal output.

-dont_wrap_pre Don't wrap text in <pre> sections when -dump and -crawl
set. Mark wrapped lines in interactive session. Set to on by
default.

-dump Dump the first URL to STDOUT and exit.

-editor=editor Enable edit mode with the specified editor.

-emacskeys Enable emacs-like key movement. Set to off by default.

-enable_scrollback Toggle compatibility with scrollback keys. Set to off by
default.

-error_file=filename Write the HTTP status code to the specified file.

-exec Enable local program execution.

-force_empty_hrefless_a Force <a> elements without an href attribute to be empty.
Set to off by default.

-force_html Force the first document to be interpreted as HTML. Set to
off by default.

-force_secure Require the secure flag for SSL cookies. Set to off by
default.

-forms_options Use forms-based options menu. Set to on by default.

-from Enable transmission of From headers. Set to on by default.

-ftp Disable FTP access. Set to off by default.

-get_data Read data for get forms from STDIN, terminated by ---.

-head Send a HEAD request. Set to off by default.

-help Print usage message.

-hiddenlinks=option Specify how to handle hidden links. Option can be merge,
listonly, or ignore.

www.it-ebooks.info

http://www.it-ebooks.info/

-historical Use > instead of --> as terminator for comments. Set to off
by default.

-homepage=URL Set home page separate from start page.

-image_links Enable inclusion of links for all images. Set to off by default.

-index=URL Set the default index file name.

-ismap Include ISMAP links when client-side MAPs are present. Set
to off by default.

-link=n Set the starting count for lnk#.dat files produced by -
crawl. Set to 0 by default.

-localhost Disable URLs that point to remote hosts. Set to off by
default.

-locexec Enable local program execution from local files only. Set to
off by default.

-mime_header Include MIME headers and force source dump.

-minimal Use minimal instead of valid comment parsing. Set to off by
default.

-nested_tables Use nested-tables logic. Set to off by default.

-newschunksize=n Set the number of articles in chunked news listings.

-newsmaxchunk=n Set the maximum number of news articles in listings before
chunking.

-nobold Disable bold video attribute.

-nobrowse Disable directory browsing.

-nocc Disable Cc: prompts for self-copies of mailings. Set to off by
default.

-nocolor Disable color support.

-noexec Disable local program execution. Set to on by default.

-nofilereferer Disable transmission of Referer headers for file URLs. Set
to on by default.

-nolist Disable the link list feature in dumps. Set to off by default.

-nolog Disable mailing of error messages to document owners. Set
to on by default.

-nonrestarting_sigwinch Make window size change handler non-restarting. Set to off
by default.

-nopause Disable forced pauses for statusline messages.

www.it-ebooks.info

http://www.it-ebooks.info/

-noprint Disable some print functions, such as -
restrictions=print. Set to off by default.

-noredir Don't follow Location: redirection. Set to off by default.

-noreferer Disable transmission of Referer headers. Set to off by
default.

-noreverse Disable reverse video attribute.

-nostatus Disable the miscellaneous information messages. Set to off
by default.

-nounderline Disable underline video-attribute.

-number_fields Force numbering of links as well as form input fields. Set to
off by default.

-number_links Force numbering of links. Set to off by default.

-partial Display partial pages while downloading. Set to on by
default.

-partial_thres=n Set the number of lines to render before repainting display
with partial-display logic. Set to -1 by default, which disables
this feature.

-pauth=id:pw Set the authentication information for a protected proxy
server.

-popup Handle single-choice SELECT options via popup windows
instead of lists of radio buttons. Set to off by default.

-post_data Read data for post forms from STDIN, terminated by ---.

-preparsed Show parsed text/html MIME type with -source and in
source view to visualize how Lynx behaves with invalid HTML.
Set to off by default.

-prettysrc Use syntax highlighting and hyperlink handling in source
view. Set to off by default.

-print Enable print functions, the opposite of -noprint. Set to on
by default.

-pseudo_inlines Use pseudo-ALTs for inlines with no ALT string. Set to on by
default.

-raw Use default setting of 8-bit character translations or CJK
mode for the startup character set. Set to off by default.

-realm Restrict access to URLs in the starting realm. Set to off by
default.

-reload Flush the cache on a proxy server (only the first document
affected). Set to off by default.

www.it-ebooks.info

http://www.it-ebooks.info/

-restrictions=options Set restriction options. Use -restrictions with no
parameters to see list.

-resubmit_posts Force resubmissions (no-cache) of forms with method POST
when the documents they returned are sought with the
PREV_DOC command or from the History list. Set to off by
default.

-rlogin Disable rlogin feature. Set to off by default.

-selective Require .www_browsable files to browse directories.

-short_url Enable examination of beginning and end of long URL in
status line. Set to off by default.

-show_cursor When set to off, hide the cursor in the lower-right corner,
otherwise show cursor. Set to on by default.

-show_rate Display the transfer rate. Set to on by default.

-soft_dquotes Use emulation of old Netscape and Mosaic bug, which
treated > as a co-terminator for double quotation marks and
tags. Set to off by default.

-source Dump the source of the first URL to STDOUT and exit.

-stack_dump Disable SIGINT cleanup handler. Set to off by default.

-startfile_ok Allow non-HTTP start page and home page with -validate.
Set to off by default.

-stdin Read startfile from STDIN. Set to off by default.

-tagsoup Use TagSoup rather than SortaSGML parser. Set to off by
default.

-telnet Disable telnet sessions. Set to off by default.

-term=term Specify the terminal type to emulate.

-tlog Use a Lynx Trace Log for the current session. Set to on by
default.

-tna Use Textfields Need Activation mode. Set to off by default.

-trace Use Lynx trace mode. Set to off by default.

-trace_mask Customize Lynx trace mode. Set to 0 by default.

-traversal Traverse all HTTP links derived from startfile.

-trim_input_fields Trim input text/textarea fields in forms. Set to off by
default.

-underline_links Use an underline/bold attribute for links. Set to off by
default.

www.it-ebooks.info

http://www.it-ebooks.info/

-underscore Use an underline format in dumps. Set to off by default.

-use_mouse Enable mouse support. Set to off by default.

-useragent=Name Set alternate Lynx User-Agent header.

-validate Accept only http URLs (meant for validation) implies more
restrictions than -anonymous, but redirection is allowed for
http and https. Set to off by default.

-verbose Use [LINK], [IMAGE], and [INLINE] comments with file
names of these images. Set to on by default.

-version Display Lynx version information.

-vikeys Enable vi-like key movement. Set to off by default.

-width=n Set the screen width for formatting of dumps. The default is
80 columns.

-with_backspaces Emit backspaces in output if using -dump or -crawl
parameters. Set to off by default.

As you can see, you can control just about any type of HTTP or HTML setting directly from the command line. For
example, if you want to post data to a Web form using the HTTP POST method, you just include your data in the -post-
data parameter. If you want to store the cookies received by the Website in a special location, you use the -
cookie_save_file parameter.

Many of the command line parameters define behaviors that control Lynx when you're using it in full-screen mode,

allowing you to customize the behavior of Lynx as you're traversing Web pages.
There are often groups of command line parameters that you find useful in your normal browsing environment. Instead

of having to enter these parameters on the command line every time you use Lynx, Lynx provides a general configuration

file that defines the base behavior when you use Lynx. This configuration file is discussed in the next section.

The Lynx Configuration File
The lynx command reads a configuration file for many of its parameter settings. By default, this file is located at
/usr/local/lib/lynx.cfg, although you'll find that many Linux distributions change this to the /etc directory

(/etc/lynx.cfg) (the Ubuntu distribution places the lynx.cfg file in the /etc/lynx-curl folder).
The lynx.cfg configuration file groups related parameters into sections to make finding parameters easier. The format

of an entry in the configuration file is:

PARAMETER:value
where PARAMETER is the full name of the parameter (often, but not always in uppercase letters), and value is the value

associated with the parameter.
Perusing this file, you'll find many parameters that are similar to the command line parameters, such as the

ACCEPT_ALL_COOKIES parameter, which is equivalent to setting the -accept_all_cookies command line parameter.
There are also a few configuration parameters that are similar in function but different in name. The

FORCE_SSL_COOKIES_SECURE configuration file parameter setting can be overridden by the -force_secure command

line parameter.
However, you'll also find quite a few configuration parameters that don't match with command line parameters. These

values can only be set from the configuration file.
The most common configuration parameters that you can't set on the command line are for the proxy servers. Some

networks (especially corporate networks) use a proxy server as a middleman between the client's browser and the
destination Website server. Instead of sending HTTP requests directly to the remote Web server, client browsers must send
their requests to the proxy server. The proxy server in turn sends the requests to the remote Web server, retrieves the results,

and forwards them back to the client browser.

www.it-ebooks.info

http://www.it-ebooks.info/

While this may seem like a waste of time, it's a vital function in protecting clients from dangers on the Internet. A proxy
server can filter inappropriate content and malicious coding, or even detect sites used for Internet data phishing schemes
(rogue servers pretending to be someone else in order to capture customer data). Proxy servers can also help reduce
Internet bandwidth usage as they cache commonly viewed Web pages and return them to clients instead of having to

download the original page again.
The configuration parameters used to define proxy servers are:

http_proxy:http://some.server.dom:port/
https_proxy:http://some.server.dom:port/
ftp_proxy:http://some.server.dom:port/
gopher_proxy:http://some.server.dom:port/
news_proxy:http://some.server.dom:port/
newspost_proxy:http://some.server.dom:port/
newsreply_proxy:http://some.server.dom:port/
snews_proxy:http://some.server.dom:port/
snewspost_proxy:http://some.server.dom:port/
snewsreply_proxy:http://some.server.dom:port/
nntp_proxy:http://some.server.dom:port/
wais_proxy:http://some.server.dom:port/
finger_proxy:http://some.server.dom:port/
cso_proxy:http://some.server.dom:port/
no_proxy:host.domain.dom
You can define a different proxy server for any network protocol supported by Lynx. The NO_PROXY parameter is a

comma-separated list of Websites that you prefer to have direct access to without using the proxy server. These are often

internal Websites that don't require filtering.

The Lynx Environment Variables
As you can see from the wealth of command line options and configuration file parameters, the Lynx program is extremely
customizable. However, the customization doesn't stop there. You can override many configuration file parameters using
environment variables. If you're working in an environment where you don't have access to the lynx.cfg configuration file,
you can override some default parameters by setting your local environment variables. Table 24.2 lists the more common

Lynx environment variables that you might need to use when using Lynx in a restricted environment.

Table 24.2 The Lynx Environment Variables

Variable Description

LYNX_CFG Specify the location of an alternate configuration file.

LYNX_LSS Specify the location of the default Lynx character set style sheet.

LYNX_SAVE_SPACE Specify the location for saving files to disk.

NNTPSERVER Specify the server to use for retrieving and posting USENET news.

PROTOCOL_PROXY Override the proxy server for the specified protocol.

SSL_CERT_DIR Specify the directory containing trusted certificates for accessing trusted
sites.

SSL_CERT_FILE Specify the file containing your trusted certificates.

WWW_HOME Define the default URL for Lynx to use at startup.

www.it-ebooks.info

#c24_tbl_0002
#c24_tbl_anc_0002
http://www.it-ebooks.info/

You set these environment variables just as you would any other environment variable before using the Lynx program:

$ http_proxy=http://myproxy.com:8080
$ lynx
To specify a proxy server, you must provide the protocol, the server name, and the port used to communicate with the

proxy server. If you need this variable setting, it's usually a good idea to include it in a common startup file for your shell

(such as the .bashrc file for the bash shell) so you don't have to enter it every time.

Capturing Data from Lynx
When you use Lynx in a shell script, most likely you're trying to obtain a specific piece (or pieces) of information from a Web
page. The technique to accomplish this is called screen scraping. In screen scraping, you're trying to programmatically find

data in a specific location on a graphical screen so you can capture it and use it in your shell script.
The easiest way to perform screen scraping with lynx is to use the -dump option. This option doesn't bother trying to

display the Web page on the terminal screen. Instead, it displays the Web page text data directly to STDOUT:

$ lynx -dump http://localhost/RecipeCenter/
The Recipe Center
 “Just like mom used to make”
Welcome
 [1]Home
 [2]Login to post
 [3]Register for free login

 [4]Post a new recipe
Each link is identified by a tag number, and Lynx displays a listing of all the tag references after the Web page data.
Once you have all of the text data from the Web page, you probably know what tools we're going to get out of the

toolbox to start work on extracting data. That's right, our old friends the sed and gawk programs (see Chapter 18).
First, let's find some interesting data to collect. The Yahoo! weather Web page is a great source for finding the current

weather conditions anywhere in the world. Each location uses a separate URL to display weather information for that city (you
can find the specific URL for your city by going to the site in a normal browser and entering your city's information). The

lynx command for finding the weather in Chicago, Illinois, is:

 lynx -dump http://weather.yahoo.com/united-
states/illinois/chicago-2379574/
This command dumps lots and lots of data from the Web page. The first step is to find the precise information you want.

To do that, redirect the output from the lynx command to a file, and then search the file for your data. After doing that with

the preceding command, we found this text in the output file:

Current conditions as of 1:54 pm EDT
Mostly Cloudy

 Feels Like:
 32 °F

 Barometer:
 30.13 in and rising

 Humidity:
 50%

www.it-ebooks.info

http://www.it-ebooks.info/

 Visibility:
 10 mi

 Dewpoint:
 15 °F

 Wind:
 W 10 mph
That's just about all the information about the current weather that you'll need. There's just one small problem with this

output. You'll notice that the numbers are on a line below the heading. Trying to just extract individual numbers will be

difficult. Chapter 18 discussed how to deal with a problem just like this.
The key to solving this is to write a sed script that can search for the data heading first. When you find it, you can then go

to the correct line to extract the data. We're fortunate in this example in that all of the data we need are on lines by
themselves. We should be able to solve this with just the sed script. If there had also been other text on the same line, we'd

need to get out the gawk tool to filter out just the data we needed.
First, you need to create a sed script that will look for the Current conditions text, and then skip to the next line to

get the text that describes the current weather condition, and then print it. Here's what that looks like:

$ cat sedcond
/Current conditions/{
n
p
}
$
The address specifies to look for the line with the desired text. If the sed command finds it, the n command skips to the

next line, and then the p command prints the contents of the line, which is the text describing the current weather conditions

of the city.
Next, you'll need a sed script that can search for the Feels Like: text and then go to the next line to print the

temperature:

$ cat sedtemp
/Feels Like:/{
n
p
}
$
Perfect. Now, you can use these two sed scripts in a shell script that first captures the lynx output of the Web page to a

temporary file, and then applies the two sed scripts to the Web page data to extract only the data you're looking for. Here's

an example of how to do that:

$ cat weather
#!/bin/bash
extract the current weather for Chicago, IL

URL=“http://weather.yahoo.com/united-states/illinois/chicago-2379574/”
LYNX=‘which lynx‘
TMPFILE=‘mktemp tmpXXXXXX‘
$LYNX -dump $URL > $TMPFILE
conditions=‘cat $TMPFILE | sed -n -f sedcond‘
temp=‘cat $TMPFILE | sed -n -f sedtemp‘

www.it-ebooks.info

http://www.it-ebooks.info/

rm -f $TMPFILE
echo “Current conditions: $conditions”
echo The current temp outside is: $temp
$./weather
Current conditions: Mostly Cloudy
The current temp outside is: 32 °F
$
The weather script connects to the Yahoo! weather Web page for the desired city, saves the Web page to a temporary file,

extracts the appropriate text, removes the temporary file, and then displays the weather information. The beauty of this is
that once you've extracted the data from a Website, you can do whatever you want with it, such as create a table of

temperatures. You can then create a cron job (see Chapter 15) that runs every day to track daily temperatures.

Caution

The Internet is a dynamic place. Don't be surprised if you spend hours working out the
precise location of data on a Web page, only to find that it's moved a couple of weeks
later, breaking your scripts. In fact, it's quite possible that this example won't work by the
time you read this book. The important thing is to know the process for extracting data
from Web pages. You can then apply that principle to any situation.

The cURL Program
The popularity of Lynx has spawned another similar product, called cURL. The cURL program allows you to automatically
transfer files from the command line using a specified URL. It currently supports the FTP, FTPS, HTTP, HTTPS, SCP, SFTP, TFTP,

telnet, DICT, LDAP, LDAPS, and FILE protocols as specified in URLs.
While cURL isn't used as a Web page browser per se, it allows you to easily send or retrieve data unattended directly from

the command line, or your shell scripts, just by using a simple command. This provides a great tool to have in your shell

scripting toolbox.
This section walks you through the process of installing and using cURL in your shell scripts.

Caution

There's also a programming language called curl, owned and marketed by the Sumisho
Computer System Corporation. Don't confuse cURL with the curl programming language.

Installing cURL
With its growing popularity, cURL is installed by default in many Linux distributions. With Ubuntu, you have to manually

install it from the software repository. Just use this command:

$ sudo apt-get install curl
If cURL is not available for your Linux distribution, or if you just want to use the latest version, you can download the

source code from the curl.haxx.se Website and compile it on your Linux system.
Again, the standard disclaimers apply; you must have the C development libraries installed on your Linux system for this

to work.
The next section describes how to use the curl program from the command line.

Exploring with cURL

By default, cURL returns the complete HTML code for the Web page to STDOUT:

$ curl http://www.google.com
<!doctype html><html><head><meta http-equiv=“content-type” content=
“text/html; charset=ISO-8859-1”><title>Google</title>
[listing truncated]

www.it-ebooks.info

http://www.it-ebooks.info/

As with the Lynx program, you can use the standard shell scripting techniques to extract individual data elements from

the dumped Web page.
We like to use cURL for batch downloading files. These days, it seems like we're constantly downloading the latest Linux

distribution ISO file. Because the ISO files are so large, we need to start the download and walk away while it's downloading.

Once we know the URL for an ISO file, we can create a simple shell script using cURL to automate the process:

$ cat downld
#!/bin/bash
download latest cURL file automatically
curl -s -o /home/rich/curl-7.18.0.tar.gz
http://curl.haxx.se/download/curl-7.18.0.tar.gz
$
The –s command line option puts curl in silent mode, not sending any data to STDOUT. The –o command line option

redirects the output to a file name. While you can't tell from the listing, the curl command is all one line in the script. This
simple script just goes out and directly downloads the file from the cURL Website. You can now use the at or cron
commands (see Chapter 15) to schedule the download to take place in the evening when you're not using your PC or

network.

Networking with zsh
Chapter 22 describes all of the features available in the zsh shell. The zsh shell is a newer shell available for the Linux and Unix
environments. One of the features of the zsh shell is plug-in modules. Instead of trying to combine lots of features into the
core zsh shell, the zsh shell uses specialty modules, so you can pick and choose what commands you need to load. One of

those modules is the TCP module.
The TCP module in the zsh shell provides some pretty amazing network capabilities directly from the command line. You

can create a full TCP network session with another network device directly from your command line (or shell script). This
section discusses the features of the zsh TCP module, and shows a simple client/server application you can build using a zsh

shell script.

The TCP Module
The zsh shell uses modules to add additional features to the core zsh shell. Each module contains built-in commands that

specialize in a specific area. The TCP module provides built-in commands for a plethora of networking features.
To install the TCP module in a zsh shell, do the following:

% zmodload zsh/net/tcp
%
And that's all there is to install the module libraries in the shell! If you use the TCP module in your shell script, remember

to include this line in your script. The module applies only to the current shell.
Once you load the TCP module, you have access to the ztcp command. The format for the ztcp command is:

ztcp [-acflLtv] [-d fd] [args]
The available command line options are:

-a: Accept a new connection.
-c: Close an existing connection.
-d: Use the specified file descriptor for the connection.
-f: Force a connection to close.
-l: Open a new socket for listening.
-L: List currently connected sockets.
-t: Exit if no connection is pending.
-v: Display verbose information about the connection.

The ztcp command uses a file descriptor to interact with an open TCP connection. By default, the zsh referenced the file
descriptor using the environment variable $RESULT. All you need to do is send data to the file descriptor specified in the
$RESULT variable, and the TCP module will forward it to the remote host. Likewise, if the remote host sends you any data, all
you need to do is read it from the file descriptor specified in the $RESULT variable. Network programming doesn't get any

www.it-ebooks.info

http://www.it-ebooks.info/

you need to do is read it from the file descriptor specified in the $RESULT variable. Network programming doesn't get any

easier than that!

The Client/Server Paradigm
Before diving into creating a client/server program using the zsh shell, it's a good idea to have an understanding of how
exactly client and server programs operate. Obviously, they each have different responsibilities in the connection and

transfer of data.
A server program listens to the network for requests coming from clients. A client initiates a request to the server for a

connection. Once the server accepts the connection request, a two-way communication channel is available for each device to

send and receive data. This process is shown in Figure 24.2.

Figure 24.2 The client/server communication diagram

As you can see from Figure 24.2, the server must perform two functions before it can communicate with the client. First, it

must set up a specific TCP port to listen for incoming requests. When a connection request comes in, it must accept the

connection.
The client's responsibility is much simpler. All it must do is attempt to connect to a server on the specific TCP port on which

the server is listening. If the server accepts the connection, the two-way communication is available and data can be sent.
Once a connection is established between the server and the client, there must be some sort of communication process (or

rule) used between the two devices. If both devices attempt to listen for a message at the same time, they'll deadlock and

nothing will happen. Likewise, if they both attempt to send a message at the same time, nothing will be accomplished.
It's your job as the network programmer to decide the protocol rules that your client and server programs must follow.

Client/Server Programming with zsh
To demonstrate the creation of a client/server program using ztcp, let's set up a simple network application. The server
program we'll create will listen for connection requests on TCP port 5150. When a connection request comes in, the server

www.it-ebooks.info

#c24_fig_0002
#c24_fig_anc_0002
#c24_fig_0002
http://www.it-ebooks.info/

program we'll create will listen for connection requests on TCP port 5150. When a connection request comes in, the server

will accept it and then send a welcome message to the client.
The server program will then wait to receive a message from the client. If it receives a message, the server will display the

message and then send the same message back to the client. After sending the message, the server will loop back to listen for
another message. This loop will continue until the server receives a message that consists of the text exit. When that

happens, the server will terminate the session.
The client program we'll create will send a connection request to the server on TCP port 5150. When a connection is

established, the client will need to receive the server's welcome message.
After receiving the message, the client displays it, and then queries the user for data to send to the server. After getting

the message from the user, the client program will send it to the server and wait to receive the message back. If the message
comes back, the client displays the message and loops back to request another message from the user. This loop will continue
until the user enters the text exit. When this occurs, the client sends the exit text to the server and then terminates the

session.
The next sections show the server and client programs.

The Server Program

Here's the code for the server program:

% cat server
#!/bin/zsh
zsh TCP server script
zmodload zsh/net/tcp
ztcp -l 5150
fd=$REPLY

echo “Waiting for a client…”
ztcp -a $fd
clientfd=$REPLY
echo “client connected”

echo “Welcome to my server” >& $clientfd

while [1]
do
 read line <& $clientfd
 if [[$line = “exit”]]
 then
 break
 else
 echo Received: $line
 echo $line >& $clientfd
 fi
done
echo “Client disconnected session”
ztcp -c $fd
ztcp -c $clientfd
%
The server program follows the client/server paradigm shown in Figure 24.2. It first uses the -l parameter to listen on the

specified port (5150). The $RESULT variable contains the file descriptor that the Linux system returns to identify the

www.it-ebooks.info

#c24_fig_0002
http://www.it-ebooks.info/

specified port (5150). The $RESULT variable contains the file descriptor that the Linux system returns to identify the

connection. The server uses the -a parameter to accept a new connection request. This command waits until a new connection

request comes in (called blocking). The script won't progress unless a connection request is accepted.
Each client connection uses a separate file descriptor from the listening port file descriptor. This allows you to maintain

multiple client connections if you so desire (we don't in this simple exercise).
After accepting the connection, the server redirects a welcome message to the client's file descriptor:

echo “Welcome to my server” >& $clientfd
The zsh shell TCP module handles all of the mechanics of ensuring that the data is sent to the remote client.
Next, the server program enters an endless loop. It uses the read command to wait for data to come back from the client:

read line <& $clientfd
This command also blocks execution of the script until it receives data from the client. This could be a bad thing if the

client has lost connection to the network. To prevent this problem, you can use the -t option in the read line to specify a

timeout value (in seconds). If the server doesn't receive data from the client in the timeout period, it continues on.
If the server receives data from the client, it displays the data on STDOUT and then sends it back to the client. If the data is

equal to the text string exit, the server exits the loop, and uses the -c parameter in ztcp to close both the client's file
descriptor and the listening port's file descriptor. If you prefer to have your server listen for another connection, after you

close the client's file descriptor you can loop back to waiting to accept a new connection.

The Client Program

Here's the code for the client shell script program:

% cat client
#!/bin/zsh
zsh TCP client program
zmodload zsh/net/tcp

ztcp localhost 5150
hostfd=$REPLY

read line <& $hostfd
echo $line

while [1]
do
 echo -n “Enter text: ”
 read phrase
 echo Sending $phrase to remote host…
 echo $phrase >& $hostfd
 if [[$phrase = “exit”]]
 then
 break
 fi
 read line <& $hostfd
 echo “ Received: $line”
done
ztcp -c $hostfd
%
The client program must specify the IP address (or hostname) of the system the server program is running on and the

www.it-ebooks.info

http://www.it-ebooks.info/

The client program must specify the IP address (or hostname) of the system the server program is running on and the

proper TCP port number the server is listening to. When the server accepts the connection, the ztcp program sets the file
descriptor for the connection and saves the value in the $REPLY variable. The client program reads the server's welcome

message and then displays it:

read line <& $hostfd
echo $line
Next, the client program enters a while loop, querying the user for text to send to the server, reading the text entered,

and sending the text to the server. After sending the text, it checks to see if the text entered was exit. If so, it breaks out of
the loop and closes the file descriptor, which closes the TCP connection. If the text wasn't exit, it waits for the response from

the server and then displays it.

Running the Programs
You can either run these programs on two separate Linux systems on your network or from two different terminal sessions
on the same system. You must start the server program first so that it's available to listen for incoming connections when the

client starts:

% ./server
Waiting for a client…
Then you can start the client:

% ./client
Welcome to my server
Enter text: test
Sending test to remote host…
 Received: test
When the client connects, you'll see this on the server:

client connected
Received: test
This will continue until the user enters the text exit on the client:

Enter text: exit
Sending exit to remote host…
%
Then you should see the server automatically exit:

Client disconnected session
%
You now have the beginnings of a full-fledged network program! With the zsh shell and the TCP module, it's easy to send

data between shell scripts operating on separate systems on a network.

Summary
This chapter walked you through the world of interfacing shell scripts to the Internet. One of the most popular tools for
doing that is the Lynx program. Lynx is a command line program that can display Website information in a terminal session
using text-mode graphics. In addition to that feature, Lynx also provides a way to retrieve just the raw data from a Website,
and display it to STDOUT. You can use Lynx to extract data from a Website and then parse the data using standard Linux

text-handling tools such as sed and gawk to find specific information.
The cURL program is another handy tool to have when interfacing with the Internet. The cURL program also allows you to

dump data from a Website, and it provides a way to easily script file downloads from many different types of servers.
Finally, the chapter showed you how to use the TCP module of the zsh shell to write your own network programs. The zsh

shell provides an easy way to communicate between shell scripts that are located on separate systems on the network.
In the next chapter, we examine how to utilize e-mail in your shell scripts. Often when you use shell scripts to automate

processes, it's nice to get a message indicating whether the process failed or succeeded. By knowing how to work with the

installed e-mail software on your system, you can easily send automated messages to anyone in the world.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 25

Using E-mail

In This Chapter

E-mail and Linux
Setting up an e-mail server
Sending simple messages
Using attachments with Mutt

With the popularity of e-mail, these days just about everyone has an e-mail address. Because of that, people often expect to
receive data via e-mail instead of seeing files or printouts. That's no different in the shell scripting world. If you generate any
type of report from your shell script, most likely at some point you'll be asked to e-mail the results to someone. This chapter
shows you just how to set up your Linux system to support e-mailing directly from your shell scripts. It also shows you how to
make sure that your Linux system can send outbound mail messages and how to make sure you have a mail client that can do

that from the command line. But first, the chapter presents a brief overview of the way Linux handles e-mails in general.

The Basics of Linux E-Mail
Sometimes the hardest part of using e-mail in your shell scripts is understanding just how the e-mail system works in Linux.
Knowing what software packages perform particular tasks is crucial for getting e-mails from your shell script to your Inbox.
This section walks you through the basics of how Linux systems use e-mail and what you need to have in place before you can

use it.

E-Mail in Linux
One of the main goals of the Unix operating system was to modularize software. Instead of having one monolithic program
that handles all of the required pieces of a function, Unix developers created smaller programs that each handle a smaller

piece of the total functionality of the system.
This philosophy was used when implementing the e-mail systems used in Unix and was carried over to the Linux

environment. In Linux, e-mail functions are divided into separate pieces, each assigned to separate programs. Figure 25.1

shows how most open source e-mail software modularizes e-mail functions in the Linux environment.

Figure 25.1 Linux modular e-mail environment

www.it-ebooks.info

#c25_fig_0001
#c25_fig_anc_0001
http://www.it-ebooks.info/

Figure 25.1 Linux modular e-mail environment

As you can see in Figure 25.1, in the Linux environment the e-mail process is normally divided into three functions:

The Mail Transfer Agent (MTA)
The Mail Delivery Agent (MDA)
The Mail User Agent (MUA)

The lines between these three functions are often fuzzy. Some e-mail packages combine functionality for the MDA and
MTA functions, whereas others combine the MDA and MUA functions. The following sections describe these basic e-mail

components and how they are implemented in Linux systems in more detail.

The Mail Transfer Agent
The MTA software is the core of the Linux e-mail system. It's responsible for handling both incoming and outgoing mail
messages in the system. For each outgoing mail message the MTA must determine the destination of the recipient addresses. If
the destination host is the local system, the MTA can either deliver it to the local mailbox directly or pass the message off to

the local MDA for delivery.
However, if the destination host is a remote mail server, the MTA must establish a communication link with the MTA

software on the remote host to transfer the message. There are two common methods that MTA software packages use to

www.it-ebooks.info

#c25_fig_anc_0001
#c25_fig_0001
http://www.it-ebooks.info/

software on the remote host to transfer the message. There are two common methods that MTA software packages use to

deliver mail to remote hosts:
Direct delivery
Proxy delivery

If your Linux system is directly connected to the Internet, it can often deliver messages destined for recipients on remote
hosts directly to the remote host. The MTA software uses the Domain Name System (DNS) to resolve the proper network IP
address to deliver the mail message, and then establishes the network connection using the Simple Mail Transfer Protocol

(SMTP)
There are plenty of times when a host is not directly connected to the Internet, or it doesn't want to communicate directly

with other remote hosts. In those situations, it usually uses a smart host. The smart host is a proxy server that accepts mail

messages from your Linux system and then attempts to directly deliver them to the intended recipient.

Note

Smart hosts are becoming more difficult to work with on the Internet because of
spam. A rogue server can send spam by bouncing thousands of unsolicited
commercial e-mail (UCE) messages off of a smart host to hide its identity. Most
smart hosts now require some type of authentication before forwarding messages
to other hosts.

For incoming messages, the MTA must be able to accept connection requests from remote mail servers and receive

messages destined for local users. Again, the most common protocol used for this process is SMTP.
The Linux environment has many different types of open source MTA programs. Each program offers different features

that distinguish it from the others. By far the two most popular you'll run into are:
sendmail
Postfix

We'll examine both of these e-mail MTA packages in detail in the “Setting Up Your Server” section.

The Mail Delivery Agent
The MDA program's responsibility is to deliver a message destined for a local user. It receives messages from the MTA program
and must determine exactly how and where those messages should be delivered. Figure 25.2 demonstrates how the MDA

program interacts with the MTA program to deliver mail.

Figure 25.2 Using an MDA program on a mail server

www.it-ebooks.info

#c25_fig_0002
#c25_fig_anc_0002
http://www.it-ebooks.info/

Figure 25.2 Using an MDA program on a mail server

While sometimes the MDA function is performed within the MTA program itself, often Linux e-mail implementations rely

on a separate standalone MDA program to deliver messages to local users. Because these MDA programs concentrate only
on delivering mail to local users, they can add additional bells and whistles that aren't available on MTA programs that
include MDA functionality. This enables the mail administrator to offer additional mail features to mail users, such as mail

filtering for spam, out-of-office redirections, and automatic mail sorting.
When the MDA program receives a message, it must ensure that the message is delivered to the proper location, either to

the local user's mailbox or to an alternate location defined by the local user.
There are currently three different types of user mailboxes commonly used on Linux systems:

/var/spool/mail or /var/mail files
$HOME/mail files
Maildir-style mailbox directories

Each mailbox type has its own features that make it attractive to use. Most Linux distributions use either the
/var/spool/mail or /var/mail directories to contain individual mailbox files, one file for each user account on the

system. This is a central location for all mailbox files so that MUA programs know where to find everyone's mailbox file.
A few Linux distributions allow you to move the individual mailbox files to each user's $HOME directory. This provides

greater security in that each mailbox file is located in an area already set with the proper access privileges.
Maildir-style mailboxes are a relatively new feature supported by some more advanced MTA, MDA, and MUA applications.

Instead of each message being part of a mailbox file, the mailbox is a directory, and each message is a separate file in that

directory. This helps cut down on mailbox corruption, as a single message won't corrupt the entire mailbox.
While Maildir-style mailbox directories offer increased performance, security, and fault tolerance, there are many popular

MDA and MUA programs that aren't able to use them. Just about all MDA and MUA programs can use the

/var/spool/mail mailbox files.

Note

The original Unix location for mailboxes is /var/spool/mail. Most Linux
distributions use this file-naming convention; however, there are a few Linux
distributions that use /var/mail instead.

If your system does use a special MDA program to process incoming mail messages, most likely it's the popular Procmail

www.it-ebooks.info

#c25_fig_anc_0002
http://www.it-ebooks.info/

If your system does use a special MDA program to process incoming mail messages, most likely it's the popular Procmail

program. Procmail allows each individual user to create a customized configuration file to define mail filters, out-of-office

destinations, and separate mailboxes.

The Mail User Agent
So far we've followed the e-mail traffic from the remote host to the local host to an individual user's mailbox. The next step in

the process is to allow individual users to view their e-mail messages.
The Linux e-mail model uses a local mailbox file or directory for each user to hold messages for that user. The job of the

MUA program is to provide a method for users to interface with their mailboxes to read their messages.
It's important to remember that MUAs don't receive messages; they only display messages that are already in the mailbox.

Many MUA programs also offer the ability to create separate mail folders so the user can move mail from the default mailbox

(often called the Inbox) to separate folders for organization.
Most MUA programs also provide the ability to send messages. This part gets a little fuzzy because, as you've already

seen, sending e-mail messages is the job of the MTA program.
To perform this function, most MUA programs utilize the smart host feature in SMTP. Either the MUA program

automatically delivers messages to the local MTA program for delivery, or you must define a remote smart host in the MUA

configuration for it to send messages to for delivery.
Throughout the years, many different open source MUA programs have been available for the Linux platform. The

following sections describe some of the more popular MUA programs you'll run across in Linux.

Mailx
The Mailx program is the most popular command line MUA program in use for the Linux environment. In all installations, the
Mailx program installs with the executable file mail, indicating that it's a replacement for the mail program, rather than a

separate program.

Note

The graphical desktop-oriented Linux distributions such as Ubuntu and openSUSE
don't install the command line Mailx program by default. You'll have to manually
install it (see Chapter 8) as part of a mail client package. However, you have to be
careful, because not all Linux mail packages are alike. For Ubuntu, the package is
called mailutils, and uses the GNU Mailutils package instead of Mailx. It provides the
same functionality, but with slightly different command line parameters.

The Mailx program allows users to access their mailboxes to read stored messages, as well as to send messages to other

mail users, all from the command line. Here's a sample Mailx session.

$ mail
“/var/mail/rich”: 2 messages 2 new
>N 1 Rich Blum Thu Dec 9 10:07 13/579 Test message
 N 2 Rich Blum Thu Dec 9 10:08 13/593 This is another test
? 1
Return-Path: <rich@rich-Parallels-Virtual-Platform>
X-Original-To: rich@rich-Parallels-Virtual-Platform
Delivered-To: rich@rich-Parallels-Virtual-Platform
Received: by rich-Parallels-Virtual-Platform (Postfix, from userid 1000)
 id 5C03F2606CF; Thu, 9 Dec 2010 10:07:48 -0500 (EST)
To: <rich@rich-Parallels-Virtual-Platform>
Subject: Test message
X-Mailer: mail (GNU Mailutils 2.1)
Message-Id: <20101209150748.5C03F2606CF@rich-Parallels-Virtual-Platform>
Date: Thu, 9 Dec 2010 10:07:48 -0500 (EST)

www.it-ebooks.info

http://www.it-ebooks.info/

From: rich@rich-Parallels-Virtual-Platform (Rich Blum)

This is a test message
? d
? q
Held 1 message in /var/mail/rich
$
The first line shows the Mailx program being executed with no command line options. By default, this allows the user to

check the messages in his mailbox. After entering the mail command, a summary of all of the messages in the user's mailbox is
displayed. The Mailx program can only read messages in the /var/mail format or $HOME/mail format. It's not able to

process mail using the Maildir mail folder format.
Each user has a separate file that contains all of his messages. For some Linux distributions, the mailbox file doesn't exist

until after the user account receives a message. The file name is usually the system login name of the user and is located in the
system mailbox directory. Thus, all messages for username rich are stored in the file /var/mail/rich on the Linux system.

As new messages are received for the user, they are appended to the end of the file.
You can also send mail messages using the mail command line program:

$ mail barbara
Cc:
Subject: This is a test sent to Barbara
Hello Barbara -
This is a test message I'm sending from the command line.
$
The name of the recipient is included on the command line with the program name. The Mailx program queries for any

addresses to send copies to (the CC: prompt) and the message subject. It then allows you to type in the text of the message.
To terminate the message, press Ctrl+D. The Mailx program then attempts to pass the message to the MTA program for

delivery.

Mutt
As advancements were made to the Unix environment, MUA programs became fancier. One of the first attempts at graphics
on Unix systems was the ncurses graphics library. Using ncurses, a program could manipulate the location of a cursor on the

terminal screen and place characters almost anywhere on the terminal.
One MUA program that takes advantage of the ncurses library is the Mutt program. When you start Mutt, it paints a user-

friendly menu on the terminal display, listing the messages similar to the output of the Mailx program. You can select a

message and view it in the display, as shown in Figure 25.3.

Figure 25.3 The Mutt program

www.it-ebooks.info

#c25_fig_0003
#c25_fig_anc_0003
http://www.it-ebooks.info/

Figure 25.3 The Mutt program

The Mutt program uses key combinations to perform standard functions, such as read a message and start a new

message. Possibly the most useful feature for shell script programmers is the ability to send messages directly from the
command line, without going into text-graphics mode. We'll be covering the Mutt program in much more detail later on in

“The Mutt Program” section.

Graphical E-Mail Clients
Almost all Linux systems support the graphical X Window environment. There are many e-mail MUA programs that utilize the

X Window system to display message information. The two most popular graphical MUA programs available are:
KMail for the KDE windows environment
Evolution for the GNOME windows environment

Each of these packages allows you to interact with your local Linux mailbox, as well as connect to remote mail servers to

read mail messages. Figure 25.4 shows a sample Evolution session screen.

Figure 25.4 The Evolution MUA program main screen

www.it-ebooks.info

#c25_fig_anc_0003
#c25_fig_0004
#c25_fig_anc_0004
http://www.it-ebooks.info/

Figure 25.4 The Evolution MUA program main screen

To connect with remote servers, both KMail and Evolution support the Post Office Protocol (POP) and the more advanced

Internet Message Access Protocol (IMAP). While the KMail and Evolution MUA programs are great for desktop Linux, they

aren't so useful in shell scripting.

Setting Up Your Server
Before you can start sending your automated e-mail messages off to the universe, you'll need to ensure that your Linux
system has an MTA package running and that it's configured correctly. This is no small task in itself, but fortunately, some

Linux distributions provide some basic tools to help you out.
This section walks you through the basics of the two most popular e-mail MTA programs used in Linux: sendmail and

Postfix. While there have been complete books written on properly configuring each of these packages, we'll just look at the

basics to see how to get e-mails off the Linux system and into your Inbox.

sendmail
The sendmail MTA package is one of the most popular open source MTA packages used by Internet mail servers. In the past, it
had been plagued with stories about backdoors and security flaws; however, it has been rewritten not only to remove the
security flaws but also to incorporate many newer MTA features such as spam control. The newer versions of the sendmail

program have proven to be secure as well as versatile.

www.it-ebooks.info

#c25_fig_anc_0004
http://www.it-ebooks.info/

Parts of the sendmail Program
The main executable program is called sendmail. It normally runs in background mode, listening for SMTP connections from

remote mail servers and forwarding outbound messages from local users.
In addition to the main sendmail program, there's a configuration file and several tables that it uses to contain

information used while processing incoming and outgoing mail messages. Table 25.1 lists all the parts used in a normal

sendmail installation.

Table 25.1 The sendmail Configuration Files

File Description

sendmail.cf Text file that controls the behavior of the sendmail program.

sendmail.cw Text file that contains a list of domain names that the sendmail program will
receive messages for.

sendmail.ct Text file that contains a list of trusted users who can control the sendmail
operations.

aliases Binary file that contains a list of valid local mail addresses that can redirect
mail to another user, a file, or a program.

newaliases Executable program that creates a new aliases database file from a text file.

mailq Executable program that checks the mail queue and prints any messages.

mqueue A directory used to store messages waiting to be delivered.

mailertable Text file used to specify route paths for specific domains.

domaintable Text file used to map old domain names to new ones.

virtusertable Text file used to map users and domains to alternate addresses.

relay-domains Text file used to list specific hosts that are allowed to relay messages through
the sendmail program.

access Text file that lists specific domains from which received messages are either
allowed or refused.

Unless you're running the main mail server for a corporation or Internet service provider, all you'll need to worry about
is the sendmail.cf configuration file. In fact, many Linux distributions that use sendmail create and configure a core

sendmail.cf configuration file for you automatically that should work just fine in most simple applications.

The sendmail.cf File
The sendmail program needs to be told how to handle messages as the server receives them. As an MTA, sendmail processes
incoming mail and redirects it to another mail package, either on a remote system or on the local system. The configuration
file is used to direct sendmail how to manipulate the destination mail addresses to determine where and how to forward the

messages. The default location for the configuration file is /etc/mail/sendmail.cf.
The sendmail.cf file consists of rule sets that parse the incoming mail message and determine what actions to take.

Each rule set is used to identify certain mail formats and instruct sendmail how to handle that message.
As the sendmail program receives a message, it parses the message header and passes the message through the various

rule sets to determine an action to take on the message. The sendmail configuration file includes rules that allow sendmail to
handle mail in many different formats. Mail received from an SMTP host has different header fields than mail received from a

local user. The sendmail program must know how to handle any mail situation.
Rules also have helper functions defined in the configuration file. There are three different types of helper functions that

www.it-ebooks.info

#c25_tbl_0001
#c25_tbl_anc_0001
http://www.it-ebooks.info/

Rules also have helper functions defined in the configuration file. There are three different types of helper functions that

you can define:
Classes: Define common phrases that are used to help the rule sets identify certain types of messages.
Macros: Values that are set to simplify the typing of long strings in the configuration file.
Options: Defined to set parameters for the sendmail program's operation.

The configuration file is made up of a series of classes, macros, options, and rule sets. Each function is defined as a single

text line in the configuration file.
Each line in the configuration file begins with a single character that defines the action for that line. Lines that begin with a

space or a tab are continuation lines from a previous action line. Lines that begin with a pound sign (#) indicate comments

and are not processed by sendmail.
The action at the beginning of the text line defines what the line is used for. Table 25.2 shows the standard sendmail

actions and what they represent.

Table 25.2 sendmail Configuration File Lines

Configuration Line Description

C Defines classes of text

D Defines a macro

F Defines files containing classes of text

H Defines header fields and actions

K Defines databases that contain text to search

M Defines mailers

O Defines sendmail options

P Defines sendmail precedence values

R Defines rule sets to parse addresses

S Defines rule set groups

As we mentioned, most likely you won't have to start from scratch with your sendmail.cf configuration file; the Linux
distribution should create a standard template file for you. Most likely, the only piece you'll have to worry about is if you

must use a smart host to forward mail for you. The DS configuration line controls this feature:

DSmyisp.com
Just add the hostname of the smart host immediately after the DS tag.

Postfix
The Postfix software package is quickly becoming one of the more popular e-mail packages available for Unix and Linux
systems. Postfix was developed by Wietse Venema to provide an alternate MTA for standard Unix-type servers. The Postfix

software is capable of turning any Unix or Linux system into a fully functional e-mail server.
It is the responsibility of the MTA package to manage messages that come into or leave the mail server. Postfix

accomplishes this message tracking by using several different modular programs and a system of mail queue directories. Each
program processes messages through the various message queues until they are delivered to their final destinations. If at
any time the mail server crashes during a message transfer, Postfix can determine what queue the message was last

successfully placed in and attempt to continue the message processing.

Parts of the Postfix System
The Postfix system consists of several mail queue directories and executable programs, all interacting with each other to

www.it-ebooks.info

#c25_tbl_0002
#c25_tbl_anc_0002
http://www.it-ebooks.info/

The Postfix system consists of several mail queue directories and executable programs, all interacting with each other to

provide mail service.
The Postfix package utilizes a master program that runs as a background process at all times. The master program allows

Postfix to spawn programs that scan the mail queues for new messages and send them to the proper destinations.
The master program utilizes additional helper programs that are started as needed, depending on their function. They

can be configured to remain running for set times after they are utilized. This allows the master program to reutilize a

running helper program if necessary, saving processing time. After a set time limit, the helper program quietly stops itself.
The master program is used to control the overall operation of Postfix. Table 25.3 shows the helper programs that Postfix

uses to transfer mail messages.

Table 25.3 The Postfix Helper Programs

Program Description

bounce Posts a log in the bounce message queue for bounced messages and returns the
bounced message to the sender

cleanup Processes incoming mail headers and places messages in the incoming queue

error Processes message delivery requests from qmgr, forcing messages to bounce

flush Processes messages waiting to be retrieved by a remote mail server

local Delivers messages destined for local users

pickup Waits for messages in the maildrop queue and sends them to the cleanup
program to begin processing

pipe Forwards messages from the queue manager program to external programs

postdrop Moves an incoming message to the maildrop queue when that queue is not
writable by normal users

qmgr Processes messages in the incoming queue, determining where and how they
should be delivered, and spawns programs to deliver them

sendmail Provides a sendmail compatible interface for programs to send messages to the
maildrop queue

showq Reports Postfix mail queue status

smtp Forwards messages to external mail hosts using the SMTP protocol

smtpd Receives messages from external mail hosts using the SMTP protocol

trivial-rewrite Receives messages from the cleanup program to ensure header addresses are in
a standard format for the qmgr program, and is used by the qmgr program to
resolve remote host addresses

Postfix uses several different message queues for managing e-mail messages as they are processed. Each message queue
contains messages in a different message state in the Postfix system. Table 25.4 lists the message queues that are used by

Postfix.

Table 25.4 Postfix Message Queues

Queue Description

maildrop New messages waiting to be processed, received from local users.

www.it-ebooks.info

#c25_tbl_0003
#c25_tbl_anc_0003
#c25_tbl_0004
#c25_tbl_anc_0004
http://www.it-ebooks.info/

incoming New messages waiting to be processed or received from remote hosts, as well as
processed messages from local users.

active Messages that are ready to be delivered by Postfix.

deferred Messages that have failed on an initial delivery attempt and are waiting for another
attempt.

flush Messages that are destined for remote hosts that will connect to the mail server to
retrieve them.

mail Delivered messages stored for local users to read.

If the Postfix system should be shut down at any time, messages remain in the last queue in which they were placed. When
Postfix is restarted, it will automatically begin processing messages from the queues. This is a great feature of Postfix, making

it one of the most robust e-mail server systems available!

Postfix Configuration Files
A vital part of the Postfix system is the configuration files. Postfix uses three separate configuration files to allow you to set
the parameters used to direct Postfix on how to handle messages. Unlike some other MTA programs, it's possible to change
configuration information while the Postfix server is running and issue a command to have Postfix load the new information

without completely stopping the mail server.
The three configuration files are normally stored in a common Postfix directory. Often, the default location for this

directory is /etc/postfix. Usually, all users have access to view the configuration files, whereas only the root user has the
ability to change values within the files. Of course, this can be modified for your own security situation. Table 25.5 lists the

Postfix configuration files.

Table 25.5 Postfix Configuration Files

File Description

install.cf Contains information from the install parameters used when Postfix was installed.

main.cf Contains parameters used by the Postfix programs when processing messages.

master.cf Contains parameters used by the Postfix master program when running core
programs.

The install.cf configuration file allows you to retrieve installation parameters that were used when the Postfix
software was first installed on the system. This provides an easy way to determine which features are or aren't available in the

software setup.
The master.cf configuration file controls the behavior of the core Postfix programs. Each program is listed in a

separate line along with the parameters to control its operation. Here's a sample master.cf file with default settings.

==
#service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (50)
==
smtp inet n - n - - smtpd
pickup fifo n - n 60 1 pickup
cleanup unix - - n - 0 cleanup
qmgr fifo n - n 300 1 qmgr
rewrite unix - - n - - trivial-rewrite
bounce unix - - n - 0 bounce

www.it-ebooks.info

#c25_tbl_0005
#c25_tbl_anc_0005
http://www.it-ebooks.info/

defer unix - - n - 0 bounce
trac unix - - n - 0 bounce
verify unix - - n - 1 verify
flush unix n - n 1000 0 flush
proxymap unix - - n - - proxymap
smtp unix - - n - - smtp
relay unix - - n - - smtp -o fallback_relay=
showq unix n - n - - showq
error unix - - n - - error
local unix - n n - - local
virtual unix - n n - - virtual
lmtp unix - - n - - lmtp
anvil unix - - n - 1 anvil
scache unix - - n - 1 scache
The master.cf configuration file also includes lines for directing Postfix on how to interface with external MDA

software, such as Procmail.
The Postfix operational parameters are set in the main.cf configuration file. All of the Postfix operational parameters

have default values that are implied within the Postfix system. If a parameter value is not present in the main.cf file, its

value is preset by Postfix. If a parameter value is present in the main.cf file, its contents override the default value.
Each Postfix parameter is listed on a separate line in the configuration file along with its value, in the following form:

parameter = value
Both parameter and value are plain text strings that can be easily read and changed if necessary. The Postfix master

program reads the parameter values in the main.cf file when Postfix is first started and again whenever a Postfix reload

command is issued.
Two examples of Postfix parameters are the myhostname and mydomain parameters. If they are not specified in the

main.cf configuration file, the myhostname parameter assumes the results of a gethostname() command on the Linux
system, whereas mydomain assumes the domain part of the default myhostname parameter. Often a single mail server will

handle mail for an entire domain. This is an easy setting in the Postfix configuration file:

myhostname = mailserver.smallorg.org
mydomain = smallorg.org
When Postfix starts, it will recognize the local mail server as mailserver.smallorg.org and the local domain as smallorg.org

and will ignore any system set values.
If you need to specify a smart host, do that with the relayhost parameter:

relayhost = myisp.com
You can also specify an IP address here, but it must be enclosed in square brackets.

Sending a Message with Mailx
The main tool you have available for sending e-mail messages from your shell scripts is the Mailx program. Not only can you
use it interactively to read and send messages, but you can also use the command line parameters to specify how to send a

message.
The format for the Mailx program's command line for sending messages is:

mail [-eIinv] [-a header] [-b addr] [-c addr] [-s subj] to-addr
The mail command uses the command line parameters shown in Table 25.6.

Table 25.6 The Mailx Command Line Parameters

Parameter Description

-a Specify additional SMTP header lines.

www.it-ebooks.info

http://mailserver.smallorg.org
http://smallorg.org
#c25_tbl_0006
#c25_tbl_anc_0006
http://www.it-ebooks.info/

-b Add a BCC: recipient to the message.

-c Add a CC: recipient to the message.

-e Don't send the message if it's empty.

-i Ignore TTY interrupt signals.

-I Force Mailx to run in interactive mode.

-n Don't read the /etc/mail.rc startup file.

-s Specify a Subject line.

-v Display details of the delivery on the terminal.

As you can see from Table 25.6, you can pretty much create an entire e-mail message just from the command line

parameters. The only thing you need to add is the message body.
To do that, you need to redirect text to the mail command. Here's a simple example of how to create and send an e-mail

message directly from the command line:

$ echo “This is a test message” | mail -s “Test message” rich
The Mailx program sends the text from the echo command as the message body. This provides an easy way for you to

send messages from your shell scripts. Here's a quick example:

$ cat factmail
#!/bin/bash
mailing the answer to a factorial

MAIL=‘which mail‘

factorial=1
counter=1

read -p “Enter the number: ” value
while [$counter -le $value]
do
 factorial=$[$factorial * $counter]
 counter=$[$counter + 1]
done

echo The factorial of $value is $factorial | mail -s “Factorial
answer” $USER
echo “The result has been mailed to you.”
This script does not assume that the Mailx program is located in the standard location. It uses the which command to

determine just where the mail program is.
After calculating the result of the factorial function, the shell script uses the mail command to send the message to the

user-defined $USER environment variable, which should be the person executing the script.

$./factmail
Enter the number: 5
The result has been mailed to you.

www.it-ebooks.info

#c25_tbl_0006
http://www.it-ebooks.info/

$
All you need to do is check your mail to see if the answer arrived:

$ mail
“/var/mail/rich”: 1 message 1 new
>N 1 Rich Blum Thu Dec 9 10:32 13/586 Factorial answer
?
Return-Path: <rich@rich-Parallels-Virtual-Platform>
X-Original-To: rich@rich-Parallels-Virtual-Platform
Delivered-To: rich@rich-Parallels-Virtual-Platform
Received: by rich-Parallels-Virtual-Platform (Postfix, from userid 1000)
 id B4A2A260081; Thu, 9 Dec 2010 10:32:24 -0500 (EST)
Subject: Factorial answer
To: <rich@rich-Parallels-Virtual-Platform>
X-Mailer: mail (GNU Mailutils 2.1)
Message-Id: <20101209153224.B4A2A260081@rich-Parallels-Virtual-Platform>
Date: Thu, 9 Dec 2010 10:32:24 -0500 (EST)
From: rich@rich-Parallels-Virtual-Platform (Rich Blum)

The factorial of 5 is 120
?
It's not always convenient to send just one line of text in the message body. Often, you'll need to send an entire output

as the e-mail message. In those situations, you can always redirect text to a temporary file, and then use the cat command

and redirect the output to the mail program.
Here's an example of sending a larger amount of data in an e-mail message:

$ cat diskmail
#!/bin/bash
sending the current disk statistics in an e-mail message

date=‘date +%m/%d/%Y‘
MAIL=‘which mail‘
TEMP=‘mktemp tmp.XXXXXX‘

df -k > $TEMP
cat $TEMP | $MAIL -s “Disk stats for $date” $1
rm -f $TEMP
The diskmail program gets the current date using the date command (along with some special formatting), finds the

location of the Mailx program, and then creates a temporary file. After all that, it uses the df command to display the current

disk space statistics (see Chapter 4), redirecting the output to the temporary file.
It then redirects the temporary file to the mail command, using the first command line parameter for the destination

address, and the current date in the Subject header. When you run the script, you won't see anything appear on the command

line output:

$./diskmail rich
But if you check your mail, you should see the sent message:

$ mail
“/var/mail/rich”: 1 message 1 new

www.it-ebooks.info

http://www.it-ebooks.info/

>N 1 Rich Blum Thu Dec 9 10:35 19/1020 Disk stats for 12/09/
2010
?
Return-Path: <rich@rich-Parallels-Virtual-Platform>
X-Original-To: rich@rich-Parallels-Virtual-Platform
Delivered-To: rich@rich-Parallels-Virtual-Platform
Received: by rich-Parallels-Virtual-Platform (Postfix, from userid 1000)
 id 3671B260081; Thu, 9 Dec 2010 10:35:39 -0500 (EST)
Subject: Disk stats for 12/09/2010
To: <rich@rich-Parallels-Virtual-Platform>
X-Mailer: mail (GNU Mailutils 2.1)
Message-Id: <20101209153539.3671B260081@rich-Parallels-Virtual-Platform>
Date: Thu, 9 Dec 2010 10:35:39 -0500 (EST)
From: rich@rich-Parallels-Virtual-Platform (Rich Blum)

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 63315876 2595552 57504044 5% /
none 507052 228 506824 1% /dev
none 512648 192 512456 1% /dev/shm
none 512648 100 512548 1% /var/run
none 512648 0 512648 0% /var/lock
none 4294967296 0 4294967296 0% /media/psf
?
Now all you need to do is schedule the script to run every day using the cron feature, and you can get disk space reports

automatically e-mailed to your inbox! System administration doesn't get much easier than that!

The Mutt Program
The Mutt program is another popular e-mail client package for the Linux command line, developed in 1995 by Michael Elkins.

It has one feature that's not available in the Mailx program, which makes it a good tool to have handy for your shell scripts.
The Mutt program has the capability to send files as attachments in your e-mail messages. Instead of having to

incorporate a long text file in the body of your e-mail message as we did with Mailx, you can use the Mutt program and
include the text file as a separate attachment to the main message body. This feature is great for e-mailing long files, such as

log files.
This section walks you through installing Mutt on your Linux system and using it to attach files to e-mail messages in your

shell scripts.

Installing Mutt
The Mutt program is not a popular package in this day of fancy graphical e-mail clients such as KMail or Evolution, so it's a
good bet that your Linux distribution doesn't have it installed by default. However, most Linux distributions include it in the
normal distribution files for installation using the standard software installation methods (see Chapter 8). For the Ubuntu

environment, you can install Mutt using the command line command:

sudo apt-get install mutt
If your Linux distribution doesn't include the Mutt package, or you just want to install the latest version, you can go to

the Mutt Website (www.mutt.org), download the latest source code file, and then use the techniques discussed in Chapter 8

to compile and install the package from the source code package.

The Mutt Command Line
The mutt command provides parameters for you to use to control how Mutt operates. Table 25.7 shows the command line

www.it-ebooks.info

http://www.mutt.org
#c25_tbl_0007
http://www.it-ebooks.info/

The mutt command provides parameters for you to use to control how Mutt operates. Table 25.7 shows the command line

parameters available to you.

Table 25.7 The Mutt Command Line Parameters

Parameter Description

-A alias Pass an expanded version of the specified alias to STDOUT.

-a file Attach the specified file to your message using the MIME protocol.

-b address Specify a blind-carbon-copy (BCC) recipient.

-c address Specify a carbon-copy (CC) recipient.

-D Print the value of all configuration options to STDOUT.

-e command Specify a configuration command to be run after processing of initialization files.

-f mailbox Specify a mailbox file to load.

-F muttrc Specify an initialization file to read instead of $HOME/.muttrc.

-h Display help text.

-H draft Specify a draft file that contains header and body to use to send a message.

-i include Specify a file to include in the body of a message.

-m type Specify a default mailbox type.

-n Ignore the system configuration file.

-p Resume a postponed message.

-Q query Query a configuration variable value. The query is executed after all
configuration files have been parsed and any commands given on the command
line have been executed.

-R Open a mailbox in read-only mode.

-s subject Specify the subject of the message.

-v Display the Mutt version number and compile-time definitions.

-x Emulate the Mailx compose mode.

-y Start with a listing of all mailboxes specified by the mailboxes command.

-z When used with -f, don't start if there are no messages in the mailbox.

-Z Open the first mailbox specified by the mailboxes command that contains new
mail.

With the myriad of command line parameters you can customize your e-mail message directly from the command line,

which is exactly what you'll want to do in your shell scripts.
Much as with the Mailx program, there's one thing that you can't specify on the command line with the Mutt program, and

that's the message body text. If you don't redirect text to the Mutt program, it will start in text-graphics mode with an editor

window for you to type the message body in.
This is not a good thing for the shell script, so you'll always want to redirect some type of text for the message body, even

www.it-ebooks.info

#c25_tbl_0007
#c25_tbl_anc_0007
http://www.it-ebooks.info/

This is not a good thing for the shell script, so you'll always want to redirect some type of text for the message body, even

if you're using the attachment option to specify a file to attach. The next section demonstrates how to do this.

Using Mutt
Now you're ready to start using the Mutt program in your shell scripts. To create the basic mutt command in your shell script,
you'll want to include command line options that specify the subject of the message, the attachment file, and all the

recipients of the message:

mutt -s Subject -a file -- recipients
The recipients list is a space-separated list of the e-mail addresses to send the message to. If you want to attach more

than one file, you can list them separated with spaces after the -a option; the -- symbol is used to separate the file names
from the list of recipient addresses. The file parameter must be an absolute pathname, or a relative pathname relative to

the current working directory from which you're running the mutt command.
There's one other catch with the mutt command. If you don't redirect text for the message body, Mutt will automatically

go to full-screen mode for you to enter the text in an editor window. Most likely this is not what you want to do, so be sure

to redirect some text for the message body, even if it's an empty file:

echo “Here's the log file” | mutt -s “Log file” -a
/var/log/messages -- rich
This command sends the system log file as an attachment to the e-mail address rich on the local system. Note that you

must also have the proper permissions to access the file you want to attach. Figure 25.5 shows the received e-mail message in

the Evolution mail client.

Figure 25.5 Using Evolution to view a message with an attachment

www.it-ebooks.info

#c25_fig_0005
#c25_fig_anc_0005
http://www.it-ebooks.info/

Figure 25.5 Using Evolution to view a message with an attachment

Notice that the message includes the body text from the echo statement along with a separate icon for the attached file.

You can save the attached file directly from the KMail client.

Caution

If you look at the name of the attached file, you'll notice that Mutt uses the basename of
the attached file as the file name in the attachment. Be careful when using temporary
files, as Mutt will use the temporary file name as the attachment file name. You'll be
better off saving temporary files using more descriptive names rather than using
temporary file names.

Summary
This chapter discusses how to incorporate e-mail in your shell scripts. The ability to regularly e-mail reports to customers is a

great feature to offer in your shell scripts.

www.it-ebooks.info

#c25_fig_anc_0005
http://www.it-ebooks.info/

Before using the command line to send e-mail messages, you'll need to know how e-mail works in the Linux environment
and what applications you'll need to have installed and configured. The Linux e-mail environment consists of three elements,
a Mail Transport Agent (MTA) program, a Mail Delivery Agent (MDA) program (which often is part of the MTA program), and a

Mail User Agent (MUA) program.
The MTA program is responsible for sending and receiving mail messages for the Linux system. It must know how to pass

incoming mail messages to the proper user mailboxes, as well as how to send outbound mail messages destined for users on
remote mail servers. Often, the MTA program will use a proxy server (also called a smart host) to do the detailed mail delivery.
It forwards any message destined for a user on a remote mail server to the smart host for delivery. It can rely on the smart

host to make the delivery on its own.
The MDA program is responsible for ensuring that mail destined for local users ends up in the proper local mailbox.

Sometimes this function is performed directly by the MTA program. However, if you require advanced mail delivery features,
such as out-of-office notifications or spam filtering, you can configure the MTA program to pass messages to the MDA

program, which often has these capabilities built in.
The MUA program allows individual system users to access messages in their mailboxes and pass outbound messages to

other users to the MTA for delivery. These programs can range from simple command line programs, such as Mailx and Mutt,

to fancy graphical programs such as KMail and Evolution.
The easiest way to send e-mails from your shell script is to use the Mailx program. This program allows you to specify the

subject header and one or more recipients on the command line. You create the message body by redirecting text to the
Mailx program. You can do this using either the echo command for single line text, or the cat command to redirect the

contents of a file to the mail message.
The Mutt program is a more advanced command line MUA program that provides the ability to attach files to the mail

message, rather than including text inside the message body. This allows you to attach large text files that your customers can

easily save to disk for examination in other programs, such as spreadsheets or word processing packages.
The last two chapters in this book cover an important part of shell scripts, scripting administration functions. If you're a

Linux system administrator, most likely you'll run into a situation where you want to regularly monitor the status of a system

feature. By creating a shell script and placing it in a cron job, you can easily monitor what's going on in your Linux system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 26

Writing Script Utilities

In This Chapter

Monitoring disk space
Performing backups
Managing user accounts

There is no place where shell script programming is more useful than writing script utilities for the Linux system administrator.
The typical Linux system administrator has a myriad of jobs that need to be done daily, from monitoring disk space to backing
up important files to managing user accounts. Shell script utilities can make the life of the system administrator much easier!

This chapter demonstrates some of the capabilities you have writing script utilities in the bash shell.

Monitoring Disk Space
One of the biggest problems with multi-user Linux systems is the amount of available disk space. In some situations, such as in

a file sharing server, disk space can fill up almost immediately just because of one careless user.
This shell script utility helps you determine the top ten disk space consumers for designated directories. It produces a

date-stamped report that allows disk space consumption trends to be monitored.

The Required Functions
The first tool you need to use is the du command (see Chapter 4). This command displays the disk usage for individual files and
directories. The -s option lets you summarize totals at the directory level. This comes in handy when calculating the total disk
space used by an individual user. Here's what it looks like to use the du command to summarize each user's $HOME directory

for the /home directory contents:

$ du -s /home/*
6174428 /home/consultant
4740 /home/Development
4740 /home/Production
3860 /home/Samantha
7916 /home/Timothy
140376116 /home/user
$
The -s option works well for users' $HOME directories, but what if we wanted to view disk consumption in a system

directory such as /var/log?

$ du -s /var/log/*
4 /var/log/alternatives.log
44 /var/log/alternatives.log.1
4 /var/log/apparmor
176 /var/log/apt
0 /var/log/aptitude
4 /var/log/aptitude.1.gz
4 /var/log/aptitude.2.gz
4 /var/log/aptitude.3.gz
4 /var/log/aptitude.4.gz

www.it-ebooks.info

http://www.it-ebooks.info/

4 /var/log/aptitude.5.gz
160 /var/log/auth.log
...
$
The listing quickly becomes too detailed. The -S option works better for our purposes here, providing a total for each

directory and subdirectory individually. This allows you to pinpoint problem areas quickly:

$ du -S /var/log
176 /var/log/apt
52 /var/log/exim4
1048 /var/log/dist-upgrade/20101011-1337
6148 /var/log/dist-upgrade
1248 /var/log/installer
228 /var/log/gdm
4 /var/log/news
4 /var/log/samba/cores/winbindd
4 /var/log/samba/cores
16 /var/log/samba
4 /var/log/unattended-upgrades
4 /var/log/sysstat
4 /var/log/speech-dispatcher
108 /var/log/ConsoleKit
64 /var/log/cups
4 /var/log/apparmor
12 /var/log/fsck
4844 /var/log
$
Because we are interested in the directories consuming the biggest chunks of disk space, you need to use the sort

command (see Chapter 4) on the listing produced by du:

$ du -S /var/log | sort -rn
6148 /var/log/dist-upgrade
4864 /var/log
1248 /var/log/installer
1048 /var/log/dist-upgrade/20101011-1337
228 /var/log/gdm
176 /var/log/apt
108 /var/log/ConsoleKit
64 /var/log/cups
52 /var/log/exim4
16 /var/log/samba
12 /var/log/fsck
4 /var/log/unattended-upgrades
4 /var/log/sysstat
4 /var/log/speech-dispatcher
4 /var/log/samba/cores/winbindd

www.it-ebooks.info

http://www.it-ebooks.info/

4 /var/log/samba/cores
4 /var/log/news
4 /var/log/apparmor
$
The -n option allows you to sort numerically. The -r option lists the largest numbers first. This is perfect for finding the

largest disk consumers.
The sed editor (see Chapters 18 and 20) will bring more clarity to this listing. To focus on the top ten disk space

consumers, when line 11 is reached, sed is set to delete the rest of the listing. The next step is to add a line number for each
line in the listing. Chapter 18 showed you how to accomplish this by adding an equal sign (=) to the sed command. To get
those line numbers on the same line as the disk space text, combine the text lines using the N command, just as we did in

Chapter 20. The sed commands needed look like this:

sed ‘{11,$D; =}’ |
sed ‘N; s/\n/ /’ |
Now the output can be cleaned up using the gawk command (see Chapter 21). The output from the sed editor is piped

into the gawk command and then printed out using the printf function.

gawk ‘{printf $1 “:” “\t” $2 “\t” $3 “\n”}’
After the line number, a colon (:) is added, and tab (\t) characters are put between the individual fields for each text

line's output row. This produces a nicely formatted listing of the top ten disk space consumers.

$ du -S /var/log |
> sort -rn |
> sed ‘{11,$D; =}’ |
> sed ‘N; s/\n/ /’ |
> gawk ‘{printf $1 “:” “\t” $2 “\t” $3 “\n”}’
1: 6148 /var/log/dist-upgrade
2: 4864 /var/log
3: 1248 /var/log/installer
4: 1048 /var/log/dist-upgrade/20101011-1337
5: 228 /var/log/gdm
6: 176 /var/log/apt
7: 108 /var/log/ConsoleKit
8: 64 /var/log/cups
9: 52 /var/log/exim4
10: 16 /var/log/samba
$
Now you're in business! The next step is to use this information to create the script.

Creating the Script
To save time and effort, the script creates a report for multiple designated directories. A variable to accomplish this called

CHECK_DIRECTORIES is used. For our purposes here, the variable is set to just two directories:

CHECK_DIRECTORIES=“ /var/log /home”
The script contains a for loop to perform the du command on each directory listed in the variable. This technique is used

(see Chapter 12) to read and process values in a list. Each time the for loop iterates through the list of values in the variable

CHECK_DIRECTORIES, it assigns to the DIR_CHECK variable the next value in the list:

for DIR_CHECK in $CHECK_DIRECTORIES
do
...

www.it-ebooks.info

http://www.it-ebooks.info/

 du -S $DIR_CHECK
...
done
To allow quick identification, a date stamp is added to the report's file name, using the date command. Using the exec

command (see Chapter 14) the script redirects its output to the date stamped report file:

DATE=$(date ‘+%m%d%y’)
 exec > disk_space_$DATE.rpt
Now to produce a nicely formatted report, the script uses the echo command to put in a few report titles:

echo “Top Ten Disk Space Usage”
echo “for $CHECK_DIRECTORIES Directories”
So let's take a look at what this script looks like all put together:

#!/bin/bash

Big_Users - find big disk space users in various directories

Parameters for Script

CHECK_DIRECTORIES=“ /var/log /home” #directories to check

############## Main Script #################################

DATE=$(date ‘+%m%d%y’) #Date for report file

exec > disk_space_$DATE.rpt #Make report file Std Output

echo “Top Ten Disk Space Usage” #Report header for whole report
echo “for $CHECK_DIRECTORIES Directories”

for DIR_CHECK in $CHECK_DIRECTORIES #loop to du directories
do
 echo “”
 echo “The $DIR_CHECK Directory:” #Title header for each directory

Create a listing of top ten disk space users
 du -S $DIR_CHECK 2>/dev/null |
 sort -rn |
 sed ‘{11,$D; =}’ |
 sed ‘N; s/\n/ /’ |
 gawk ‘{printf $1 “:” “\t” $2 “\t” $3 “\n”}’

done #end of for loop for du directori
es

And there you have it. A simple shell script that will create a date stamped report of the top ten disk space consumers for

www.it-ebooks.info

http://www.it-ebooks.info/

And there you have it. A simple shell script that will create a date stamped report of the top ten disk space consumers for

each directory you choose.

Running the Script
Before having the Big_Users script run automatically, you'll want to test it out a few times manually to ensure that it does

what you think it should do:

$
$./Big_Users
$
$ cat disk_space_012311.rpt
Top Ten Disk Space Usage
for /var/log /home Directories

The /var/log Directory:
1: 6148 /var/log/dist-upgrade
2: 4892 /var/log
3: 1248 /var/log/installer
4: 1048 /var/log/dist-upgrade/20101011-1337
5: 176 /var/log/apt
6: 108 /var/log/ConsoleKit
7: 64 /var/log/cups
8: 52 /var/log/exim4
9: 16 /var/log/samba
10: 12 /var/log/fsck

The /home Directory:
1: 92365332 /home/user/.VirtualBox/HardDisks
2: 18659720 /home/user/Downloads
3: 17626092 /home/user/archive
4: 6174408 /home/Timothy/Junk/More_Junk
5: 6174408 /home/Timothy/Junk
6: 6174408 /home/consultant/Work
7: 6174408 /home/consultant/Downloads
8: 3227768 /home/user/vmware/Mandriva
9: 3212464 /home/user/vmware/Fedora
10: 104632 /home/user/vmplayer
$
It worked! Now you can set up the shell script to execute automatically as needed. You do this using the cron table (see

Chapter 15).

Note

When you run a script containing bash shell commands that need root privileges,
you will need to use the su or sudo command. Otherwise, the script will produce
unexpected results.

How often you need to run this script depends upon how active your file server is. To run the script once a week, add the

following entry to your cron table:

www.it-ebooks.info

http://www.it-ebooks.info/

15 7 * * 1 /home/user/Big_Users
This entry runs the shell script every Monday morning at 7:15 a.m. Now, you can have your coffee and review your weekly

disk consumption report first thing Monday morning.

Performing Backups
Whether you're responsible for a Linux system in a business environment or just using it at home, the loss of data can be

catastrophic. To help prevent bad things from happening, it's always a good idea to perform regular backups.
However, what's a good idea and what's practical are often two separate things. Trying to arrange a backup schedule to

store important files can be a challenge. This is another place where shell scripts often come to the rescue.
This section demonstrates two different methods for using shell scripts to back up data on your Linux system.

Archiving Data Files
If you're using your Linux system to work on an important project, you can create a shell script that automatically takes
snapshots of specific directories. Designating these directories in a configuration file will allow you to change them when a

particular project changes. This will help avoid a time-consuming restore process from your main archive files.
This section shows you how to create an automated shell script that can take snapshots of specified directories and keep

an archive of past versions of your data.

The Required Functions
The workhorse for archiving data in the Linux world is the tar command (see Chapter 4). The tar command is used to archive
entire directories into a single file. Here's an example of creating an archive file of a working directory using the tar

command:

$ tar -cf archive.tar /home/user/backup_test
tar: Removing leading ‘/’ from member names
$
The tar command responds with a warning message that it's removing the leading forward slash from the pathname to

convert it from an absolute pathname to a relative pathname (see Chapter 3). This allows you to extract the tar archived files
anywhere you want in your filesystem. You'll probably want to get rid of that message in your script. Do that by redirecting

STDERR to the /dev/null file (see Chapter 14):

$ tar -cf archive.tar /home/user/backup_test 2>/dev/null
$
Because a tar archive file can consume a lot of disk space, it's a good idea to compress the file. You can do this by simply

adding the -z option. This will compress the tar archive file into a gzipped tar file, which is called a tarball. Be sure to use the
proper file extensions to denote that the file is a tarball. Either .tar.gz or .tgz is fine. Here's an example of creating a

tarball of a working directory:

$ tar -zcf archive.tar.gz /home/user/backup_test 2>/dev/null
$
Now you have the main component for your archive script completed.
Instead of modifying or creating a new archive script for each new directory or file you want to back up, you can use a

configuration file. The configuration file should contain each directory or file you want to be included in the archive:

$ cat Files_To_Backup
/home/user/Downloads
/home/user/Documents/CLandSS_V2
/home/Samantha/Documents
/home/Does_not_exist
/home/Timothy/Junk
/home/consultant/Work
$

www.it-ebooks.info

http://www.it-ebooks.info/

Caution

If you're using a Linux distribution that includes a graphical desktop, be careful about
archiving your entire $HOME directories. While this may be tempting, the $HOME directory
contains lots of configuration and temporary files related to the graphical desktop. It will
create a much larger archive file than you probably intended. Pick a subdirectory in which
to store your working files, and use that subdirectory in your archive configuration file.

You can have the script read through the configuration file and add the names of each directory or file to the archive list.
To do this, use the simple read command (see Chapter 13) to read each record from the file. But instead of using the cat
command piped into a while loop, as we did in Chapter 13, this script is going to redirect STDINPUT using the exec

command (see Chapter 14). Here's how it will look:

exec < $CONFIG_FILE

read FILE_NAME
Notice that a variable is used for the archive configuration file as well as each record read in from the file. As long as the

read command finds a new record to read in the configuration file, it will return an exit value of 0 for success in the ?
variable (see Chapter 10). You can use this as a test in a while loop in order to read all the records from the configuration

file:

while [$? -eq 0]
do
...
read FILE_NAME
done
Once the read command hits the end of the configuration file, it returns a non-successful status. At that point, the

while loop is exited.
In the while loop, two things need to happen. First, you must add the file or directory name to your archive list. Yet even

more important is to check and see if that file or directory even exists! It would be very easy to remove a directory from the
filesystem and forget to update the archive configuration file. You can check a file's or directory's existence using a simple if
statement and the test command file comparisons (see Chapter 11). If the file or directory does exist, it is added to the list of

files to archive, FILE_LIST. Otherwise, a warning message is issued. Here is what this looks like:

if [-f $FILE_NAME -o -d $FILE_NAME]
 then
 # If file exists, add it's name to the list.
 FILE_LIST=“$FILE_LIST $FILE_NAME”
 else
 # If file doesn't exists, issue warning
 echo
 echo “$FILE_NAME, does not exist.”
 echo “Obviously, I will not include it in this archive.”
 echo “It is listed on line $FILE_NO of the config file.”
 echo “Continuing to build archive list...”
 echo
 fi

 FILE_NO=$[$FILE_NO + 1] # Increase Line/File number b
y one.
Because a record in our archive configuration file can be a file name or a directory, the if statement tests for the

existence of both, using the -f and the -d options. The or option, -o, allows for either the file's or the directory's existence

test to return a true for the entire if statement to be treated as true.

www.it-ebooks.info

http://www.it-ebooks.info/

To provide a little extra help in tracking down non-existent directories and files, the variable FILE_NO is added. Thus, the

script can tell you exactly what line number in the archive configuration file contains the incorrect or missing file or directory.
You should now have enough information to start building the script. The next section walks you through creating the

archive script.

Creating a Daily Archive Script
The Daily_Archive script automatically creates an archive to a designated location, using the current date to uniquely

identify the file. Here's the code for that portion of the script:

DATE=‘date +%y%m%d’

Set Archive File Name

FILE=archive$DATE.tar.gz

Set Configuration and Destination File

CONFIG_FILE=/home/user/archive/Files_To_Backup
DESTINATION=/home/user/archive/$FILE

The DESTINATION variable appends the full pathname for the archived file. The CONFIG_FILE variable points to the

archive configuration file containing the files to be archived. These both can be easily changed to alternate directories and

files if needed.
The Daily_Archive script, all put together, now looks like this:

#!/bin/bash

Daily_Archive - Archive designated files & directories

Gather Current Date

DATE=‘date +%y%m%d’

Set Archive File Name

FILE=archive$DATE.tar.gz

Set Configuration and Destination File

CONFIG_FILE=/home/user/archive/Files_To_Backup
DESTINATION=/home/user/archive/$FILE

######### Main Script #########################

Check Backup Config file exists

www.it-ebooks.info

http://www.it-ebooks.info/

if [-f $CONFIG_FILE] # Make sure the config file still exists.
then # If it exists, do nothing but continue on.
 echo
else # If it doesn't exist, issue error & exit script.
 echo
 echo “$CONFIG_FILE does not exist.”
 echo “Backup not completed due to missing Configuration File”
 echo
 exit
fi

Build the names of all the files to backup

FILE_NO=1 # Start on Line 1 of Config File.
exec < $CONFIG_FILE # Redirect Std Input to name of Config File

read FILE_NAME # Read 1st record

while [$? -eq 0] # Create list of files to backup.
do
 # Make sure the file or directory exists.
 if [-f $FILE_NAME -o -d $FILE_NAME]
 then
 # If file exists, add its name to the list.
 FILE_LIST=“$FILE_LIST $FILE_NAME”
 else
 # If file doesn't exist, issue warning
 echo
 echo “$FILE_NAME, does not exist.”
 echo “Obviously, I will not include it in this archive.”
 echo “It is listed on line $FILE_NO of the config file.”
 echo “Continuing to build archive list...”
 echo
 fi

 FILE_NO=$[$FILE_NO + 1] # Increase Line/File number by one.
 read FILE_NAME # Read next record.
done

#######################################

Backup the files and Compress Archive

tar -czf $DESTINATION $FILE_LIST 2> /dev/null

www.it-ebooks.info

http://www.it-ebooks.info/

Running the Daily Archive Script

Testing the Daily_Archive script is straightforward:

$./Daily_Archive

/home/Does_not_exist, does not exist.
Obviously, I will not include it in this archive.
It is listed on line 4 of the config file.
Continuing to build archive list...
You can see that the script caught one directory that does not exist, /home/Does_not_exist. It lets you know what

line number in the configuration file this erroneous directory is on, and then continues on making a list and archiving the

data. The data is now safely archived in a tarball file.

Creating an Hourly Archive Script
If you are in a high-volume production environment where files are changing rapidly, a daily archive might not be good

enough. If you want to increase the archiving frequency to hourly, you'll need to take another item into consideration.
When backing up files hourly and trying to use the date command to timestamp each file name, things can get pretty

ugly pretty quickly. Sifting through a directory of files with file names looking like this is tedious:

archive010211110233.tar.gz
Instead of placing all of the archive files in the same folder, you'd be better off creating a directory hierarchy for your

archived files. Figure 26.1 demonstrates this principle.

Figure 26.1 Creating an archive directory hierarchy

www.it-ebooks.info

#c26_fig_0001
#c26_fig_anc_0001
http://www.it-ebooks.info/

Figure 26.1 Creating an archive directory hierarchy

The archive directory contains directories for each month of the year, using the month number as the directory name. Each

month's directory in turn contains folders for each day of the month (using the day's numerical value as the directory name).
This allows you to just timestamp the individual archive files and then place them in the appropriate directory for the day and

month.
Now there is a new challenge to solve. The script must create the individual month and day directories automatically and

know that if they already exist, they don't need to be created.
If you peruse the command line options for the mkdir command (see Chapter 3), you'll find the -p command line option.

This option allows you to create directories and subdirectories in a single command; plus, the added benefit is that it doesn't

produce an error message if the directory already exists. Perfect!
We're now ready to create the Hourly_Archive script. Here is the top half of the script:

#!/bin/bash

Hourly_Archive - Every hour create an archive

Set Configuration File

CONFIG_FILE=/home/user/archive/hourly/Files_To_Backup

www.it-ebooks.info

#c26_fig_anc_0001
http://www.it-ebooks.info/

Set Base Archive Destination Location

BASEDEST=/home/user/archive/hourly

Gather Current Day, Month & Time

DAY=‘date +%d’
MONTH=‘date +%m’
TIME=‘date +%k%M’

Create Archive Destination Directory

mkdir -p $BASEDEST/$MONTH/$DAY

Build Archive Destination File Name

DESTINATION=$BASEDEST/$MONTH/$DAY/archive$TIME.tar.gz

########## Main Script ####################
...
Once the script reaches the “Main Script” portion of Hourly_Archive, the script is an exact duplicate of the

Daily_Archive script. A lot of the work has already been done!
Hourly_Archive retrieves the day and month values from the date command, along with the timestamp used to

uniquely identify the archive file. It then uses that information to create the archive directory for the day (or just silently exit

if it already exists). Finally, the script uses the tar command to create the archive and compress it into a tarball.

Running the Hourly Archive Script

As with the Daily_Archive script, it's a good idea to test the Hourly_Archive script before putting it in the cron table:

$ cat /home/user/archive/hourly/Files_To_Backup
/home/Development/Simulation_Logs
/home/Production/Machine_Errors
$
$./Hourly_Archive
$
$ ls /home/user/archive/hourly/01/02
archive1601.tar.gz
$
$./Hourly_Archive

$ ls /home/user/archive/hourly/01/02
archive1601.tar.gz archive1602.tar.gz
$
The script worked fine the first time, creating the appropriate month and day directories, and then creating the archive

file. Just to test things out, it was run a second time to see if it would have a problem with the existing directories. The script

www.it-ebooks.info

http://www.it-ebooks.info/

file. Just to test things out, it was run a second time to see if it would have a problem with the existing directories. The script

again ran fine and created the second archive file. It's now ready for the cron table.

Managing User Accounts
Managing user accounts is much more than just adding, modifying, and deleting accounts. You also have to consider security
issues, the need to preserve work, and the accurate management of the accounts. This can be a time-consuming task. Here is

another instance when writing script utilities is a real time saver!

The Required Functions
Deleting an account is the more complicated task of managing accounts. When deleting an account, at least four separate

actions are required:
1. Obtain the correct user account name to delete.
2. Kill any processes currently running on the system that belongs to that account.
3. Determine all files on the system belonging to the account.
4. Remove the user account.

It's easy to miss a step. The shell script utility in this section will help you avoid making such mistakes.

Obtain Correct Account Name
The first step in the account deletion process is the most important, obtaining the correct user account name to delete.
Because this is an interactive script, you can use the read command (see Chapter 13) to obtain the account name. If the script
user walks away and leaves the question hanging, you can use the -t option on the read command and timeout after giving

the script user 60 seconds to answer the question:

echo “Please enter the username of the user ”
echo -e “account you wish to delete from system: \c”
read -t 60 ANSWER
Because interruptions are part of life, it's best to give users three chances to answer the question. To accomplish this, use a

while loop (see Chapter 12) with the -z option to test if the ANSWER variable is empty. The ANSWER variable will be zero-

length when the script first enters the while loop because the question will be put at the end of the loop:

while [-z “$ANSWER”]
do
...
echo “Please enter the username of the user ”
echo -e “account you wish to delete from system: \c”
read -t 60 ANSWER
done
Now you need a way to communicate with the script user about when the first question timeout occurred, when there is

one more chance to answer the question, and so on. The case statement (see Chapter 11) is the structured command that will
work perfectly here. Using the incremented ASK_COUNT variable, you can set up different messages to communicate to the

script user. The code for this section looks like this:

case $ASK_COUNT in
2)
 echo
 echo “Please answer the question.”
 echo
;;
3)
 echo
 echo “One last try...please answer the question.”

www.it-ebooks.info

http://www.it-ebooks.info/

 echo
;;
4)
 echo
 echo “Since you refuse to answer the question...”
 echo “exiting program.”
 echo
 #
 exit
;;
esac

Now the script has all the structure it needs to ask the user what account to delete. There are several more questions in

this script you will need to ask the user and just asking that one question was a lot of code! Therefore, let's turn this piece of

code into a function (see Chapter 16) in order to use it in multiple locations in your Delete_User script.
The first thing you need to do is to declare the function's name, get_answer. Next, clear out any previous answers to

questions your script user gave using the unset command (see Chapter 5). The code to do these two items looks like this:

function get_answer {

unset ANSWER
The other item you need to change in the original code is the actual question to the script user. The script won't be asking

the same question each time, so let's create two new variables, LINE1 and LINE2, to handle question lines:

echo $LINE1
echo -e $LINE2“ \c”
However, not every question has two lines to display. Some will have only one line. Use an if construct (see Chapter 11)

to assist with this problem. The function will test if LINE2 is empty and only use LINE1 if it is:

if [-n “$LINE2”]
then
 echo $LINE1
 echo -e $LINE2“ \c”
else
 echo -e $LINE1“ \c”
fi
Finally, our function will need to clean up after itself by clearing out the LINE1 and LINE2 variables. Thus, the function

now looks like this:

function get_answer {

unset ANSWER
ASK_COUNT=0

while [-z “$ANSWER”]
do
 ASK_COUNT=$[$ASK_COUNT + 1]

 case $ASK_COUNT in

www.it-ebooks.info

http://www.it-ebooks.info/

 2)
 echo
...
 esac

 echo
 if [-n “$LINE2”]
 then #Print 2 lines
 echo $LINE1
 echo -e $LINE2“ \c”
 else #Print 1 line
 echo -e $LINE1“ \c”
 fi

 read -t 60 ANSWER
done

unset LINE1
unset LINE2

} #End of get_answer function
To ask the script user what account to delete, you need to set a few variables and then call the get_answer function.

Using the new function makes the script code much simpler:

LINE1=“Please enter the username of the user ”
LINE2=“account you wish to delete from system:”
get_answer
USER_ACCOUNT=$ANSWER
Because of potential typographical errors, you will want to verify the user account name that was entered. This will be

easy because we already have the code in place to handle asking a question:

LINE1=“Is $USER_ACCOUNT the user account ”
LINE2=“you wish to delete from the system? [y/n]”
get_answer
Once the question is asked, the script needs to process the answer. The variable ANSWER is once again carrying the script

user's answer to the question. If the user answered “yes,” you have the correct user account to delete and can continue on in
the script. You can use the case statement (see Chapter 11) to process the answer. Be sure to code the case statement so it

will check for the multiple ways the answer “yes” can be entered.

case $ANSWER in
y|Y|YES|yes|Yes|yEs|yeS|YEs|yES)

;;
*)
 echo
 echo “Because the account, $USER_ACCOUNT, is not ”
 echo “the one you wish to delete, we are leaving the script...”
 echo

www.it-ebooks.info

http://www.it-ebooks.info/

 exit
;;
esac
There will be many times the script will need to handle a yes/no answer from the user. Thus, once again, it makes sense to

create a function to handle this task. Only a few changes need to be made to the preceding code. Simply declare the
function's name and add the variables EXIT_LINE1 and EXIT_LINE2 to the case statement. These changes, along with

some variable cleanup at the end, will result in the process_answer function:

function process_answer {

case $ANSWER in
y|Y|YES|yes|Yes|yEs|yeS|YEs|yES)
;;
*)
 echo
 echo $EXIT_LINE1
 echo $EXIT_LINE2
 echo
 exit
;;
esac

unset EXIT_LINE1
unset EXIT_LINE2

} #End of process_answer function
A simple function call will now process the answer:

EXIT_LINE1=“Because the account, $USER_ACCOUNT, is not ”
EXIT_LINE2=“the one you wish to delete, we are leaving the script...”
process_answer
The user has given us the name of the account to delete and has verified it. Now is a good time to double check that the

user account really exists on the system. Also, it is a good idea to show the full account record to the script user to double
check this is really the account to delete. To accomplish these items, use a variable, USER_ACCOUNT_RECORD, and set it to the
outcome of a grep (see Chapter 4) search through the /etc/passwd file for the user account. The -w option will allow you

to make an exact word match in the user account records of this particular user account:

USER_ACCOUNT_RECORD=$(cat /etc/passwd | grep -w $USER_ACCOUNT)
If no user account record is found in /etc/passwd, that means the account has already been deleted or never existed in

the first place. In either case, you need to let the script user know this and exit the script. The exit status of the grep command

will help us out here. If the account record is not found, the ? variable will be set to 1:

if [$? -eq 1]
then
 echo
 echo “Account, $USER_ACCOUNT, not found. ”
 echo “Leaving the script...”
 echo
 exit
fi
If the record was found, you still need to verify with the script user that this is the correct account. Here is where all the

www.it-ebooks.info

http://www.it-ebooks.info/

If the record was found, you still need to verify with the script user that this is the correct account. Here is where all the

work we did to set up our functions will really pay off! All you will have to do is set the proper variables and call the

functions:

echo “I found this record:”
echo $USER_ACCOUNT_RECORD
echo

LINE1=“Is this the correct User Account? [y/n]”
get_answer

EXIT_LINE1=“Because the account, $USER_ACCOUNT, is not”
EXIT_LINE2=“the one you wish to delete, we are leaving the script...”
process_answer

Remove Account Processes
So far, you have obtained and verified the correct name of the user account to be deleted. In order to remove the user
account from the system, the account cannot own any processes currently running. Thus, your next step is to find and kill off

those processes. This is going to get a little complicated!
Finding the user processes will be the easy part. Here the script can use the ps command (see Chapter 4) and the -u option

to locate any running processes owned by the account. If any processes do exist, they will be displayed to the script user.

ps -u $USER_ACCOUNT
You can use the ps command's exit status and a case structure to determine the next step to take:

case $? in
1)
 echo “There are no processes for this account currently running.”
 echo
;;
0)
 unset ANSWER
 LINE1=“Would you like me to kill the process(es)? [y/n]”
 get_answer
...
esac
If the exit status returns a 1, then there are no processes running on the system that belong to the user account.

However, if the exit status returns a 0, then there are processes owned by this account running on the system. In this case, the
script needs to ask our script user if they would like to have these processes killed. You can accomplish this task by using the

get_answer function.
You might think that the next action the script will do is to call the process_answer function. Unfortunately, the next

item is too complicated for process_answer. You need to embed another case statement to process the script user's

answer. The first part of the case statement will look very similar to our process_answer function:

case $ANSWER in
 y|Y|YES|yes|Yes|yEs|yeS|YEs|yES) # If user answers “yes”,
 #kill User Account processes.
...
;;
*) # If user answers anything but “yes”, do not kill.
 echo

www.it-ebooks.info

http://www.it-ebooks.info/

 echo “Will not kill the process(es)”
 echo
;;
esac
As you can see, there is nothing too interesting in the case statement itself. Where things do get interesting is within the

“yes” section of the case statement. Here, the user account processes need to be killed. To do so, reissue the ps command,

this time sending the output to a temporary report file instead of the screen.

ps -u $USER_ACCOUNT > $USER_ACCOUNT_Running_Process.rpt
You can use the exec command and a while loop to read through the report file, similar to the method we used to read

through the backup configuration file in the Daily_Archive script.

exec < $USER_ACCOUNT_Running_Process.rpt
read USER_PROCESS_REC
while [$? -eq 0]
 do
...
 read USER_PROCESS_REC
 done
Within the while loop, extract the process ID (PID) from each running process's status record using the cut command.

Once you have the PID, use the kill command (see Chapter 4) with a -9 option to unconditionally terminate the process.

USER_PID=$(echo $USER_PROCESS_REC | cut -d “ ” -f1)
kill -9 $USER_PID
echo “Killed process $USER_PID”
Now with any user account–owned processes killed, the script can move on to the next step, finding all of the user

account's files.

Find Account Files
When a user account is deleted from the system, it is a good practice to archive all the files that belonged to that account.
Along with that practice, it is also important to remove the files or assign their ownership to another account. If the account
you delete has a User ID of 1003, and you don't remove or reassign those files, then the next account that is created with a

User ID of 1003 will own those files! You can see the security disasters that can occur in this scenario.
The Delete_User script will not do all of that for you, but it will create a report that can be used in the

Daily_Archive script as a backup configuration file. And you can use the report to help you remove or reassign the files.
To find the user's files, you can use the find command. The find command searches the entire filesystem with the -u

option, which will pinpoint any user account–owned files. The command looks like the following:

find / -user $USER_ACCOUNT > $REPORT_FILE
That was pretty simple compared to dealing with the user account processes! It gets even easier in the next step of the

Delete_User script, actually removing the user account.

Remove Account
It's always a good idea to be a little paranoid about removing a user account from the system. Therefore, you should ask one

more time if the script user really wants to remove the account.

LINE1=“Do you wish to remove $User_Account's account from system? [y/n]”
get_answer

EXIT_LINE1=“Since you do not wish to remove the user account,”
EXIT_LINE2=“$USER_ACCOUNT at this time, exiting the script...”

www.it-ebooks.info

http://www.it-ebooks.info/

process_answer
Finally, we get to the main purpose of our script, actually removing the user account from the system. Here you can use

the userdel command (see Chapter 6):

userdel $USER_ACCOUNT
Now that we've got all the pieces, we are ready to put them together into a whole, useful script utility.

Creating the Script
Remember that the Delete_User script is highly interactive with the script's user. Therefore, it is important to include a lot of

verbiage to keep the user informed about what is going on during the script's execution.
At the top of the script, the two functions get_answer and process_answer are declared. The script then steps into

the four steps of removing the user: obtaining and confirming the user account name; finding and killing the user's

processes; creating a report of all files owned by the user account; and actually removing the user account.
Here's the entire Delete_User script:

#!/bin/bash

#Delete_User - Automates the 4 steps to remove an account

Define Functions

function get_answer {

unset ANSWER
ASK_COUNT=0

while [-z “$ANSWER”] #While no answer is given, keep asking.
do
 ASK_COUNT=$[$ASK_COUNT + 1]

 case $ASK_COUNT in #If user gives no answer in time allotted
 2)
 echo
 echo “Please answer the question.”
 echo
 ;;
 3)
 echo
 echo “One last try...please answer the question.”
 echo
 ;;
 4)
 echo
 echo “Since you refuse to answer the question...”
 echo “exiting program.”

www.it-ebooks.info

http://www.it-ebooks.info/

 echo
 #
 exit
 ;;
 esac

 echo

 if [-n “$LINE2”]
 then #Print 2 lines
 echo $LINE1
 echo -e $LINE2“ \c”
 else #Print 1 line
 echo -e $LINE1“ \c”
 fi

Allow 60 seconds to answer before time-out
 read -t 60 ANSWER
done
Do a little variable clean-up
unset LINE1
unset LINE2

} #End of get_answer function

function process_answer {

case $ANSWER in
y|Y|YES|yes|Yes|yEs|yeS|YEs|yES)
If user answers “yes”, do nothing.
;;
*)
If user answers anything but “yes”, exit script
 echo
 echo $EXIT_LINE1
 echo $EXIT_LINE2
 echo
 exit
;;
esac

Do a little variable clean-up

www.it-ebooks.info

http://www.it-ebooks.info/

unset EXIT_LINE1
unset EXIT_LINE2

} #End of process_answer function

End of Function Definitions

############# Main Script ####################
Get name of User Account to check

echo “Step #1 - Determine User Account name to Delete ”
echo
LINE1=“Please enter the username of the user ”
LINE2=“account you wish to delete from system:”
get_answer
USER_ACCOUNT=$ANSWER

Double check with script user that this is the correct User Account

LINE1=“Is $USER_ACCOUNT the user account ”
LINE2=“you wish to delete from the system? [y/n]”
get_answer

Call process_answer funtion:
if user answers anything but “yes”, exit script

EXIT_LINE1=“Because the account, $USER_ACCOUNT, is not ”
EXIT_LINE2=“the one you wish to delete, we are leaving the script...”
process_answer

Check that USER_ACCOUNT is really an account on the system

USER_ACCOUNT_RECORD=$(cat /etc/passwd | grep -w $USER_ACCOUNT)

if [$? -eq 1] # If the account is not found, exit script
then
 echo
 echo “Account, $USER_ACCOUNT, not found. ”
 echo “Leaving the script...”
 echo
 exit
fi

www.it-ebooks.info

http://www.it-ebooks.info/

echo
echo “I found this record:”
echo $USER_ACCOUNT_RECORD
echo

LINE1=“Is this the correct User Account? [y/n]”
get_answer

Call process_answer function:
if user answers anything but “yes”, exit script

EXIT_LINE1=“Because the account, $USER_ACCOUNT, is not ”
EXIT_LINE2=“the one you wish to delete, we are leaving the script...”
process_answer

Search for any running processes that belong to the User Account

echo
echo “Step #2 - Find process on system belonging to user account”
echo
echo “$USER_ACCOUNT has the following processes running: ”
echo

ps -u $USER_ACCOUNT #List user processes running.

case $? in
1) # No processes running for this User Account
 #
 echo “There are no processes for this account currently running.”
 echo
;;
0) # Processes running for this User Account.
 # Ask Script User if wants us to kill the processes.
 #
 unset ANSWER
 LINE1=“Would you like me to kill the process(es)? [y/n]”
 get_answer
 #
 case $ANSWER in
 y|Y|YES|yes|Yes|yEs|yeS|YEs|yES) # If user answers “yes”,
 #kill User Account processes.

www.it-ebooks.info

http://www.it-ebooks.info/

 #
 echo
 #
 # Clean-up temp file upon signals
 trap “rm $USER_ACCOUNT_Running_Process.rpt” SIGTERM SIGINT SIGQUIT
 #
 # List user processes running
 ps -u $USER_ACCOUNT > $USER_ACCOUNT_Running_Process.rpt
 #
 exec < $USER_ACCOUNT_Running_Process.rpt # Make report Std Inp
ut
 #
 read USER_PROCESS_REC # First record will be blank
 read USER_PROCESS_REC
 #
 while [$? -eq 0]
 do
 # obtain PID
 USER_PID=$(echo $USER_PROCESS_REC | cut -d “ ” -f1)
 kill -9 $USER_PID
 echo “Killed process $USER_PID”
 read USER_PROCESS_REC
 done
 #
 echo
 rm $USER_ACCOUNT_Running_Process.rpt # Remove temp report.
 ;;
 *) # If user answers anything but “yes”, do not kill.
 echo
 echo “Will not kill the process(es)”
 echo

 ;;
 esac
;;
esac

Create a report of all files owned by User Account

echo
echo “Step #3 - Find files on system belonging to user account”
echo
echo “Creating a report of all files owned by $USER_ACCOUNT.”
echo

www.it-ebooks.info

http://www.it-ebooks.info/

echo “It is recommended that you backup/archive these files,”
echo “and then do one of two things:”
echo “ 1) Delete the files”
echo “ 2) Change the files' ownership to a current user account.”
echo
echo “Please wait. This may take a while...”

REPORT_DATE=‘date +%y%m%d’
REPORT_FILE=$USER_ACCOUNT“_Files_”$REPORT_DATE“.rpt”

find / -user $USER_ACCOUNT > $REPORT_FILE 2>/dev/null

echo
echo “Report is complete.”
echo “Name of report: $REPORT_FILE”
echo “Location of report: ‘pwd’”
echo
####################################
Remove User Account
echo
echo “Step #4 - Remove user account”
echo

LINE1=“Do you wish to remove $User_Account's account from system? [y/n]”
get_answer

Call process_answer function:
if user answers anything but “yes”, exit script

EXIT_LINE1=“Since you do not wish to remove the user account,”
EXIT_LINE2=“$USER_ACCOUNT at this time, exiting the script...”
process_answer

userdel $USER_ACCOUNT #delete user account
echo
echo “User account, $USER_ACCOUNT, has been removed”
echo

That was a lot of work! However, the Delete_User script will be a great timesaver and will help you avoid a lot of nasty

problems when deleting user accounts.

Running the Script
Because it is intended to be an interactive script, the Delete_User script should not be placed in the cron table. However, it
is still important to ensure it works as expected. We'll test the script by removing a consultant account that was set up for a

temporary consultant on the system.

www.it-ebooks.info

http://www.it-ebooks.info/

$./Delete_User
Step #1 - Determine User Account name to Delete

Please enter the username of the user
account you wish to delete from system: consultant

Is consultant the user account
you wish to delete from the system? [y/n] y

I found this record:
consultant:x:1004:1001:Consultant,,,,:/home/consultant:/bin/bash

Is this the correct User Account? [y/n] y

Step #2 - Find process on system belonging to user account

consultant has the following processes running:

PID TTY TIME CMD
There are no processes for this account currently running.

Step #3 - Find files on system belonging to user account

Creating a report of all files owned by consultant.

It is recommended that you backup/archive these files,
and then do one of two things:
1) Delete the files
2) Change the files' ownership to a current user account.

Please wait. This may take a while...

Report is complete.
Name of report: consultant_Files_110123.rpt
Location of report: /home/Christine

Step #4 - Remove user account

Do you wish to remove consultant's account from system? [y/n] y

User account, consultant, has been removed
$
That worked great! Now you have a script utility that will be of assistance when you need to delete user accounts. Even

better is that you can modify it to meet your organization's needs.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
This chapter put some of the shell-scripting information presented in the book to good use for creating Linux utilities. When
you're responsible for a Linux system, whether it's a large multi-user system or your own system, there are lots of things you

need to watch. Instead of manually running commands, you can create shell script utilities to do the work for you.
The chapter demonstrated how to use the du command to determine disk space consumption. The sed and gawk

commands were then used to retrieve specific information from the data. Passing the output from a command to sed and

gawk to parse data is a common function in shell scripts, so it's a good idea to know how to do it.
The next section walked you through using shell scripts for archiving and backing up data files on the Linux system. The

tar command is a popular command for archiving data. The chapter showed you how to use it in shell scripts to create archive

files, and how to manage the archive files in an archive directory.
We ended the chapter with information on using a shell script for the four steps needed to delete user accounts. Creating

functions for shell code that is repeated within a script makes the code easier to read and modify. This script combined many
of the different structured commands, such as the case and while commands. The chapter demonstrated the difference in

script structure for a script destined for the cron tables versus an interactive script.
Now we will move on to more advanced shell scripts that will help with more complex Linux system issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 27

Advanced Shell Scripts

In This Chapter

Monitoring system statistics
Problem-tracking database

In this chapter, we will look at more advanced methods to use in shell scripts. These techniques enable you to work with scripts

on your system in a variety of different ways.

Monitoring System Statistics
There are many utilities in the bash shell to help you keep an eye on Linux system performance and resource usage.
Unfortunately, it is difficult to find the time to use them, especially when you have several systems to manage. Creating a few

shell scripts to create reports using the output from these utilities can be an excellent use of your time.
This section will take you through the creation of some advanced shell scripts to assist you in monitoring various system

performance statistics.

System Snapshot Report
A nice way to stay informed about your system's performance and resource usage is via a snapshot report. A snapshot report
is a picture of a system's statistics at a certain point in time. A report of this kind is an “executive summary” of a system's

health.
The script to create this snapshot report can be run as many times a day as you want a picture. Even better, the script will

send you the report via e-mail.

The Required Functions
You will need to use four different bash shell commands to create the snapshot report: uptime, df, free, and ps. These

various commands will give you the statistics needed.

Up Time

The first command, uptime, is the most basic system statistics command:

$ uptime
14:15:23 up 1 day, 5:10, 3 users, load average: 0.66, 0.54, 0.33
The uptime command gives a few different basic pieces of information that we can use:

The current time
The number of days, hours, and minutes the system has been operational
The number of users currently logged into the system
The one, five, and fifteen minute load averages

The system's operational time is a great statistic to grab for our snapshot report. However, there is a problem in trying to
grab this statistic. You system may have only been up for a few minutes or it could have been up for days. (Rumor has it that
there are even some Linux servers that have run for years!) Here's the uptime command output for a system that has been

up for a few hours:

$ uptime
18:00:20 up 8:55, 3 users, load average: 0.62, 0.45, 0.37
And here's the uptime output for a system that has been up for a few days:

www.it-ebooks.info

http://www.it-ebooks.info/

$ uptime
13:29:32 up 3 days, 4:24, 4 users, load average: 1.44, 0.83, 0.46
As you can see, it's going to be tricky to gather the right statistic from this listing. The gawk command (see Chapter 16) can

do this job with no problems for a system that has been up for a few days:

$ uptime | gawk ‘{print $2,$3,$4,$5}’
up 3 days, 4:27,
However, this is what happens when the same gawk command is used on a system that has only been up for a few hours:

$ uptime | gawk ‘{print $2,$3,$4}’
up 8:59, 3 users,
To solve the dilemma, you can use a more advanced feature of gawk, the if statement (see Chapter 19). If the system has

been up for several days, the gawk variable $4 will contain the word “days.” To test $4 for the string “days,” your gawk

command should start to look like this:

$ uptime |
> gawk ‘{if ($4 == “days”) {print $2,$3,$4,$5} else {print $2,$3}}’
up 9:23,
You may run into the situation where the system has only been up for a single day. Thus, you need to test for the string

“day” as well. The Boolean operator or (||) will do the trick. Thus, your gawk command now looks like this:

gawk ‘{if ($4 == “days” || $4 == “day”) {print $2,$3,$4,
$5} else {print $2,$3}}’
Now what about those unsightly commas in the output? Using the sed command, you can simply replace them with

spaces.

$ uptime | sed -n ‘/,/s/,/ /gp’ |
> gawk ‘{if ($4 == “days” || $4 == “day”) {print $2,$3,$4,$5}
> else {print $2,$3}}’
up 9:32
That looks much better! And just to be sure, let's test out the command on a system that has been up for more than one

day:

$ uptime | sed -n ‘/,/s/,/ /gp’ |
> gawk ‘{if ($4 == “days” || $4 == “day”) {print $2,$3,$4,$5}
> else {print $2,$3}}’
up 3 days 4:34
That looks good, too. Now we can move on to another performance utility command to use for creating the system

snapshot report.

Disk Usage

The next command to help you create your snapshot report is df. The df command shows disk space usage statistics:

$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 307465076 185930336 105916348 64% /
none 503116 240 502876 1% /dev
none 508716 252 508464 1% /dev/shm
none 508716 100 508616 1% /var/run
...
The df command shows the current disk space statistics for all of the real and virtual disks on the system. You can pass an

individual disk name to the df command to retrieve information only for that particular disk. To help make the information

www.it-ebooks.info

http://www.it-ebooks.info/

individual disk name to the df command to retrieve information only for that particular disk. To help make the information

easier to read, add the -h (human readable) option to the command:

$ df -h /dev/sda2
Filesystem Size Used Avail Use% Mounted on
/dev/sda2 294G 178G 102G 64% /
$
The sed and gawk commands will help you again in parsing and printing out the needed information for the report.

Because we don't need to include the header line from the df command's output, use sed to search for something that is
unique to the data lines. The string % / is only found in the data lines. However, sed recognizes a forward slash as part of its
command structure. To solve this problem, put the escape character \ before the forward slash. This will allow sed to see the
forward slash as part of the string and conduct the search properly. Finally, use gawk to print the disk usage percentage,

which is in the gawk variable $5. The entire command line will look like this:

$ df -h /dev/sda2 | sed -n ‘/% \//p’ | gawk ‘{print $5}’
64%
This works great. Now let's move on to getting a snapshot of your system's memory.

Memory Usage
There are several different bash shell commands you can use to obtain memory statistics. For our purposes here, we are going

to concentrate on the free command.
The free command displays the total amount of physical memory, along with how much of it is free and how much of it is

allocated. It also displays that same data for the swap memory, and includes the kernel buffers. Here's an example of output

from the free command:

$ free
 total used free shared buffers cached
Mem: 1017436 890148 127288 0 31536 484100
-/+ buffers/cache: 374512 642924
Swap: 200776 0 200776
$
Because we pulled a percentage statistic for disk usage, it is a good idea to do the same for memory usage. However, you

will notice that the free command does not provide any usage percentages! Not a problem. Using the gawk command, you

can calculate a percentage.
The free command output is already nicely divided by spaces, so gawk can simply reference the two fields needed for

the calculation by their variable names. The $2 variable is the total memory available and the $3 variable is the total used

memory. By dividing $3 by $2, gawk will provide you a percentage of memory used:

$ free | sed -n ‘2p’ | gawk ‘x = ($3 /$2) {print x}’
0.87165
Notice that sed was used in the command to pull only the second line of data from the free command output, which

allows you to “throw out” the header line. The number produced is still not quite in the format needed for the report. You
can clean up the percentage via multiplying the number by 100 and truncating it with the gawk integer function, int. Finally,

tack on a percentage sign using sed:

$ free | sed -n ‘2p’ |
> gawk ‘x = int(($3 /$2)* 100) (print x)’ |
> sed ‘s/$/%/’
87%
Now the memory statistic is in the format you need for the report. Let's move on to the last item to include—zombies!

Zombie Processes
Zombies on a Linux system are processes caught in limbo. The process has completed its work, but is stuck in an uncompleted

state for various reasons. Thus, like its namesake, a zombie process is neither dead nor alive.

www.it-ebooks.info

http://www.it-ebooks.info/

While a zombie process or two is not a big deal on a Linux system, several of them can cause problems. A zombie holds a
process ID, which will not be released back to the process ID table until the zombie is killed off. Thus, another system statistic

to watch is the current number of zombie processes.
This is easily done with the ps command (see Chapter 4). The ps command along with the -al options will return all the

processes on the system along with their process states. A state of Z indicates the process is a zombie:

$ ps -al
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 T 1000 2174 2031 0 80 0 - 2840 signal pts/0 00:00:00 mail
0 T 1000 2175 2031 0 80 0 - 2839 signal pts/0 00:00:00 mail
1 Z 1000 8779 8797 0 80 0 - 0 exit pts/0 00:00:00 zomb <defunct
>
0 R 1000 8781 8051 0 80 0 - 1094 - pts/5 00:00:00 ps
$
Once again, the gawk command will help you here. With the output from the ps command piped into gawk, you simply

need to print out fields $2 and $4 to catch the process ID and its process state. However, you only want to show zombie

processes, so searching the output using the grep command will work. The command needed looks like the following:

$ ps -al | gawk ‘{print $2,$4}’ | grep Z
Z 8779
This will work wonderfully for the snapshot report. Now, that you have all the pieces, let's put them together into a

working script.

Creating the Snapshot Script
The first items you need to set up are the various variables to be used in the body of the script. These variables should be

included at the top of the script to allow them to be easily modified in the future.
Our snapshot report will need a date stamp, so a date variable, DATE, will be included. For the performance statistics, you

may have more than one disk to gather statistics for. Thus, an array variable, DISKS_TO_MONITOR, will include a list of all
your system's disks. Because different administrators set up different mail utilities, let's include a mail variable, MAIL, to
designate what utility is locally used (see Chapter 25). Also, because a particular system's mail command may be located in a
unique spot, you should use the which command (see Chapter 23) to find the mail command's location. Who to mail the

report to is in the variable, MAIL_TO. And, finally, the name of the report is set in the variable, REPORT.
The variable section of the snapshot script looks like the following:

Set Script Variables

DATE=‘date +%m%d%Y‘
DISKS_TO_MONITOR=“/dev/sda1 /dev/sda2”
MAIL=‘which mutt‘
MAIL_TO=user
REPORT=/home/user/Documents/$DATE.rpt
Because you are generating a report and mailing it out of the same script, you need to save and later restore the file

descriptor (see Chapter 14). The shell commands to save the file descriptor and redirect the output to STDOUT looks like this:

Create Report File

exec 3>&1 #Save file descriptor

exec 1> $REPORT #direct output to rpt file.
The following code, prior to the mail command, will restore STDOUT to its saved file descriptor:

Restore File Descriptor & Mail Report

www.it-ebooks.info

http://www.it-ebooks.info/

exec 1>&3 #Restore output to STDOUT
With all the various pieces together, the script now looks like the following:

#!/bin/bash

Snapshot_Stats - produces a report for system stats

Set Script Variables

DATE=‘date +%m%d%Y‘
DISKS_TO_MONITOR=“/dev/sda1 /dev/sda2”
MAIL=‘which mutt‘
MAIL_TO=user
REPORT=/home/user/Documents/Snapshot_Stats_$DATE.rpt

Create Report File

exec 3>&1 #Save file descriptor

exec 1> $REPORT #direct output to rpt file.

echo
echo -e “\t\tDaily System Report”
echo

Date Stamp the Report

echo -e “Today is “ ‘date +%m/%d/%Y‘
echo

1) Gather System Uptime Statistics

echo -e “System has been \c”
uptime | sed -n ‘/,/s/,/ /gp’ |
 gawk ‘{if ($4 == “days” || $4 == “day”)
 {print $2,$3,$4,$5}
 else {print $2,$3}}’

www.it-ebooks.info

http://www.it-ebooks.info/

2) Gather Disk Usage Statistics

echo
for DISK in $DISKS_TO_MONITOR #loop to check disk space
do
 echo -e “$DISK usage: \c”
 df -h $DISK | sed -n ‘/% \//p’ | gawk ‘{print $5}’
done

3) Gather Memory Usage Statistics

echo
echo -e “Memory Usage: \c”

free | sed -n ‘2p’ |
 gawk ‘x = int(($3 / $2) *100) {print x}’ |
 sed ‘s/$/%/’

4) Gather Number of Zombie Processes

echo
ZOMBIE_CHECK=‘ps -al | gawk ‘{print $2,$4}’ | grep Z‘

if [“$ZOMBIE_CHECK” = “”]
then
 echo “No Zombie Process on System at this Time”
else
 echo “Current System Zombie Processes”
 ps -al | gawk ‘{print $2,$4}’ | grep Z
fi
echo

Restore File Descriptor & Mail Report

exec 1>&3 #Restore output to STDOUT

$MAIL -a $REPORT -s “System Statistics Report for $DATE”
-- $MAIL_TO < /dev/null

Clean up

www.it-ebooks.info

http://www.it-ebooks.info/

rm -f $REPORT

Notice that when the script reaches step #4, it first checks for zombie processes by using the results of the ps command

put into the variable ZOMBIE_CHECK. If the variable is found to be empty, the script reports that no zombie processes exist.

Otherwise, it lists out all current processes with a Z state.
Now, test out the new snapshot report script and see how well it performs.

$
$./Snapshot_Stats
Not too much to see there. But if you get into your e-mail client, in this case Mutt, you will be able to see the snapshot

report's output as shown in Figure 27.1.

Figure 27.1 Displaying a snapshot report in mutt

The snapshot report is very useful for giving you a picture of a system's overall health. However, this type of report does

not let you see various trends in performance and resource usage that occur over time. Therefore, let's move on to a set of

scripts that will provide you with that type of information

System Statistics Report
The core statistics of any Linux system are the CPU and memory usage. If these values start getting out of control, things can
go wrong very quickly. This section demonstrates how to write scripts to help you monitor and track the CPU and memory

usage on your Linux system over a period of time.

The Required Functions
The purpose of this first script will be to gather performance statistics into a data file for later use. Thus, you need to

determine exactly what data you want to gather with your script and what commands to use.

www.it-ebooks.info

#c27_fig_0001
#c27_fig_anc_0001
http://www.it-ebooks.info/

For this script, we'll use the uptime command again. Except this time, instead of grabbing the amount of time the system
has been up, we'll grab the number of users on the system. The number of users directly affects CPU and memory usage.
Using sed, we'll search the uptime command's output text for the word “users.” After the word is located in the current line,
have sed just remove the rest of the text line, including the word “users.” This will leave the statistic you want, number of
users on the system, as the last item in the line. To obtain that last data item, you can use the gawk variable, NF. The entire

command line and its output will look like this:

$ uptime | sed ‘s/users.*$//’ | gawk ‘{print $NF}’
4
System load is another good statistic you can parse out of the uptime command output. System load shows, on average,

how busy a CPU is on a system. A load average of 1 means a single CPU is busy all the time. However, if you have two CPUs on
your system, this means that each one is only 50 percent busy. System load from the uptime command comes in averages for
the last minute, for the last five minutes, and for the last fifteen minutes. We'll get the last fifteen minutes' average system

load statistic, which is conveniently located at the end of the output text line:

$ uptime | gawk ‘{print $NF}’
0.19
Another great command for extracting system information is vmstat. Here's an example of the output from the vmstat

command:

$ vmstat
procs -----------memory---------- ---swap-- -----io---- -system-- ----
cpu----
r b swpd free buff cache si so bi bo in cs us sy i
d wa
0 0 11328 42608 165444 502500 0 0 1 2 68 10 1 0 9
9 0
The first time you run the vmstat command, it displays the average values since the last reboot. To get the current

statistics, you must run the vmstat command with command line parameters:

$ vmstat 1 2
procs -----------memory---------- ---swap-- -----io---- -system-- ----
cpu----
r b swpd free buff cache si so bi bo in cs us sy i
d wa
0 0 11328 43112 165452 502444 0 0 1 2 68 10 1 0 9
9 0
0 0 11328 40540 165452 505064 0 0 0 0 58 177 1 1 9
8 0
The second line contains the current statistics for the Linux system. As you can see, the output from the vmstat command

is somewhat cryptic. Table 27.1 explains what each of the symbols means.

Table 27.1 The vmstat Output Symbols

Symbol Description

r The number of processes waiting for CPU time

b The number of processes in uninterruptible sleep

swpd The amount of virtual memory used (in MB)

free The amount of physical memory not used (in MB)

buff The amount of memory used as buffer space (in MB)

www.it-ebooks.info

#c27_tbl_0001
#c27_tbl_anc_0001
http://www.it-ebooks.info/

cache The amount of memory used as cache space (in MB)

si The amount of memory swapped in from disk (in MB)

so The amount of memory swapped out to disk (in MB)

bi Number of blocks received from a block device

bo Number of blocks sent to a block device

in The number of CPU interrupts per second

cs The number of CPU context switches per second

us Percent of CPU time spent running non-kernel code

sy Percent of CPU time spent running kernel code

id Percent of CPU time spent idle

wa Percent of CPU time spent waiting for I/O

This is a lot of information. The free memory and percent of CPU time spent idle statistics will work for our purposes here.
You may have also noticed that the output from the vmstat command includes table heading information, which you

obviously don't want in your data. To solve that problem, use the sed command to display only lines that have a numerical

value in them:

$ vmstat 1 2 | sed -n ‘/[0-9]/p’
1 0 11328 38524 165476 506548 0 0 1 2 68 10 1 0 99 0
0 0 11328 35820 165476 509528 0 0 0 0 82 160 1 1 98 0
That's better, but now you need to get only the second line of data. Another call to sed can solve that problem:

$ vmstat 1 2 | sed -n ‘/[0-9]/p’ | sed -n ‘2p’
0 0 11328 36060 165484 509560 0 0 0 0 58 175 1 1 99 0
Now you can easily extract the data value you want using gawk.
Finally, you'll want to tag each performance data record with a date and timestamp to indicate when the statistics were

taken. Simply use the date command, specifying the format you want in the data record.

$ date +“%m/%d/%Y %k:%M:%S”
12/12/2010 13:55:31
Now consider how you want to record the performance data values. For data that you sample on a regular basis, often

it's best to output the data directly to a log file. You can create this file in your $HOME directory, appending data each time

you run the shell script. When you want to see the results, you simply view the log file.
You'll want to ensure that the data in the log file can be read easily. There are many different methods you can use to

format the data in the log file. A popular format is comma-separated values (CSV). This format places each record of data on a
separate line, and separates the data fields in the record with commas. This is a popular format as it's easily imported into

spreadsheets, databases, and reporting utilities.
The script will save data in a CSV-formatted file. The reporting script we create later on in this chapter will use this file.

Creating the Capture Script
This script, used to capture the data, is really pretty simple once you have all the needed functions in place. Here's what it

looks like:

#!/bin/bash

www.it-ebooks.info

http://www.it-ebooks.info/

Capture_Stats - Gather System Performance Statistics

Set Script Variables

REPORT_FILE=/home/user/Documents/capstats.csv
DATE=‘date +%m/%d/%Y‘
TIME=‘date +%k:%M:%S‘

Gather Performance Statistics

USERS=‘uptime | sed ‘s/users.*$//’ | gawk ‘{print $NF}’‘
LOAD=‘uptime | gawk ‘{print $NF}’‘

FREE=‘vmstat 1 2 | sed -n ‘/[0-9]/p’ | sed -n ‘2p’ |
gawk ‘{print $4}’‘
IDLE=‘vmstat 1 2 | sed -n ‘/[0-9]/p’ | sed -n ‘2p’ |
gawk ‘{print $15}’‘

Send Statistics to Report File

echo “$DATE,$TIME,$USERS,$LOAD,$FREE,$IDLE” >> $REPORT_FILE

This script parses out the statistics from the uptime and vmstat commands and places them into variables. Those

variables are then written to the log file, REPORT_FILE, separated by commas, along with a date and time stamp. Notice that
the data is appended to the log file using the >> redirection symbol. This will allow you to continue adding data onto the log

file for as long as you deem necessary.
After creating the script, you should probably test it from the command line before having it run regularly from your

cron table:

$ cat capstats.csv
12/09/2010, 9:06:50,2,0.29,645988,99
12/09/2010, 9:07:55,2,0.28,620252,100
12/09/2010, 9:40:51,3,0.37,474740,100
12/10/2010,14:36:46,3,0.30,46640,98
12/12/2010, 7:16:26,4,0.25,27308,98
12/12/2010,13:28:53,4,0.42,58832,100
The next script will create a report from the CSV data and e-mail it to the appropriate individual(s). Because the reporting

script will be a separate script, you can have cron run it on a different time schedule than the Capture_Stats script. This

will give you flexibility in how much data you capture before it is reported.

Generating the Report Script
Now that you have a file full of raw data, you can start working on the script to generate a nice report. The best tool for this

is the gawk command.
The gawk command will allow you to extract the raw data from the CSV file and present it in any manner desired. First,

test this from the command line, using the new capstats.csv file created by the Capture_Stats script:

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat capstats.csv |
> gawk -F, ‘{printf “%s %s - %s\n”, $1, $2, $4}’
12/09/2010 9:06:50 - 0.29
12/09/2010 9:07:55 - 0.28
12/09/2010 9:40:51 - 0.37
12/10/2010 14:36:46 - 0.30
12/12/2010 7:16:26 - 0.25
12/12/2010 13:28:53 - 0.42
You need to use the -F option for the gawk command to define the comma as the field separator character in your data.

After that, you can retrieve each individual data field and display it as you need with the printf feature.
For the report, we'll be using HTML format. HTML has been the standard method for formatting Web pages for years. It

uses simple tags to delineate data types within the Web page. However, HTML is not just for Web pages. You'll often find
HTML used in e-mail messages as well. Depending on your mail utility (see Chapter 25), you may or may not be able to view an

embedded HTML e-mail document. A better solution is to create the HTML report and attach it to the e-mail message.
Creating the report with HTML allows you to produce a nicely formatted report with a minimum amount of work. The

program that displays the report will do all the hard work of formatting and displaying the report. All you need to do is

insert the appropriate HTML tags to format the data.
The easiest way to display spreadsheet-style data in HTML is with the <table> tag. The table tag allows you to create a

table with rows and cells, which are called “divisions” in HTML. You define the start of a row using the <tr> tag, and the end

of the row with the </tr> tag. Similarly, you define cells using the <td> and </td> tag pair.
The HTML for a full table looks like this:

<html>
<body>
<h2>Report title</h2>
<table border=“1”>
<tr>
 <td>Date</td><td>Time</td><td>Users</td>
 <td>Load</td><td>Free Memory</td><td>%CPU Idle</td>
</tr>
<tr>
 <td>12/09/2010</td><td>11:00:00</td><td>4</td>
 <td>0.26</td><td>57076</td><td>87</td>
</tr>
</table>
</body>
</html>
Each data record is part of a <tr>...</tr> tag pair. Each data field is within its own <td>...</td> tag pair.
When you display the HTML report in a browser, the browser creates the table automatically for you, as shown in Figure

27.2.

Figure 27.2 Displaying data in an HTML table

www.it-ebooks.info

#c27_fig_0002
#c27_fig_anc_0002
http://www.it-ebooks.info/

Figure 27.2 Displaying data in an HTML table

For the script, all you need to do is generate the HTML heading code by using echo commands, generate the data HTML

code by using the gawk command, and then close out the table, again by using echo commands.
Here's the Report_Stats script, which will generate the performance report and mail it off:

#!/bin/bash

Report__Stats - Generates Rpt from Captured Perf Stats

Set Script Variables

REPORT_FILE=/home/user/Documents/capstats.csv
TEMP_FILE=/home/user/Documents/capstats.html

DATE=‘date +%m/%d/%Y’

MAIL=‘which mutt’
MAIL_TO=user

Create Report Header

echo “<html><body><h2>Report for $DATE</h2>” > $TEMP_FILE

www.it-ebooks.info

#c27_fig_anc_0002
http://www.it-ebooks.info/

echo “<table border=\”1\“>” >> $TEMP_FILE
echo “<tr><td>Date</td><td>Time</td><td>Users</td>” >> $TEMP_FILE
echo “<td>Load</td><td>Free Memory</td><td>%CPU Idle</td></tr>” >>
$TEMP_FILE

Place Performance Stats in Report

cat $REPORT_FILE | gawk -F, ‘{
printf “<tr><td>%s</td><td>%s</td><td>%s</td>”, $1, $2, $3;
printf “<td>%s</td><td>%s</td><td>%s</td>\n</tr>\n”, $4, $5, $6;
}’ >> $TEMP_FILE

echo “</table></body></html>” >> $TEMP_FILE

Mail Performance Report & Clean up

$MAIL -a $TEMP_FILE -s “Peformance Report $DATE”
-- $MAIL_TO < /dev/null

rm -f $TEMP_FILE

We use mutt to mail off our performance report, but you can change it to your local e-mail client. The name of the

temporary HTML report file can also be modified to better suit your needs.

Caution

Most e-mail clients can automatically detect the type of file attachment by the file
extension. For this reason, you should end your report file name with .html .

Running the Script

After creating the Report_Stats script, give it a test run from the command line and see what happens:

$
$./Report_Stats
Well, that wasn't too exciting. The real test now is to view your mail message, preferably in a graphical e-mail client such as

KMail or Evolution. Figure 27.3 demonstrates how to view the message from the Evolution e-mail client. Notice how the data is

all nicely formatted using the HTML tables, just as it was when viewing from the browser!

Figure 27.3 Viewing the report attachment in Evolution

www.it-ebooks.info

#c27_fig_0003
#c27_fig_anc_0003
http://www.it-ebooks.info/

Figure 27.3 Viewing the report attachment in Evolution

Now you have scripts to generate two different reports that will help you track system performance and avoid problems

due to a lack of resources, and so on. However, even excellent system monitoring cannot stop unexpected problems from
occurring. Quickly solving those unexpected problems and learning from them can be helpful in minimizing their effects in
the future. Therefore, in the next section, we'll take you through creating advanced database scripts that will allow you to

track problems.

Problem-Tracking Database
Every system is doomed to experience the unexpected. However, analysis of a problem will allow you to make changes that
will minimize future unexpected difficulties. It is also helpful to have a record of how you solved a problem, just in case it
does happen again. There is an even bigger benefit when you work with a team of individuals who can record
problems/solutions they experience. The problem/solution information can be more easily disseminated amongst the team

members.
In this section, we take you through the process of setting up a basic problem-tracking database. Also, we help you create

a few advanced scripts to record, update, and review the problems and their solutions.

Creating the Database
Planning the database structure will be the most important part of creating the problem-tracking database. You need to
determine what kind of information you would like to track and who will have access to modify and use the data stored within

the database.
The primary purpose for this database is to record a problem and how it was fixed so that you can use the information to

solve future similar problems more quickly. To achieve this purpose, you should track the following information:

www.it-ebooks.info

#c27_fig_anc_0003
http://www.it-ebooks.info/

The date the problem was reported
The date the problem was fixed
A description of the problem and its symptoms
A description of the problem's resolution

We'll use mysql (see Chapter 23) as the database system for our problem-tracking database. To begin, you create an

empty database:

$ $ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
...
mysql> CREATE DATABASE Problem_Trek;
Query OK, 1 row affected (0.02 sec)

mysql>
With an empty database created, a table can now be added. We'll create one table, problem_logger, with four fields to

contain the problem information. In addition, you will need one more field, id_number, to act as a primary key for your

database. Table 27.2 shows the five fields needed.

Table 27.2 The Problem_Logger Table Fields

Field Name Data Type

id_number integer

report_date date

fixed_date date

prob_symptoms text

prob_solutions text

Creating this table in mysql is fairly straightforward:

mysql> USE Problem_Trek;
Database changed
mysql>
mysql> CREATE TABLE problem_logger (
-> id_number int not null,
-> report_date Date,
-> fixed_date Date,
-> prob_symptoms text,
-> prob_solutions text,
-> primary key (id_number));
Query OK, 0 rows affected (0.04 sec)

mysql>
Note that the USE command was issued to ensure we are creating our new table in the correct database. Let's take

another look at the new problem_logger table using the DESCRIBE command. This is a nice clear way to display the fields

added to our table:

www.it-ebooks.info

#c27_tbl_0002
#c27_tbl_anc_0002
http://www.it-ebooks.info/

mysql> DESCRIBE problem_logger;
+----------------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------------+---------+------+-----+---------+-------+
id_number	int(11)	NO	PRI	NULL	
report_date	date	YES		NULL	
fixed_date	date	YES		NULL	
prob_symptoms	text	YES		NULL	
prob_solutions	text	YES		NULL	
+----------------+---------+------+-----+---------+-------+
5 rows in set (0.01 sec)

mysql>
So far, we had to use the root account to create the database and the table. Now that those steps are completed, the

root account is no longer necessary for your work here. As you learned in Chapter 23, it is not a good practice to use the
root account for database scripts. Thus, you need to add a new account to the database with the appropriate permissions.

This account will be the one the scripts use to utilize the Problem_Trek database:

mysql> GRANT SELECT,INSERT,DELETE,UPDATE ON Problem_Trek.* TO
-> cbres IDENTIFIED BY ‘test_password’;
Query OK, 0 rows affected (0.03 sec)

mysql>
Once you have added a new user account to the database, be sure to test it out:

$ mysql Problem_Trek -u cbres -p
Enter password:
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
...
mysql>
The new account works perfectly! Now, one more step and you will be ready to start working on the needed functions

for our database scripts. Using your favorite text editor, create the special configuration file, $HOME/.my.cnf, containing
the password you set for the new user account created earlier. This will allow the scripts to access the mysql program without

having to include a password within them.

$ cat $HOME/.my.cnf
[client]
password=test_password
$
And don't forget to restrict it to your access only:

$ chmod 400 $HOME/.my.cnf
Now the Problem_Trek database has been created and appropriate access has been set up for it. You are ready to start

working on the database scripts.

Recording a Problem

www.it-ebooks.info

http://www.it-ebooks.info/

The first step in tracking a problem is recording its symptoms. Because recording a problem can be time-consuming using

mysql commands, we will simplify the process by wrapping an easy-to-use script around them.

The Required Functions
To put problem information into your problem_logger table, you can use the mysql INSERT command (see Chapter 23).

To insert a new record into the problem_logger table, you issue these commands:

$
$ mysql Problem_Trek -u cbres -p
Enter password:
...
mysql> INSERT INTO problem_logger VALUES (
-> 1012111322,
-> 20101211,
-> 0,
-> “When trying to run script Capture_Stats, getting message: bash:
 ./Capture_Stats: Permission denied”,
-> “”);
Query OK, 1 row affected (0.02 sec)

mysql>
That was pretty easy. You can look at the record you just put into the table by using the SELECT command. By specifying

the new record's ID number to WHERE, only the record just entered will be shown:

mysql> SELECT * FROM problem_logger WHERE id_number=1012111322;
 +-----------+-------------+------------+---------------+----------------
+
 | id_number | report_date | fixed_date | prob_symptoms | prob_solutions |

 +-----------+-------------+------------+---------------+----------------
+
 | 1012111322 | 2010-12-11 | 0000-00-00 | When trying to run script
 Capture_Stats, getting message: bash:./Capture_Stats: Permission denied|
 |
 +-----------+-------------+------------+---------------+----------------
+
1 row in set (0.00 sec)
mysql>
While you can see the record entered, it is hard to read the data in this format. To make the record easier to read, you can

add a \G on the end of the command instead of a semicolon (;):

mysql> SELECT * FROM problem_logger WHERE id_number=1012111322\G
*************************** 1. row ***************************
id_number: 1012111322
report_date: 2010-12-11
fixed_date: 0000-00-00
prob_symptoms: When trying to run script Capture_Stats,
 getting message: bash:./Capture_Stats: Permission denied

www.it-ebooks.info

http://www.it-ebooks.info/

prob_solutions:
1 row in set (0.00 sec)

mysql>
That looks much better and will work well within a script. Those two mysql commands are the main functions needed for

the script. Thus, we can begin to build the Record_Problem script.

Creating the Script
In Chapter 23, you learned that it was wise to use the which command to find the mysql command on your particular
system and then assign it to an environment variable. You can take that a step further and add the database name and user

account for mysql to use:

MYSQL=‘which mysql‘“ Problem_Trek -u cbres”

The Record_Problem is an interactive script. To keep it simple, you can ask questions to obtain the needed information.

As the script obtains answers, it will assign them to various variables. Once all the data is gathered, you use the variable names
along with the INSERT command to enter the information into the database. This way, the script user can be blissfully

ignorant of the necessary mysql commands:

INSERT INTO problem_logger VALUES (
 $ID_NUMBER,
 $REPORT_DATE,
 $FIXED_DATE,
 “$PROB_SYMPTOMS”,
 “$PROB_SOLUTIONS”);
The ID_NUMBER variable will be used for the primary key field in the table. Because it is a primary key field, the ID

numbers will need to be unique for each problem recorded. To keep it simple for the script user, an automatically generated
ID number should be used. To keep it unique, you can use a combination of the current date and time to produce the

necessary 10-digit key:

ID_NUMBER=‘date +%y%m%d%H%M‘

Because this script is only for recording the problem, you don't necessarily have data yet for the FIXED_DATE and

PROB_SOLUTIONS variables. Thus, set both of these variables to the appropriate null values before inserting the record into

the table:

Set Fixed Date & Problem Solution to null for now
FIXED_DATE=0
PROB_SOLUTIONS=””

To show the successful addition of the problem record, add a SELECT statement to the script. To keep the entire

database's contents from displaying, the WHERE command will use the ID_NUMBER variable to select only the record just

added:

SELECT * FROM problem_logger WHERE id_number=$ID_NUMBER\G
Putting all these pieces together will result in a script as follows:

#!/bin/bash

Record_Problem - records system problems in database

www.it-ebooks.info

http://www.it-ebooks.info/

Determine mysql location & put into variable

MYSQL=‘which mysql‘“ Problem_Trek -u cbres”

Create Record Id & Report_Date

ID_NUMBER=‘date +%y%m%d%H%M‘

REPORT_DATE=‘date +%Y%m%d‘

Acquire information to put into table

echo
echo -e “Briefly describe the problem & its symptoms: \c”

read ANSWER
PROB_SYMPTOMS=$ANSWER

Set Fixed Date & Problem Solution to null for now
FIXED_DATE=0
PROB_SOLUTIONS=””

Insert acquired information into table

echo
echo “Problem recorded as follows:”
echo
$MYSQL <<EOF
INSERT INTO problem_logger VALUES (
 $ID_NUMBER,
 $REPORT_DATE,
 $FIXED_DATE,
 “$PROB_SYMPTOMS”,
 “$PROB_SOLUTIONS”);
SELECT * FROM problem_logger WHERE id_number=$ID_NUMBER\G
EOF

Now, test out the Record_Problem script and see if it's ready for use:

www.it-ebooks.info

http://www.it-ebooks.info/

$./Record_Problem

Briefly describe the problem & its symptoms:
Running yum to install software and
getting ‘not found’ message.

Problem recorded as follows:

*************************** 1. row ***************************
id_number: 1012111510
report_date: 2010-12-11
fixed_date: 0000-00-00
prob_symptoms:
Running yum to install software and getting ‘not found’ message.
prob_solutions:
$
That works wonderfully! You can see how it is so much easier to use a script like this to record problems than trying to

insert them using the individual mysql commands.
Now that you have a way to record the problems, you need a way to update the records. Let's move on to creating the

Update_Problem script.

Updating a Problem
The next step in tracking a problem is recording the problem's solution. The script created in this section will allow that

information to be added to the problem's record.

The Required Functions
Updating records using mysql is very straightforward. Once all the necessary data is obtained, you just use the mysql
UPDATE command:

UPDATE problem_logger SET
 prob_solutions=“$PROB_SOLUTIONS”,
 fixed_date=$FIXED_DATE
 WHERE id_number=$ID_NUMBER;
That's pretty easy. However, putting together the Update_Problem script will take a little more than just using the

UPDATE function.

Creating the Script
As in the previous script, we want to keep things fairly easy for the script user. Several additions are needed to reach that goal.

The primary key for the Problem_Trek database, id_number, is needed to identify the record to update. If the ID
number is known, it can be passed as a parameter to the script (see Chapter 13). All you need to do is check for the parameter

and assign it to the variable ID_NUMBER. If the ID number is not passed as a parameter, the script will ask for it:

if [$# -eq 0] #Check if id number was passed
then #if not passed ask for it.

...
 echo

www.it-ebooks.info

http://www.it-ebooks.info/

 echo “What is the ID number for the”
 echo -e “problem you want to update?: \c”
 read ANSWER
 ID_NUMBER=$ANSWER
else
 ID_NUMBER=$1
fi
However, asking for the problem ID number is a little unfair. Not too many individuals carry around in their heads a 10-

digit number for identifying a particular problem they are solving. Thus, you should provide a list of the various unresolved

problems in the database, making it easier on the script user.
First, check if there are any unresolved records. The fields that will be empty are fixed_date and prob_solutions. If

either of these fields is empty, the record needs to be updated; with SELECT you can use the OR command in the WHERE

statement to search both fields. The code to accomplish this looks like the following:

RECORDS_EXIST=‘$MYSQL -Bse ‘SELECT id_number FROM problem_logger
WHERE fixed_date=“0000-00-00” OR prob_solutions=“”’‘
Notice that the output of the command is assigned to the variable RECORDS_EXIST. The -Bse options had to be used on

the mysql command in order to do this. They allow the command to be executed in batch (all at once) and then exit. If the
RECORDS_EXIST variable contains data, then there are records that need updating. Display them to the screen using the

following:

 if [“$RECORDS_EXIST” != “”]
 then
 echo
 echo “The following record(s) need updating...”
 $MYSQL <<EOF
 SELECT id_number, report_date, prob_symptoms
 FROM problem_logger
 WHERE fixed_date=“0000-00-00” OR
 prob_solutions=””\G

EOF
 fi

This will provide a nice list of unfinished problem records along with their ID numbers. Picking an ID number from a list is

much easier than trying to remember the numbers!
Now you can put together an entire script for updating records that will be simple to use. It should look similar to the

following:

#!/bin/bash

Update_Problem - updates problem record in database

Determine sql location & set variable

MYSQL=‘which mysql‘“ Problem_Trek -u cbres”

Obtain Record Id

www.it-ebooks.info

http://www.it-ebooks.info/

if [$# -eq 0] #Check if id number was passed
then #if not passed ask for it.

Check if any unfinished records exist.
 RECORDS_EXIST=‘$MYSQL -Bse ‘SELECT id_number FROM problem_logger
WHERE fixed_date=“0000-00-00” OR prob_solutions=“”’‘

 if [“$RECORDS_EXIST” != “”]
 then
 echo
 echo “The following record(s) need updating...”
 $MYSQL <<EOF
 SELECT id_number, report_date, prob_symptoms
 FROM problem_logger
 WHERE fixed_date=“0000-00-00” OR
 prob_solutions=””\G

EOF
 fi

 echo
 echo “What is the ID number for the”
 echo -e “problem you want to update?: \c”
 read ANSWER
 ID_NUMBER=$ANSWER
else
 ID_NUMBER=$1
fi

Obtain Solution (aka Fixed) Date

echo
echo -e “Was problem solved today? (y/n) \c”
read ANSWER

case $ANSWER in
y|Y|YES|yes|Yes|yEs|yeS|YEs|yES)

 FIXED_DATE=‘date +%Y%m%d‘
;;
*)

www.it-ebooks.info

http://www.it-ebooks.info/

If answer is anything but yes, ask for date
 echo
 echo -e “What was the date of resolution? [YYYYMMDD] \c”
 read ANSWER

 FIXED_DATE=$ANSWER
;;
esac

Acquire problem solution

echo
echo -e “Briefly describe the problem solution: \c”

read ANSWER
PROB_SOLUTIONS=$ANSWER

Update problem record

echo
echo “Problem record updated as follows:”
echo
$MYSQL <<EOF
UPDATE problem_logger SET
 prob_solutions=“$PROB_SOLUTIONS”,
 fixed_date=$FIXED_DATE
 WHERE id_number=$ID_NUMBER;
SELECT * FROM problem_logger WHERE id_number=$ID_NUMBER\G
EOF

Give this script a test and see how well it performs.

$./Update_Problem

The following record(s) need updating...
*************************** 1. row ***************************
id_number: 1012111624
report_date: 2010-12-11
prob_symptoms: Running yum to install software and getting
‘not found’ message.

What is the ID number for the

www.it-ebooks.info

http://www.it-ebooks.info/

problem you want to update?: 1012111624

Was problem solved today? (y/n) y

Briefly describe the problem solution: Network service was down.
 Issued the command: service network restart

Problem record updated as follows:

*************************** 1. row ***************************
id_number: 1012111624

report_date: 2010-12-11
fixed_date: 2010-12-11
prob_symptoms: Running yum to install software and getting
‘not found’ message.
prob_solutions: Network service was down.
Issued the command: service network restart
$
This works very well and is rather simple to use.

An Addition
Now to make this process even easier for the script user, let's modify the Record_Problem script to call Update_Problem,
if desired. Sometimes, when you get busy, it is easier to record problems in “batch.” At the very end of the original

Record_Problem script, you can add the following code:

Check if want to enter a solution now

echo
echo -e “Do you have a solution yet? (y/n) \c”
read ANSWER

case $ANSWER in
y|Y|YES|yes|Yes|yEs|yeS|YEs|yES)
 ./$HOME/scripts/Update_Problem $ID_NUMBER

;;
*)
If answer is anything but yes, just exit script
;;
esac

Now let's test this modification to see if it works:

$./Record_Problem

www.it-ebooks.info

http://www.it-ebooks.info/

Briefly describe the problem & its symptoms:
Moved script from Fedora to Ubuntu and was not working properly.

Problem recorded as follows:

*************************** 1. row ***************************
id_number: 1012111631
report_date: 2010-12-11
fixed_date: 0000-00-00
prob_symptoms:
Moved script from Fedora to Ubuntu and was not working properly.
prob_solutions:
Do you have a solution yet? (y/n) y

Was problem solved today? (y/n) y

Briefly describe the problem solution:
Added #!/bin/bash to the top of the script.
This is needed because Ubuntu's default shell is dash.

Problem record updated as follows:

*************************** 1. row ***************************
id_number: 1012111631
report_date: 2010-12-11
fixed_date: 2010-12-11
prob_symptoms:
Moved script from Fedora to Ubuntu and was not working properly.
prob_solutions: Added #!/bin/bash to the top of the script.
This is needed because Ubuntu's default shell is dash.
$
This works perfectly. Now you have made it very easy to record and update the records in the Problem_Trek database.

Finding a Problem
The real beauty of having a database such as Problem_Trek is the ability to review the records. Looking at past problems

and their solutions will allow you to resolve repeat problems quickly and spot trends.

The Required Functions
To find records in the table to review, you can again use the SELECT command. We have used it previously in this chapter for

purposes such as viewing newly added records in the problem_logger table:

SELECT * FROM problem_logger WHERE id_number=$ID_NUMBER\G
For the Find_Problem script, a slight change needs to be made to the SELECT command we used previously. So that old

problems can be easily found, the script will ask for a keyword to be entered. Thus, if you remembered that you had a
problem with yum last month, you would enter the keyword “yum.” To search the database for a record containing that

keyword, add on the command LIKE to the script's SELECT statement. The code looks similar to the following:

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT * FROM problem_logger
-> WHERE prob_symptoms LIKE ‘yum’\G
Empty set (0.00 sec)
Wait, that didn't work! This is due to the fact that wildcards are needed. To find the word “yum” buried in the

prob_symptoms field, a wildcard needs to be added to both sides of the keyword. In effect, you are telling mysql to find a
record whose prob_symptoms field contains the word “yum.” The wildcard symbol to use is the percentage sign (%). Thus,

your code should look like this:

mysql> SELECT * FROM problem_logger
-> WHERE prob_symptoms LIKE ‘%yum%’\G
*************************** 1. row ***************************
id_number: 1012111624
report_date: 2010-12-11
fixed_date: 2010-12-11
prob_symptoms: Running yum to install software and getting
‘not found’ message.
prob_solutions: Network service was down.
Issued the command: service network restart
1 row in set (0.00 sec)
You will want the SELECT command to search the prob_solutions field as well as the prob_symptoms field, which

will allow a more thorough search for the desired record:

mysql> SELECT * FROM problem_logger WHERE
-> prob_symptoms LIKE ‘%yum%’
-> OR
-> prob_solutions LIKE ‘%yum%’\G
*************************** 1. row ***************************
id_number: 1012111624
...

Note

If you are worried about case sensitivity, don't be. By default, mysql will ignore
case, so you can enter the keyword “yum” or the keyword “YUM.”

To be an effective search through the Problem_Trek database, more than one keyword should be allowed for a search.
The mysql command LIKE cannot accommodate multiple keywords. However, you can use the regular expression command
REGEXP. One of the nice things about REGEXP is that it will search the entire designated field for the keyword you specify—
no wildcards needed. To search for multiple keywords, you put a logical or, a pipe symbol (|), between them. Thus, the code

you need now looks like the following:

mysql> SELECT * FROM problem_logger WHERE
-> prob_symptoms REGEXP ‘yum|dash’
-> OR
-> prob_solutions REGEXP ‘yum|dash’\G
*************************** 1. row ***************************
id_number: 1012111624
report_date: 2010-12-11
fixed_date: 2010-12-11
prob_symptoms: Running yum to install software and getting
‘not found’ message.

www.it-ebooks.info

http://www.it-ebooks.info/

prob_solutions: Network service was down.
Issued the command: service network restart
*************************** 2. row ***************************
id_number: 1012111631
report_date: 2010-12-11
fixed_date: 2010-12-11
prob_symptoms:
Moved script from Fedora to Ubuntu and was not working properly.
prob_solutions: Added #!/bin/bash to the top of the script.
This is needed because Ubuntu's default shell is dash.
2 rows in set (0.00 sec)
Now you have the anchor function needed for the Find_Problem script. Let's put the rest of the script together.

Creating the Script
It is best to allow keywords to be passed as parameters when the script is called. However, you have no idea how many
keywords may be passed. It could be five, it could be one, or it could be none! This is actually an easy dilemma to solve. Use an
if test condition to see if any keywords were passed. If they were, you grab all of them at once using the $@ parameter (see
Chapter 13). If no keywords were passed, the script will need to ask for them. The code to accomplish this task looks like the

following:

Obtain Keyword(s)

if [-n “$1”] #Check if a keyword was passed
then #Grab all the passed keywords

 KEYWORDS=$@ #Grab all the params as separate words, same string

else #Keyword(s) not passed. Ask for them.
 echo
 echo “What keywords would you like to search for?”
 echo -e “Please separate words by a space: \c”
 read ANSWER
 KEYWORDS=$ANSWER
fi

Once you have the keywords, the next step is to build the search statement. Remember that a logical or (|) will need to

be placed between each pair of keywords in order for the REGEXP to search for them properly. This is easily accomplished with

sed. Every space between in the KEYWORDS array variable can be replaced with a |.

KEYWORDS=‘echo $KEYWORDS | sed ‘s/ /|/g’‘
Now the script looks like this:

#!/bin/bash

Find_Problem - finds problem records using keywords

Determine sql location & set variable

www.it-ebooks.info

http://www.it-ebooks.info/

MYSQL=‘which mysql‘“ Problem_Trek -u cbres”

Obtain Keyword(s)

if [-n “$1”] #Check if a keyword was passed
then #Grab all the passed keywords

 KEYWORDS=$@ #Grab all the params as separate words, same string

else #Keyword(s) not passed. Ask for them.
 echo
 echo “What keywords would you like to search for?”
 echo -e “Please separate words by a space: \c”
 read ANSWER
 KEYWORDS=$ANSWER
fi

Find problem record

echo
echo “The following was found using keywords: $KEYWORDS”
echo

KEYWORDS=‘echo $KEYWORDS | sed ‘s/ /|/g’‘

$MYSQL <<EOF
SELECT * FROM problem_logger WHERE
 prob_symptoms REGEXP ‘($KEYWORDS)’
 OR
 prob_solutions REGEXP ‘($KEYWORDS)’\G
EOF

And of course, the next step is to test your new script out. Because the multiple keyword issue has been in focus, let's first

try the script passing multiple keywords at the command line:

$./Find_Problem yum dash

The following was found using keywords: yum dash

*************************** 1. row ***************************
id_number: 1012111624
...
prob_solutions: Added #!/bin/bash to the top of the script.

www.it-ebooks.info

http://www.it-ebooks.info/

This is needed because Ubuntu's default shell is dash.
Now, let's test the script sending no keywords as parameters. Instead, we'll let the script ask us for the keywords.

$./Find_Problem

What keywords would you like to search for?
Please separate words by a space: Ubuntu

The following was found using keywords: Ubuntu

*************************** 1. row ***************************
id_number: 1012111631
...
prob_solutions: Added #!/bin/bash to the top of the script.
This is needed because Ubuntu's default shell is dash.
Both tests ran without any problems. Now finding problem records in the Problem_Trek database will be easy.
With all three of these scripts, Record_Problem, Update_Problem, and Find_Problem, you can start to create your

own problem database. We hope the time you spend creating these scripts will be given back to you in the time you save

solving and avoiding problems.

Summary
In this chapter, we reviewed some of the more advanced features you can put into shell scripts. Users frequently overlook the
ways in which shell scripts can be useful on particular system administration tasks because the scripts need advanced features

to operate properly.
The chapter demonstrated how to use shell performance utilities, such as uptime, df, and free, to gather a snapshot of

system performance and resource usage. The desired information was gleaned from the commands' output using sed and
gawk, including some of their more advanced capabilities. After a report was created from the information, it was sent to a

designated user account via an e-mail client.
The next section covered the creation of a more advanced performance monitor script using uptime and vmstat. Data

was collected from these utilities and stored in a CSV file for use by other scripts and/or utilities. A second script was created
to read the CSV file's performance data and create an HTML-formatted report. Because of its HTML format, the report could

be read via an e-mail utility or within a favorite browser.
We ended the chapter by stepping through the creation of a problem-tracking database and the advanced shell scripts

used to populate, update, and report on the database. We used the mysql database software and included commands such
as INSERT, UPDATE, and SELECT in the scripts. We also covered difficult issues such as searching records with the LIKE

command versus the regular expression command REGEXP.
All of the scripts written in this chapter are easily modified for use in your own unique environment. By pointing out

some unique and advanced ways to put shell scripts to work, we hope we've made you think about some new ways to use

shell scripts and new scripts you can create.
Thanks for joining us on this journey through the Linux command line and shell scripting. We hope that you've enjoyed

the journey and have learned how to get around on the command line, and how to create shell scripts to save you time. But
don't stop your command line education here. There's always something new being developed in the open source world,
whether it's a new command line utility or a full-blown shell. Stay in touch with the Linux community and follow along with

the new advances and features.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

Quick Guide to bash Commands

In This Appendix

The bash built-in commands
The GNU additional shell commands
The bash environment variables

As you've seen throughout this book, the bash shell contains lots of features and thus has lots of commands available. This
appendix provides a concise guide to allow you to quickly look up a feature or command that you can use from the bash

command line or from a bash shell script.

Built-in Commands
The bash shell includes many popular commands built into the shell. This provides for faster processing times when using

these commands. Table A.1 shows the built-in commands available directly from the bash shell.

Table A.1 bash Built-in Commands

Command Description

alias Define an alias for the specified command.

bg Resume a job in background mode.

bind Bind a keyboard sequence to a readline function or macro.

break Exit from a for, while, select, or until loop.

builtin Execute the specified shell built-in command.

cd Change the current directory to the specified directory.

caller Return the context of any active subroutine call.

command Execute the specified command without the normal shell lookup.

compgen Generate possible completion matches for the specified word.

complete Display how the specified words would be completed.

continue Resume the next iteration of a for, while, select, or until loop.

declare Declare a variable or variable type.

dirs Display a list of currently remembered directories.

disown Remove the specified jobs from the jobs table for the process.

echo Display the specified string to STDOUT.

enable Enable or disable the specified built-in shell command.

eval Concatenate the specified arguments into a single command, and then execute the

www.it-ebooks.info

#b01_tbl_0001
#b01_tbl_anc_0001
http://www.it-ebooks.info/

Concatenate the specified arguments into a single command, and then execute the

command.

exec Replace the shell process with the specified command.

exit Force the shell to exit with the specified exit status.

export Set the specified variables to be available for child shell processes.

fc Select a list of commands from the history list.

fg Resume a job in foreground mode.

getopts Parse the specified positional parameters.

hash Find and remember the full pathname of the specified command.

help Display a help file.

history Display the command history.

jobs List the active jobs.

kill Send a system signal to the specified process ID (PID).

let Evaluate each argument in a mathematical expression.

local Create a limited-scope variable in a function.

logout Exit a login shell.

popd Remove entries from the directory stack.

printf Display text using formatted strings.

pushd Add a directory to the directory stack.

pwd Display the pathname of the current working directory.

read Read one line of data from STDIN and assign it to a variable.

readonly Read one line of data from STDIN and assign it to a variable that can't be changed.

return Force a function to exit with a value that can be retrieved by the calling script.

set Set and display environment variable values and shell attributes.

shift Rotate positional parameters down one position.

shopt Toggle the values of variables controlling optional shell behavior.

suspend Suspend the execution of the shell until a SIGCONT signal is received.

test Return an exit status of 0 or 1 based on the specified condition.

times Display the accumulated user and system

trap Execute the specified command if the specified system signal is received.

type Display how the specified word would be interpreted if used as a command.

www.it-ebooks.info

http://www.it-ebooks.info/

ulimit Set a limit on the specified resource for system users.

umask Set default permissions for newly created files and directories.

unalias Remove the specified alias.

unset Remove the specified environment variable or shell attribute.

wait Wait for the specified process to complete, and return the exit status.

The built-in commands provide higher performance than external commands, but the more built-in commands that are
added to a shell, the more memory it consumes with commands that you may never use. The bash shell also contains external

commands that provide extended functionality for the shell. These are discussed in the bash Commands section.

bash Commands
In addition to the built-in commands, the bash shell utilizes external commands to allow you to maneuver around the
filesystem and manipulate files and directories. Table A.2 shows the common external commands you'll want to use when

working in the bash shell.

Table A.2 The bash Shell External Commands

Command Description

bzip2 Compression using the Burrows-Wheeler block sorting text compression algorithm
and Huffman coding.

cat List the contents of the specified file.

chage Change the password expiration date for the specified system user account.

chfn Change the specified user account's comment information.

chgrp Change the default group of the specified file or directory.

chmod Change system security permissions for the specified file or directory.

chown Change the default owner of the specified file or directory.

chpasswd Read a file of login name and password pairs and update the passwords.

chsh Change the specified user account's default shell.

compress Original Unix file compression utility.

cp Copy the specified files to an alternate location.

date Display the date in various formats.

df Display current disk space statistics for all mounted devices.

du Display disk usage statistics for the specified filepath.

file View the file type of the specified file.

find Perform a recursive search for files.

finger Display information about user accounts on the Linux system or a remote system.

free Check available and used memory on the system.

www.it-ebooks.info

#b01_tbl_0002
#b01_tbl_anc_0002
http://www.it-ebooks.info/

grep Search a file for the specified text string.

groupadd Create a new system group.

groupmod Modify an existing system group.

gzip The GNU Project's compression using Lempel-Ziv compression.

head Display the first portion of the specified file's contents.

killall Send a system signal to a running process based on process name.

less Advanced viewing of file contents.

link Create a link to a file using an alias name.

ls List directory contents.

mkdir Create the specified directory under the current directory.

more List the contents of the specified file, pausing after each screen of data.

mount Display or mount disk devices into the virtual filesystem.

mv Rename a file.

nice Run a command using a different priority level on the system.

passwd Change the password for a system user account.

ps Display information about the running processes on the system.

pwd Display the current directory.

renice Change the priority of a running application on the system.

rm Delete the specified file.

rmdir Delete the specified directory.

sort Organize data in a data file based on the specified order.

stat View the file statistics of the specified file.

sudo Run an application as the root user account.

tail Display the last portion of the specified file's contents.

tar Archive data and directories into a single file.

touch Create a new empty file, or update the timestamp on an existing file.

top Display the active processes, showing vital system statistics.

umount Remove a mounted disk device from the virtual filesystem.

uptime Display information on how long the system has been running.

useradd Create a new system user account.

www.it-ebooks.info

http://www.it-ebooks.info/

userdel Remove an existing system user account.

usermod Modify an existing system user account.

vmstat Produce a detailed report on memory and CPU usage on the system.

which Find the location of an executable file

zip Unix version of the Windows PKZIP program.

You can accomplish just about any task you need to on the command line using these commands.

Environment Variables
The bash shell also utilizes many environment variables. While environment variables aren't commands, they often affect how
shell commands operate, so it's important to know the shell environment variables. Table A.3 shows the default environment

variables available in the bash shell.

Table A.3 bash Shell Environment Variables

Variable Description

$* Contains all of the command line parameters as a single text value.

$@ Contains all of the command line parameters as separate text
values.

$# The number of command line parameters.

$? The exit status of the most recently used foreground process.

$- The current command line option flags.

$$ The process ID (PID) of the current shell.

$! The PID of the most recently executed background process.

$0 The name of the command from the command line.

$_ The absolute pathname of the shell.

BASH The full file name used to invoke the shell.

BASH_ARGC The number of parameters in the current subroutine.

BASH_ARGV An array containing all of the command line parameters specified.

BASH_COMMAND The name of the command currently being executed.

BASH_ENV When set, each bash script attempts to execute a startup file
defined by this variable before running.

BASH_EXECUTION_STRING The command used in the -c command line option.

BASH_LINENO An array containing the line numbers of each command in the
script.

BASH_REMATCH An array containing text elements that match a specified regular
expression.

www.it-ebooks.info

#b01_tbl_0003
#b01_tbl_anc_0003
http://www.it-ebooks.info/

BASH_SOURCE An array containing source file names for the declared functions in
the shell.

BASH_SUBSHELL The number of subshells spawned by the current shell.

BASH_VERSION The version number of the current instance of the bash shell.

BASH_VERSINFO A variable array that contains the individual major and minor
version numbers of the current instance of the bash shell.

COLUMNS Contains the terminal width of the terminal used for the current
instance of the bash shell.

COMP_CWORD An index into the variable COMP_WORDS, which contains the current
cursor position.

COMP_LINE The current command line.

COMP_POINT The index of the current cursor position relative to the beginning
of the current command.

COM_WORDBREAKS A set of characters used as word separators when performing word
completion.

COMP_WORDS A variable array that contains the individual words on the current
command line.

COMPREPLY A variable array that contains the possible completion codes
generated by a shell function.

DIRSTACK A variable array that contains the current contents of the
directory stack.

EUID The numeric effective user ID of the current user.

FCEDIT The default editor used by the fc command.

FIGNORE A colon-separated list of suffixes to ignore when performing file
name completion.

FUNCNAME The name of the currently executing shell function.

GLOBIGNORE A colon-separated list of patterns defining the set of file names to
be ignored by file name expansion.

GROUPS A variable array containing the list of groups of which the current
user is a member.

histchars Up to three characters that control history expansion.

HISTCMD The history number of the current command.

HISTCONTROL Controls what commands are entered in the shell history list.

HISTFILE The name of the file to save the shell history list (.bash_history
by default).

www.it-ebooks.info

http://www.it-ebooks.info/

HISTFILESIZE The maximum number of lines to save in the history file.

HISTIGNORE A colon-separated list of patterns used to decide which commands
are ignored for the history file.

HISTSIZE The maximum number of commands stored in the history file.

HOSTFILE Contains the name of the file that should be read when the shell
needs to complete a hostname.

HOSTNAME The name of the current host.

HOSTTYPE A string describing the machine the bash shell is running on.

IGNOREEOF The number of consecutive EOF characters the shell must receive
before exiting. If this value doesn't exist, the default is 1.

INPUTRC The name of the readline initialization file (the default is
.inputrc).

LANG The locale category for the shell.

LC_ALL Overrides the LANG variable, defining a locale category.

LC_COLLATE Sets the collation order used when sorting string values.

LC_CTYPE Determines the interpretation of characters used in file name
expansion and pattern matching.

LC_MESSAGES Determines the locale setting used when interpreting double-
quoted strings preceded by a dollar sign.

LC_NUMERIC Determines the locale setting used when formatting numbers.

LINENO The line number in a script currently executing.

LINES Defines the number of lines available on the terminal.

MACHTYPE A string defining the system type in cpu-company-system format.

MAILCHECK How often (in seconds) the shell should check for new mail (default
is 60).

OLDPWD The previous working directory used in the shell.

OPTERR If set to 1, the bash shell displays errors generated by the getopts
command.

OSTYPE A string defining the operating system the shell is running on.

PIPESTATUS A variable array containing a list of exit status values from the
processes in the foreground process.

POSIXLY_CORRECT If set, bash starts in POSIX mode.

PPID The process ID (PID) of the bash shell's parent process.

www.it-ebooks.info

http://www.it-ebooks.info/

PROMPT_COMMAND If set, the command to execute before displaying the primary
prompt.

PS1 The primary command line prompt string.

PS2 The secondary command line prompt string.

PS3 The prompt to use for the select command.

PS4 The prompt displayed before the command line is echoed if the
bash -x parameter is used.

PWD The current working directory.

RANDOM Returns a random number between 0 and 32767. Assigning a value
to this variable seeds the random number generator.

REPLY The default variable for the read command.

SECONDS The number of seconds since the shell was started. Assigning a
value resets the timer to the value.

SHELLOPTS A colon-separated list of enabled bash shell options.

SHLVL Indicates the shell level, incremented by 1 each time a new bash
shell is started.

TIMEFORMAT A format specifying how the shell displays time values.

TMOUT The value of how long (in seconds) the select and read
commands should wait for input. The default of 0 indicates to wait
indefinitely.

UID The numeric real user ID of the current user.

You display the environment variables using the set built-in command. The default shell environment variables set at

boot time can and often do vary between different Linux distributions.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

Quick Guide to sed and gawk

In This Appendix

The basics for using sed
What you need to know about gawk

If you do any type of data handling in your shell scripts, most likely you'll need to use either the sed or gawk programs (and
sometimes both). This appendix provides a quick reference for sed and gawk commands that come in handy when working

with data in your shell scripts.

The sed Editor
The sed editor can manipulate data in a data stream based on commands you either enter into the command line or store in a
command text file. It reads one line of data at a time from the input and matches that data with the supplied editor

commands, changes data in the stream as specified in the commands, and then outputs the new data to STDOUT.

Starting the sed Editor

The format for using the sed command is:

 sed options script file
The options parameters allow you to customize the behavior of the sed command and include the options shown in

Table B.1.

Table B.1 The sed Command Options

Option Description

-e script Add commands specified in script to the commands run while processing the
input.

-f file Add the commands specified in the file file to the commands run while
processing the input.

-n Don't produce output for each command, but wait for the print command.

The script parameter specifies a single command to apply against the stream data. If more than one command is
required, you must use either the -e option to specify them in the command line or the -f option to specify them in a

separate file.

sed Commands
The sed editor script contains commands that sed processes for each line of data in the input stream. This section describes

some of the more common sed commands you'll want to use.

Substitution

The s command substitutes text in the input stream. The format of the s command is:

s/pattern/replacement/flags
pattern is the text to replace, and replacement is the new text that sed will insert in its place.

www.it-ebooks.info

#b02_tbl_0001
#b02_tbl_anc_0001
http://www.it-ebooks.info/

The flags parameter controls how the substitution takes place. Four types of substitution flags are available:
A number, indicating the pattern occurrence that should be replaced.
g: Indicates that all occurrences of the text should be replaced.
p: Indicates that the contents of the original line should be printed.
w file: Indicates that the results of the substitution should be written to a file.

In the first type of substitution, you can specify which occurrence of the matching pattern the sed editor should replace.

For example, you use a 2 to replace only the second occurrence of the pattern.

Addressing
By default, the commands you use in the sed editor apply to all lines of the text data. If you want to apply a command to

only a specific line, or a group of lines, you must use line addressing.
There are two forms of line addressing in the sed editor:

A numeric range of lines
A text pattern that filters out a line

Both forms use the same format for specifying the address:

[address]command
When using numeric line addressing, you reference lines by their line position in the text stream. The sed editor assigns

the first line in the text stream as line number one and continues sequentially for each new line.

$ sed ‘2,3s/dog/cat/’ data1
The other method of restricting which lines a command applies to is a bit more complicated. The sed editor allows you to

specify a text pattern that it uses to filter lines for the command. The format for this is:

/pattern/command
You must encapsulate the pattern you specify in forward slashes. The sed editor applies the command only to lines that

contain the text pattern that you specify.

$ sed ‘/rich/s/bash/csh/’ /etc/passwd
This filter finds the line that contains the text rich, and replaces the text bash with csh.
You can also group more than one command together for a specific address:

address {
 command1
 command2
 command3}
The sed editor applies each of the commands you specify only to lines that match the address specified. The sed editor will

process each command listed on the address line(s):

$ sed ‘2{
> s/fox/elephant/
> s/dog/cat/
> }’ data1
The sed editor applies each of the substitutions to the second line in the data file.

Deleting Lines
The delete command, d, pretty much does what it says. It deletes any text lines that match the addressing scheme supplied. Be
careful with the delete command, for if you forget to include an addressing scheme, all of the lines will be deleted from the

stream:

$ sed ‘d’ data1
The delete command is obviously most useful when used in conjunction with a specified address. This allows you to delete

www.it-ebooks.info

http://www.it-ebooks.info/

The delete command is obviously most useful when used in conjunction with a specified address. This allows you to delete

specific lines of text from the data stream, either by line number:

$ sed ‘3d’ data6
or a specific range of lines:

$ sed ‘2,3d’ data6
The pattern-matching feature of the sed editor also applies to the delete command:

$ sed ‘/number 1/d’ data6
Only lines matching the specified text are deleted from the stream.

Inserting and Appending Text
As you would expect, like any other editor, the sed editor allows you to insert and append text lines to the data stream. The

difference between the two actions can be confusing:
The insert command (i) adds a new line before the specified line.
The append command (a) adds a new line after the specified line.

The format of these two commands can be confusing: You can't use these commands on a single command line. You must

specify the line to insert or append on a separate line by itself. The format for doing this is:

sed ‘[address]command\
new line’
The text in new line appears in the sed editor output in the place you specify. Remember that when you use the insert

command, the text appears before the data stream text:

$ echo “testing” | sed ‘i\
> This is a test’
This is a test
testing
$
And when you use the append command, the text appears after the data stream text:

$ echo “testing” | sed ‘a\
> This is a test’
testing
This is a test
$
This allows you to insert text at the end of the normal text.

Changing Lines
The change command allows you to change the contents of an entire line of text in the data stream. It works the same as the

insert and append commands, in that you must specify the new line separately from the rest of the sed command:

$ sed ‘3c\
> This is a changed line of text.’ data6
The backslash character is used to indicate the new line of data in the script.

Transform Command
The transform command (y) is the only sed editor command that operates on a single character. The transform command uses

the format:

[address]y/inchars/outchars/
The transform command performs a one-to-one mapping of the inchars and the outchars values. The first character

www.it-ebooks.info

http://www.it-ebooks.info/

The transform command performs a one-to-one mapping of the inchars and the outchars values. The first character

in inchars is converted to the first character in outchars. The second character in inchars is converted to the second
character in outchars. This mapping continues throughout the length of the specified characters. If the inchars and

outchars are not the same length, the sed editor will produce an error message.

Printing Lines
Similar to the p flag in the substitution command, the p command prints a line in the sed editor output. The most common use

for the print command is for printing lines that contain matching text from a text pattern:

$ sed -n ‘/number 3/p’ data6
This is line number 3.
$
The print command allows you to filter only specific lines of data from the input stream.

Writing to a File

The w command is used to write lines to a file. The format for the w command is:

[address]w filename
The filename can be specified as either a relative or absolute pathname, but in either case the person running the sed

editor must have write permissions for the file. The address can be any type of addressing method used in sed, such as a

single line number, a text pattern, or a range of line numbers or text patterns.
Here's an example that prints only the first two lines of a data stream to a text file:

$ sed ‘1,2w test’ data6
The output file test contains only the first two lines from the input stream.

Reading from a File
You've already seen how to insert and append text into a data stream from the sed command line. The read command (r)

allows you to insert data contained in a separate file.
The format of the read command is:

[address]r filename
The filename parameter specifies either an absolute or relative pathname for the file that contains the data. You can't

use a range of addresses for the read command. You can specify only a single line number or text pattern address. The sed

editor inserts the text from the file after the address.

$ sed ‘3r data’ data2
The sed editor inserts the complete text from the data file into the data2 file, starting at line 3 of the data2 file.

The gawk Program
The gawk program is the GNU version of the original awk program in Unix. The awk program takes stream editing one step
further than the sed editor by providing a programming language instead of just editor commands. This section describes the

basics of the gawk program as a quick reference to its abilities.

The gawk Command Format

The basic format of the gawk program is as follows:

gawk options program file
Table B.2 shows the options available with the gawk program.

Table B.2 The gawk Options

Option Description

www.it-ebooks.info

#b02_tbl_0002
#b02_tbl_anc_0002
http://www.it-ebooks.info/

-F fs Specify a file separator for delineating data fields in a line.

-f file Specify a file name to read the program from.

-v var=value Define a variable and default value used in the gawk program.

-mf N Specify the maximum number of fields to process in the data file.

-mr N Specify the maximum record size in the data file.

-W keyword Specify the compatibility mode or warning level for gawk. Use the help option
to list all the available keywords.

The command line options provide an easy way to customize features in the gawk program.

Using gawk
You can use gawk either directly from the command line or from within your shell scripts. This section demonstrates how to

use the gawk program and how to enter scripts for gawk to process.

Reading the Program Script from the Command Line
A gawk program script is defined by an opening and closing brace. You must place script commands between the two braces.
Because the gawk command line assumes that the script is a single text string, you must also enclose your script in single

quotation marks. Here's an example of a simple gawk program script specified on the command line:

$ gawk ‘{print $1}’
This script will display the first data field in every line of the input stream.

Using Multiple Commands in the Program Script
A programming language wouldn't be very useful if you could execute only one command. The gawk programming
language allows you to combine commands into a normal program. To use multiple commands in the program script

specified on the command line, just place a semicolon between each command:

$ echo “My name is Rich” | gawk ‘{$4=“Dave”; print $0}’
My name is Dave
$
The script performs two commands: First it replaces the fourth data field with a different value; then it displays the entire

data line in the stream.

Reading the Program from a File

As with the sed editor, the gawk editor allows you to store your programs in a file and refer to them in the command line:

$ cat script2
{ print $5 “'s userid is ” $1 }
$ gawk -F: -f script2 /etc/passwd
The gawk program processes all of the commands specified in the file on the input stream data.

Running Scripts Before Processing Data
The gawk program also allows you to specify when the program script is run. By default, gawk reads a line of text from the
input, and then executes the program script on the data in the line of text. Sometimes you may need to run a script before
processing data, such as to create a header section for a report. To do that, you use the BEGIN keyword. This forces gawk to

www.it-ebooks.info

http://www.it-ebooks.info/

processing data, such as to create a header section for a report. To do that, you use the BEGIN keyword. This forces gawk to

execute the program script specified after the BEGIN keyword before reading the data:

$ gawk ‘BEGIN {print “This is a test report”}’
This is a test report
$
You can place any type of gawk command in the BEGIN section, such as commands that assign default values to variables.

Running Scripts After Processing Data
Similar to the BEGIN keyword, the END keyword allows you to specify a program script that gawk executes after reading the

data:

$ gawk ‘BEGIN {print “Hello World!”} {print $0} END {print
 “byebye”}’
Hello World!
This is a test
This is a test
This is another test.
This is another test.
byebye
$
The gawk program executes the code in the BEGIN section first, then processes any data in the input stream, and then

executes the code in the END section.

The gawk Variables
The gawk program is more than just an editor; it's a complete programming environment. As such, there are lots of
commands and features associated with gawk. This section shows the main features you'll need to know for programming

with gawk.

Built-In Variables
The gawk program uses built-in variables to reference specific features within the program data. This section describes the

gawk built-in variables available for you to use in your gawk programs, and demonstrates how to use them.
The gawk program defines data as records and data fields. A record is a line of data (delineated by the newline characters

by default), and a data field is a separate data element within the line (delineated by a white space character, such as a space or

tab, by default).
The gawk program uses data field variables to reference data elements within each record. Table B.3 describes these

variables.

Table B.3 The gawk Data Field and Record Variables

Variable Description

$0 The entire data record

$1 The first data field in the record

$2 The second data field in the record

$n The nth data field in the record

FIELDWIDTHS A space-separated list of numbers defining the exact width (in spaces) of each
data field

www.it-ebooks.info

#b02_tbl_0003
#b02_tbl_anc_0003
http://www.it-ebooks.info/

FS Input field separator character

RS Input record separator character

OFS Output field separator character

ORS Output record separator character

In addition to the field and record separator variables, gawk provides some other built-in variables to help you know
what's going on with your data and extract information from the shell environment. Table B.4 shows the other built-in

variables in gawk.

Table B.4 More gawk Built-In Variables

Variable Description

ARGC The number of command line parameters present.

ARGIND The index in ARGV of the current file being processed.

ARGV An array of command line parameters.

CONVFMT The conversion format for numbers (see the printf statement). The default
value is %.6 g.

ENVIRON An associative array of the current shell environment variables and their values.

ERRNO The system error if an error occurs reading or closing input files.

FILENAME The file name of the data file used for input to the gawk program.

FNR The current record number in the data file.

IGNORECASE If set to a non-zero value, gawk all string functions (including regular
expressions); ignore the case of characters.

NF The total number of data fields in the data file.

NR The number of input records processed.

OFMT The output format for displaying numbers. The default is %.6 g.

RLENGTH The length of the substring matched in the match function.

RSTART The start index of the substring matched in the match function.

You can use the built-in variables anywhere in the gawk program script, including the BEGIN and END sections.

Assigning Variables in Scripts
Assigning values to variables in gawk programs is similar to how you assign values to variables in a shell script—using an

assignment statement:

$ gawk ‘
> BEGIN{
> testing=“This is a test”
> print testing

www.it-ebooks.info

#b02_tbl_0004
#b02_tbl_anc_0004
http://www.it-ebooks.info/

> }’
This is a test
$
Once you assign a value to a variable, you can use that variable anywhere in your gawk script.

Assigning Variables in the Command Line
You can also use the gawk command line to assign values to variables for the gawk program. This allows you to set values
outside of the normal code, changing values on-the-fly. Here's an example of using a command line variable to display a

specific data field in the file:

$ cat script1
BEGIN{FS=“,”}
{print $n}
$ gawk -f script1 n=2 data1
$ gawk -f script1 n=3 data1
This feature is a great way to process data from your shell scripts in the gawk script.

The gawk Program Features
There are a few features of the gawk program that make it handy for manipulating data, allowing you to create gawk scripts

that can parse just about any type of text file, including log files.

Regular Expressions
You can use either a Basic Regular Expression (BRE) or an Extended Regular Expression (ERE) to filter which lines in the data

stream the program script applies to.
When using a regular expression, the regular expression must appear before the left brace of the program script that it

controls:

$ gawk ‘BEGIN{FS=“,”} /test/{print $1}’ data1
This is a test
$

The Matching Operator
The matching operator allows you to restrict a regular expression to a specific data field in the records. The matching operator
is the tilde circumflex (ˆ). You specify the matching operator, along with the data field variable, and the regular expression to

match:

$1 ∼ /ˆdata/
This expression filters records where the first data field starts with the text data.

Mathematical Expressions
In addition to regular expressions, you can also use mathematical expressions in the matching pattern. This feature comes in
handy when matching numerical values in data fields. For example, if you want to display all of the system users who belong

to the root users group (group number 0), you could use this script:

$ gawk -F: ‘$4 == 0{print $1}’ /etc/passwd
This script displays the first data field value for all lines that contain the value 0 in the fourth data field.

Structured Commands

www.it-ebooks.info

http://www.it-ebooks.info/

The gawk program supports the following structured commands:
The if-then-else statement:

 if (condition) statement1; else statement2
The while statement:

 while (condition)
{
 statements
}
The do-while statement:

 do {
 statements
} while (condition)
The for statement:

 for(variableassignment; condition; iteration process)
This provides a wealth of programming opportunities for the gawk script programmer. You can write gawk programs that

rival the functions of just about any higher-level language program.

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols and Numbers

: (colon)
/etc/passwd
IFS

. (dot)
BRE
regular expressions
relative filepaths

.. (dot-double), relative filepaths
; (semi-colon)

do
functions
IFS
mysql
sed
shell scripts

& (ampersand)
background mode
double-parentheses symbol
sed
STDERR

&& (ampersand-double)
double-parentheses symbol
PID

* (asterisk)
BRE
case
executable files
filter strings
ls
regular expressions

** (asterisk-double), double-parentheses symbol
\ (backslash)

for
bash shell prompt character
list
regular expressions
sed
sem
shell scripts
substitution

www.it-ebooks.info

http://www.it-ebooks.info/

` (backtick)
bc
shell scripts

ˆ (caret symbol)
anchor character
regular expressions
sed

{} (curly brackets), ERE
$ (dollar sign)

bash shell
environment variables
sed
user variables

$$ (dollar sign-double)
bash shell
dash shell

= (equals sign)
disk space monitoring
environment variables
file permissions
print
user variables

! (exclamation mark)
double-parentheses symbol
sed
substitution

> (greater than symbol)
BSD-style parameters
output redirection
sed

>> (greater than symbol-double)
output redirection
statistics report

(hash mark)
< (less than symbol)

input redirection
sed

<< (less than symbol-double)
double-parentheses symbol
inline input redirection

- (minus sign/dash)
BRE
file permissions
format specifier

www.it-ebooks.info

http://www.it-ebooks.info/

-- (minus sign/dash-double)
Mutt
shift

-? (minus sign/dash-question mark), psql
--- (minus sign/dash-triple), permission code
| (pipe symbol)

double-parentheses symbol
ERE
regular expressions
sort

|| (pipe symbol-double), double-parentheses symbol
+ (plus sign)

BSD-style parameters
ERE
file permissions
regular expressions

? (question mark)
ERE
filter strings
mysql
read
regular expressions
user accounts

“” (quotation marks-double)
for
IFS
positional parameters

'’ (quotation marks-single)
environment variables
sed

/ (slash)
directories
regular expressions
search
substitution

[] (square brackets)
background mode
bash shell
gawk
math
processes
regular expressions
test

[[]] (square brackets-double), if-then

www.it-ebooks.info

http://www.it-ebooks.info/

] (square brackets-open), functions
∼ (tilde)

double-parentheses symbol
gawk

+%y%m%d (date format)
() (parentheses)

exit status
functions
regular expressions
substitution

(()) (parentheses-double)
bash shell
if-then
zsh

\!

bash shell prompt character
mysql

\#

bash shell prompt character
\$, bash shell prompt character
\?

mysql
psql

\@ , bash shell prompt character
\[, bash shell prompt character
\] , bash shell prompt character
$!

bash shell
dash shell

$#

bash shell
command line parameters
dash shell

$*

bash shell
command line parameters
dash shell

$- , dash shell
$?

bash shell
dash shell
exit status
mysql

$@

bash shell
command line parameters

www.it-ebooks.info

http://www.it-ebooks.info/

dash shell
$_ , bash shell
$> , STDERR
$0

bash shell
dash shell
gawk
zsh

1
exit status
signal

$1, gawk
2

exit status
signal

$2, gawk
3, signal
9, signal
15, signal
17, signal
18, signal
19, signal
126, exit status
127, exit status
128, exit status
128+x, exit status
130, exit status
132, exit status
255, exit status

A

A, vim
a

optstring
permissions
sem
vim

-A
fsck
Mutt
mysql
psql
tar

-a

www.it-ebooks.info

http://www.it-ebooks.info/

cp
dash shell
data files
fsck
Mailx
mount
Mutt
options
psql
TCP module

\a
AAAREADME
absolute filepath
-accept_all_cookies
access
active
--active
addarray
addem
ADDR
address
--add-widget
ah
alias
aliases
aliases
Align
--all
all_export
Allow SendEvents
--almost-all
Almquist, Kenneth
[[:alnum:]]
[[:alpha:]]
Alt Sends Escape
alternative screen
Alt/Numlock Modifiers
am
amarok
American Standard Code for Information Interchange (ASCII)
anacron
anchor characters
AND
and()

www.it-ebooks.info

http://www.it-ebooks.info/

-anonymous
ANSI character set
ANSWER
Appearance
append
--append
Applets
apt-cache
apt-get
aptitude

dpkg
i u
repositories
search
sudo
wildcards

aptitude dist-upgrade
aptitude full-upgrade
ARG1 != ARG2
ARG1 $ ARG2
ARG1 % ARG2
ARG1 + ARG2
ARG1 - ARG2
ARG1 / ARG2
ARG1 < ARG2
ARG1 = ARG2
ARG1 > ARG2
ARG1 >= ARG2
ARG1 | ARG2
ARG1<= ARG2
ARGC
ARGIND
ARGV
arrays

environment variables
gawk
variables

arraydblr
Arrow keys
ASCII. See American Standard Code for Information Interchange
ash
ash shell
ASK_COUNT
asort()

www.it-ebooks.info

http://www.it-ebooks.info/

asorti()
--aspect ratio
assignment statements
-assume_charset
-assume_local_charset
-assume_unrec_charset
at
atan2()
atq
atrm
-auth
--author
autoload
Automatic Indentation
aw

B

b
block devices permissions
fdisk
optstring
vmstat

-B
-b

cp
Mailx
Mutt
mysql
sort

-b default_home
background mode
\.
--backtitle
backups
badtest
basename
BASH
bash
bash shell

for
arguments
built-in commands
CLI
command line parameters

www.it-ebooks.info

http://www.it-ebooks.info/

data files
directories
disk space monitoring
environment variables
files

copying
creation
deleting
information
links
listings
filtering
renaming
viewing

filesystem navigation
manual
positional parameters
program monitoring
prompt
shell scripts
shift
starting
test

BASH_ALIASES
BASH_ARCV
BASH_ARGC
BASH_ARGV
BASH_CMDS
BASH_COMMAND
BASH_ENV
BASH_EXECUTION_STRING
bashisms
BASH_LINENO
BASHOPTS
BASHPID
.bash_profile
.bashrc
BASH_REMATCH
BASH_SOURCE
BASH_SUBSHELL
BASH_VERSINFO
BASH_VERSION
BASH_XTRACEFED
batch

www.it-ebooks.info

http://www.it-ebooks.info/

bc
BEGIN
--begin x y
bel
bg
bg color
bi
-bibhost
/bin
bindkey
/bin/sh
[[:blank:]]
blink
BLOB
blocking
block devices

files
permissions

block mode graphics
block preallocation
--block-size=size
bold
-book
Bookmarks menu bar
Boolean
Boolean operators
/boot
boot process
bounce
Bourne again shell
Bourne shell
Bracket Matching
branch
BRE. See POSIX Basic Regular Expression engine
break

bash shell
while

Break key
broken dependencies
bsd_echo
BSD-style parameters
buff
buffers

emacs

www.it-ebooks.info

http://www.it-ebooks.info/

graphics
scrollback

--buffer-size=SIZE
builtin
built-in commands

bash shell
dash shell
zsh

built-in functions, gawk
built-in variables, gawk
bunzip2
-buried_news
bye
bzcat
bzip2
bzip2recover

C

C, sendmail
c

aptitude
character device permissions
fdisk
format specifier
optstring

-C
fsck
lvcreate
mysql
sort

-c
dash shell
exit
lvcreate
Mailx
Mutt
options
psql
sort
tar
TCP module

C-@
\C
\c

www.it-ebooks.info

http://www.it-ebooks.info/

-c bytes
-C cmdlist
-c comment
-C dir
C language
-c string
C-a
cache
-cache
calendar
--calendar
caller
calling functions
--cancel-label
Capitalize
case

command line parameters
getopts
menus
user accounts
zsh

-case
case sensitivity
cat

bash shell
inputbox
read
zsh

C-b
c_bases
cd

bash shell
dash shell
zsh

CDPATH
C-e
-center
C-f
-cfg
chage
change
Change Case
Change Profile
char

www.it-ebooks.info

http://www.it-ebooks.info/

Character Encoding
characters

anchor
ANSI
classes
devices

files
permissions

escape
ranges
special

charset
chdir
--check
CHECK_DIRECTORIES
checklist
--checklist
check=none
--check=quiet
chfn
chgrp
-child
chmod

bash shell
permissions

chown
chpasswd
chsh
--chunksize
C-k
--classify
Clean Indentation
cleanup
clear
--clear
Clear Scrollback & Reset
CLI. See command line interface
client/server paradigm
cm
CMD
-cmd
-cmd_log
-cmd_script
C-n

www.it-ebooks.info

http://www.it-ebooks.info/

color
Color Scheme
--colors
--color=when
--cols n
cols#80
--column
COLUMNS
--columns n
COM port
COMMAND
command
--command
commands. See also specific commands

aliases
bash shell
C language
groups, sed
values

command line interface (CLI)
bash shell
functions
gawk
MySQL
PostgreSQL
variables

command line parameters
bash shell
case
chage
dash shell
GNOME
Konsole
ls
lynx
options
tail
test
useradd
while
xterm
zsh

commands
COMP_CWORD

www.it-ebooks.info

http://www.it-ebooks.info/

compgen
COMP_KEY
compl()
complete
COMP_LINE
COMP_POINT
COMPREPLY
compress
COMP_TYPE
COMP_WORDBREAKS
COMP_WORDS
COM_WORDBREAKS
--concatenate
conditions
CONFIG_FILE
configure
Configure Editor
configure sysstat
connect
_connect_timeout
CONT
--context
continue
--continuous
control codes

terminal emulation
terminfo database

CONVFMT
_cookie_file
_cookies
_cookie_save
copy
copy and paste

emacs
vim

Copy as HTML
-core
core distributions
corutils
cos()
counting parameters
cp
C-p
%CPU

www.it-ebooks.info

http://www.it-ebooks.info/

cr
C-r
-crawl
--create
--create-rc
cron

Delete_User
statistics report

crontab
--cr-wrap
cs
C-s
csh_junkie_history
csh_junkie_loops
csh_junkie_quotes
csh_nullcmd
C-Spacebar
csr
cub
cub1
cud
cud1
cuf
cuf1
--cumulative
cup
cURL
curl
Current Line
-curses_pads
Cut
cuu
cuul
C-v
C-x 2
C-x 3
C-x b
C-x C-b
C-x C-c
C-x C-f
C-x C-s
C-x o
C-y
C-z

www.it-ebooks.info

http://www.it-ebooks.info/

D

D, sendmail
d

directory permissions
fdisk
format specifier
optstring
sed
sem

d$
-D

Mutt
mysql
useradd

-d
chage
cp
if
mktemp
options
psql
sort
tar

\d
-d file
-d home_dir
da*
Daily_Archive
dash shell

built-in commands
command line parameters
echo
environment variables
function
positional parameters
shell scripts
test
user-defined environment variables
user-defined variables

data
archives
compression
constraints
emacs

www.it-ebooks.info

http://www.it-ebooks.info/

fields
files

-a
bash shell

formatting
input

file descriptors
shell scripts

output
file descriptors
shell scripts
variables

presentation
search
sorting

databases
MySQL
PostgreSQL
problem-tracking
shell scripts
tables

DATE
Date
date

bash shell
if

dbl
dbl $value
--dbname
dd
deb
Debian

local startup file locations
MySQL
PMS
run level

deb-src
-debug_partial
DEC. See Digital Equipment Corporation
declare
--default-item
--defaultno
deferred
-delay

www.it-ebooks.info

http://www.it-ebooks.info/

DELETE
delete

bash shell
directories
read
sed
sem

--delete
Delete key
Delete_User
delimiter
dependencies

broken
--dereference
DESCRIBE
Deselect
--deselect
desktop environment
DESTINATION
destination
/dev
DEVICE
devices

names
permissions

/dev/null
/dev/sdcl
/dev/sdx
df
dialog
dialog package
Dickey, Thomas E.
--dictionary-order
--diff
digiKam
[[:digit:]]
Digital Equipment Corporation (DEC)
directories

for
bash shell
cron
delete
files, counting
ls

www.it-ebooks.info

http://www.it-ebooks.info/

permissions
temporary
virtual
wildcards

--directory
dirs
DIRSTACK
disable
--disable-factory
disk space monitoring

bash shell
diskmail
DISKS_TO_MONITOR
disown
-display
-display_charset
distributions

core
LiveCD
specialized

distrubution_name
do
Document Statistics
Documents command
dolphin
Domain Name System (DNS)
domaintable
done
-dont_wrap_pre
Doublesized characters
do-while
dpkg
drag-and-drop
\dt
du
\du
dumb terminals
-dump
dw
dyne:bolic

E

e
format specifier

www.it-ebooks.info

http://www.it-ebooks.info/

-E
chage
dash shell
mysql
psql

-e
dash shell
file comparison
Mailx
Mutt
mysql
options
psql

\e
-e command
-e expiration_date
-e expire_date
-e file
-e script
echo

bash shell
dash shell
disk space monitoring
file descriptors
Mailx
menus
-n
STDERR
while
zsh

--echo-all
--echo-hidden
--echo-queries
ed
edit
Edit command

emacs
gedit
KWrite

Edit menu bar
GNOME terminal emulation
Konsole

_editor
editors

www.it-ebooks.info

http://www.it-ebooks.info/

emacs
GNOME
KDE
vim

-ef
ego
egrep
8-bit controls
el
elif
ell
EMACS
emacs

buffers
console mode
copy and paste
data
graphical windows
menu bar
search and replace
X Windows

-emacskeys
e-mail

parsing, regular expressions
STDERR
STDOUT

empid
emulate
-en
enable
-enable_scrollback
enacs
Encoding
--encoding
END
end file
end-of-file (EOF)
--entry
ENVIRON
environment variables

arrays
bash shell
Bourne shell
command aliases

www.it-ebooks.info

http://www.it-ebooks.info/

dash shell
defaults
global
local
locating
Lynx
removing
setting
shell scripts

EOF. See end-of-file
epiphany
equal sign
ERE. See POSIX Extended Regular Expression engine
err_exit
ERRNO
error
--error
-error_files
err_return
--escape
escape characters
/etc
/etc/apt/sources.list
/etc/bashrc
/etc/fstab
/etc/group
/etc/init.d
/etc/init.d/boot.local
/etc/init.d/rc.local
/etc/inittab
/etc/passwd

: (colon)
chfn
IFS

/etc/profile
etc/rc#
/etc/rc.d/rc.local
/etc/rc.local
/etc/rcX.d
/etc/shadow
/etc/skel
/etc/urpmi/skip.list
EUID
eval

www.it-ebooks.info

http://www.it-ebooks.info/

eval_lineno
evince
Evolution
exec

date
file descriptors
STDINPUT
STDOUT
while
zsh

-exec
executable files
exit

bash shell
-c
dash shell
mysql
zsh

exit status
dialog
dialog widgets

--exit-label
exp()
--expanded
export
expr
(EXPRESSION)
ext
ext2
ext3
ext4
extend command
extended filesystem
Extensible Markup Language (XML)
extents
--extents
External Tools
--extract

F

F
f
-F

mount

www.it-ebooks.info

http://www.it-ebooks.info/

Mutt
psql

-f
cp
dash shell
file comparison
funclib
gawk
if
mount
Mutt
mysql
options
psql
sort
TCP module

-f file
sed

-F fs
-f inactive
-f inactive_days
false
FAT16
FAT32
fb font
fc
FCEDIT
FD
fdisk
Fedora

ext4
local startup file locations
yum

fg
fg color
fgrep
field separators

IFS
OFS

--field-separator
FIELDWIDTHS
FIGNORE
file

bash shell

www.it-ebooks.info

http://www.it-ebooks.info/

Mutt
$file
--file
files. See also specific file types

block devices
character devices
comparisons, test
copying, bash shell
creation, bash shell
deleting, bash shell
descriptors

choosing
-d
data input
data output
echo
exec
read
read/write
redirecting
snapshot reports
STDIN
STDOUT

gawk
globbing
information, bash shell
links, bash shell
listings

filtering
loops
network devices
permissions

decoding
defaults
groups
ownership
security
symbols

renaming, bash shell
sed
sharing
viewing, bash shell

File Browser Pane
File command

www.it-ebooks.info

http://www.it-ebooks.info/

emacs
gedit
KWrite

File menu bar
GNOME terminal emulation
Konsole

File Saving
file1 -nt file2
file1 -ot file2
FILE_LIST
FILENAME
FILE_NO
filepath
--file-selection
filesystems

creating
journaling
management

kernel
LVM

navigation, bash shell
partitions

--file-type
filtering
Find
find
Find Next
Find Previous
Find Selected
Find Selected Backwards
Find_Problem
finger
FIXED_DATE
fixed_date
float
floating-point solutions
flush
fluxox
fn font
FNR
folding marker
fonts
for

bash shell

www.it-ebooks.info

http://www.it-ebooks.info/

break
C language
directories
do
done
gawk
IFS
multiple variables
sort
variables
wildcards
zsh

-force_empty_hrefless_a
-force_html
-force_secure
--forest
form
--format format
format specifiers
format strings
-forms_options
fpath
fragmentation
free
-from
FS
fsck
fselect
-ftp
func1
funclib
FUNCNAME
function
functions

array variables
CLI
libraries
menus
parameters
recursion
shell scripts
values
variables
zsh

www.it-ebooks.info

http://www.it-ebooks.info/

Function keys
function_argzero
functions
fvwm
fvwm95
fw font

G

G
sed
vim

g
format specifier
group permissions
sed
substitution

-G
file comparison
groups
mysql

-g
groups
sort

\G
\g
-G file
-G group
-g group
-G grplist
-g grplist
-g initial_group
gauge
gawk

for
[] (square brackets)
advanced commands
arrays
BEGIN
built-in functions
built-in variables
CLI
disk space monitoring
do-while
END

www.it-ebooks.info

http://www.it-ebooks.info/

-f
files
if
matching operator
math
multiple commands
options
print
printf
quick reference
regular expressions
--re-interval
string functions
structured commands
time functions
user-defined functions
user-defined variables
variables
while
zombie processes

gcalc-tool
gdialog
gedit
--general-numeric-sort
gensub()
Gentoo
--geometry=
get_answer
get_data
getln
getopt
getopts

bash shell
dash shell
zsh

gg
global environment variables
global variables
global_export
global_rcs
GLOBIGNORE
GNOME. See GNU Network Object Model Environment
gnome-nettool
gnome-panel

www.it-ebooks.info

http://www.it-ebooks.info/

gnome-terminal
GNU long parameters
GNU Network Object Model Environment (GNOME)

applications
command line parameters
editors
e-mail
graphical windows
terminal emulation

menu bar
tabs

Ubuntu
GNU utilities
go
Go to Line
GRANT
grant
graphics

block mode
buffering
color
terminal emulation
vector

graphical desktops
graphical virtual consoles
graphical windows

GNOME
KDE
menus

grep
groups

permissions
regular expressions
role
sed
SGID
VG

--Group grplist
--group grplist
groupadd
--group-directories-first
groupmod
GROUPS
grub2-theme-mint

www.it-ebooks.info

http://www.it-ebooks.info/

gsub()
gunzip
gzcat
gzip

H

H
sed
sendmail

h
sed
vim

-H
Mutt
mysql

-h
Mutt
mysql
options
psql

\H
\h
hard drives. See also disk space monitoring
hard links
hardware management
hash
hc color
head
-head
--headers
height
help
-help
--help
Help command
Help menu bar
--help-button
--help-label
--help-status
hidden files
-hiddenlinks
Hide VT Window
--hide-menubar
histchars

www.it-ebooks.info

http://www.it-ebooks.info/

HISTCMD
HISTCONTROL
HISTFILE
HISTFILESIZE
HISTIGNORE
-historical
history
HISTSIZE
hold space
HOME

useradd
userdel

home
$HOME

disk space monitoring
temporary files

/home
$HOME/bin
$HOME/mail
$HOME/.my.cnf
-homepage
$HOME/.zshrc
--host
HOSTFILE
HOSTNAME
HOSTTYPE
Hourly_Archie
hpfs
ht
HTML

sed
statistics report

hts
HTTP headers
--human-readable
HUP

I

I
i

format specifier
sem

-I
chage

www.it-ebooks.info

http://www.it-ebooks.info/

dash shell
lvcreate
mount

-i
cp
dash shell
lvcreate
Mailx
mysql
options
sort
zsh

i u
Id
id
identified by
ID_NUMBER
id_number
if

-d
date
-f
gawk

IFS. See internal field separators
if-then

(()) (parentheses-double)
[[]] (square brackets-double)
break
continue
read
test

if-then-else
--ignore
--ignore-backups
IGNORECASE
--ignore-case
IGNOREEOF
--ignore-leading-blanks
-image_links
incoming
incremental search
ind
Indent
index()

www.it-ebooks.info

http://www.it-ebooks.info/

-index
index STRING CHARS
index values
--info
infobox
infocmp
init process
inline input redirection
inner loops
--inode
inode numbers
input redirection
inputbox
--inputbox
--input-fd
inputmenu
INPUTRC
--insecure
INSERT
insert
Insert Date/Time
insert mode
install
install.cf
INT
int()
int
integer
interactive shell
internal field separators (IFS)
International Organization for Standardization (ISO)
Internet

cURL
Lynx
zsh

Internet Message Access Protocol (IMAP)
intervals
ipcs
-ismap
ISO. See International Organization for Standardization
.iso
iso9660
--item-help

J

www.it-ebooks.info

http://www.it-ebooks.info/

J, vim
j

vim
-j
\j
JFS. See Journaled File System
jfs
jfs_mkfs
jobs
job numbers
Joe's Window Manager (JWM)
Join Lines
Journaled File System (JFS)
journaling
JWM. See Joe's Window Manager

K

K, sendmail
k

vim
-k

sort
useradd

K Desktop Environment (KDE)
applications
editors
e-mail
graphical Windows

K menu
k sort
K3b
ka3
Kaffeine
kal
Kate
kb2
kbs
kc1
kc3
kcub1
kcud1
kcuf1
kcuu1
KDE. See K Desktop Environment

www.it-ebooks.info

http://www.it-ebooks.info/

kdialog
--keep-window
kent
kernel

device drivers
filesystem management
hardware management
memory management
modules
software program management
virtual memory

--key
keyboard

terminal emulation
xterm

--keytab file
--keytabs
kf0
kf1
kf10
KILL
kill
killall
KMail
Knoppix
Koffice
Konqueror
Konsole

command line parameters
menu bar
profiles
tabbed windows

Kontact
Kopete
korn
ksh_arrays
ksh_autoload
ksh_option_print
ksh_typeset
KWrite
kwrite

L

L

www.it-ebooks.info

http://www.it-ebooks.info/

l
fdisk
links permissions
print
vim

-L
lvcreate
TCP module
usermod

-l
dash shell
jobs
lvcreate
Mailx
mount
options
psql
TCP module
usermod
zsh

\l
-L label
Lam, Savio
LAMP. See Linux-Apache-MySQL-PHP
LANG
Latin-1
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_NUMERIC
length()
length STRING
less
let

bash shell
zsh

lf filename
/lib
libraries
LIMIT
limit
--line
line addressing

www.it-ebooks.info

http://www.it-ebooks.info/

Line Drawing Characters
Line Numbers
LINENO
LINES
--lines n
lines#24
link
-link
links
Linux console
Linux-Apache-MySQL-PHP (LAMP)
linuxmint.png
list
$list
--list

psql
tar

lists
LiveCD distributions
ln
local

bash shell
zsh

local environment variables
local installation
local variables
-localhost
local_options
local_traps
-locexec
log()
log
Log to file
logfiles
logging messages
Logical Volume Manager (LVM)

filesystem management
mirroring
modifying
snapshots
striping

logical volumes
login
Login Roles

www.it-ebooks.info

http://www.it-ebooks.info/

login shell
logout
loop
loops. See also specific loop operators

controlling
files
nested
output processing

[[:lower:]]
Lowercase
ls

* (asterisk)
bash shell
command line parameters
directories
filtering
regular expressions
STDOUT

--ls
LS_COLORS
lshift()
lsof
lvcreate
lvdisplay
lvextend
LVM. See Logical Volume Manager
LVM1
LVM2
lvreduce
lvtest
Lynx

environment variables
output capturing

lynx
LYNX_CFG
LYNX_LSS
LYNX_SAVE_SPACE

M

M, sendmail
m

fdisk
regular expression interval

-M

www.it-ebooks.info

http://www.it-ebooks.info/

sort
useradd

-m
chage
dash shell
lvcreate
Mutt
sort
useradd

M-<
M->
M-a
MACHTYPE
MAIL
mail
Mail Delivery Agent (MDA)
Mail Transfer Agent (MTA)
Mail User Agent (MUA)
MAILCHECK
Maildir-style mailboxes
maildrop
mailertable
MAILPATH
mailq
MAIL_TO
Mailx
main.cf
make
man
Mandriva
master.cf
match()
match STRING REGEXP
matching operator
math

gawk
shell scripts
zsh

Mauelshagen, Heinz
maverick
Maverick Mercat
--max-input
mb
M-b

www.it-ebooks.info

http://www.it-ebooks.info/

M-backspace
M-d
M-e
media
/media
%MEM
MemFree
meminfo
memory

management
pages

MemTotal
menu

while
--menu
menus

functions
graphical windows
select
shell scripts

menu bar
emacs
GNOME terminal emulation
Konsole

--merge
messages

area
IMAP
logging
shell scripts

Meta sends Escape
M-f
-mf
-mf N
-mime_header
-minimal
minix
--minor
Mint
mirroring
M-k
mkdir
mke2fs
mkefs

www.it-ebooks.info

http://www.it-ebooks.info/

mkfs.ext3
mkfs.ext4
mkfs.xfs
mkreiserfs
mktemp
mktemp -d
mktime()
m.n
/mnt
mode
mode table
Modelines
modules

kernel
zsh

modulo
monitoring

disk space
bash shell

processes
program
real-time process
X Windows

--month-sort
more
mount
mount

bash shell
hard drives

mount points
mounting media
moving
mqueue
-mr N
ms color
msdos
msgbox
--msgbox
msgr
multios
multiple commands

gawk
sed
shell scripts

www.it-ebooks.info

http://www.it-ebooks.info/

while
multiple variables, for
Mutt
mutt
mv
M-v
$myarray
myfuncs
myprint()
mypro?
myprog
MySQL

CLI
mysql

$?
-e

mysql INSERT
mysql UPDATE

N

N
sed

n
fdisk
network device permissions
sed

$n
dash shell
gawk

-N
fsck
mysql

-n
disk space monitoring
echo
jobs
lvcreate
Mailx
mount
Mutt
options
print
read
sed

www.it-ebooks.info

http://www.it-ebooks.info/

sort
substitution
test string comparison
useradd

\n
-n lines
N namelist
-n namelist
-n str1
n1 eq n2
n1 ge n2
n1 -le n2
n1 -ne n2
n1-gt n2
n1-lt n2
NAME
name
--name
name name
--name name
nautilus
ncp
nested loops
-nested_tables
network

devices
files
permissions

zsh
Network File System
[New File]
newaliases
-newschunksize
-newsmaxchunk
next
NF
nfs
nftfs
NI
nice
\nnn
NNTPSERVER
--no-align
-nobold

www.it-ebooks.info

http://www.it-ebooks.info/

-nobrowse
--nocancel
-nocc
--noclose
--no-collapse
-nocolor
NODE
nodes
-noexec
-nofilereferer
--noframe
--no-group
--no-headers
--nohost
nohup
nohup.out
--no-kill
--no-label
-nolist
-nolog
--nomenubar
non-incremental search
non-interactive shell
nopager
-nopause
-noprint
--nopsqlrc
-noredir
-noreferer
--noresize
-norestarting_sigwinch
-noreverse
normal mode, vim
--no-shadow
-nostatus
not null
--notabbar
note
--notification
-nounderline
nowarning
--noxft
NR
-nt

www.it-ebooks.info

http://www.it-ebooks.info/

null files
NULLCMD
num G
-number_fields
-number_links
numeric comparisons, test
numeric line addressing, sed
--numeric-sort
--numeric-uid-gid
-nw

O

O
sendmail

o
fdisk
file permissions
format specifier

-O
file comparison
mount

-o
mount
mysql
options
psql
sort

-O file
O format
o format
-O format
-o format
O order
octal mode
octal_zeroes
OFMI
OFMT
OFS
--ok-label
Old Function keys
OLDPWD
Open File Manager
open source software (OSS)
openSUSE

www.it-ebooks.info

http://www.it-ebooks.info/

local startup file locations
MySQL
zypper

/opt
OPTARG
OPTERR
OPTIND
options

chmod
combining
command line parameters
gawk
standardizing
tar
values
zsh

Options command
optstring
OR
or()
o+r
ORDER BY
Ordered mode
ORS
OSS. See open source software
OSTYPE
outchars
outer loops
output

capturing
Lynx
statistics report
xterm

file descriptors
shell scripts

redirection
variables

--output
psql

output field separator. See OFS
output record separator. See ORS
--output-fd
Overwrite Mode

P

www.it-ebooks.info

http://www.it-ebooks.info/

P, sendmail
p

fdisk
print
sed
sem
substitution

-p
cp
jobs
lvcreate
Mutt
mysql
PID
psql
read
tar
usermod
zsh

\P
\p
-p num
-p passwd
p pidlist
-p pidlist
Package Management System (PMS)

Debian
package_type_list
Packed Font
packets
PageDown
pager
PageUp
parameters. See also specific parameter types

functions
-partial
-partial_thres
partitions

filesystems
PV

passwd
bash shell

--password
passwords

www.it-ebooks.info

http://www.it-ebooks.info/

/etc/shadow
passwordbox
passwordform
Paste
PATH

setting
/usr/sbin

pattern space
pause
-pauth
PCLinuxOS
permissions

chmod
devices
files
groups
users

--persistent
phone number validation
physical volumes (PV)
pickup
PID. See process ID
--pid pidlist
-pid=PID
pipe
pipes
PIPESTATUS
plain text
plug-ins
PMS. See Package Management System
POP. See Post Office Protocol
popd
-popup
positional parameters
POSIX Basic Regular Expression engine (BRE)

. (dot)
* (asterisk)
anchor characters
character classes
character ranges
plain text
special characters

POSIX Extended Regular Expression engine (ERE)
{} (curly brackets)

www.it-ebooks.info

http://www.it-ebooks.info/

| (pipe symbol)
+ (plus sign)
? (question mark)

posix_builtins
POSIXLY_CORRECT
--post
Post Office Protocol (POP)
-post_data
postdrop
Postfix
PostgreSQL

CLI
PPID
--ppid pidlist
PR
prec
Preferences dialog
-preparsed
-prettysrc
PRI
primary key
primary partition
print

gawk
sed
zsh

-print
[[:print:]]
Print window
printenv
printf
--print-maxsize
--print-size
problem-logger
problem-tracking databases
Problem_Trek
prob_solutions
prob_symptoms
proc
process ID (PID)

&&
while

process ID (PID)
process_answer

www.it-ebooks.info

http://www.it-ebooks.info/

processes
monitoring

real-time
signals
status
stopping
user accounts
virtual memory
zombie

/proc/meminfo
--profile file
profiles
--profiles
program monitoring
Program shortcuts
--progress
prompt
PROMPT_COMMAND
PROMPT_DIRTRIM
PROTOCOL_PROXY
ps
PS1
PS2
PS3
PS4
--pset
-pseudo_inlines
psql
public schema
[[:punct:]]
Puppy Linux
pushd
pushln
PV. See physical volumes
pvcreate
pvdisplay
PWD
pwd

bash shell
dash shell
zsh

Python Console

Q

www.it-ebooks.info

http://www.it-ebooks.info/

q
fdisk
vim

q!
-Q
-q

mysql
options
psql

\q
mysql
psql

-qa
qmgr
--question
Quick Open
--quiet
QUIT
quit

R

R
r

sed
sem
vmstat

-R
chown
cp
fsck
lvcreate
Mutt
psql
sort

-r
cp
file comparison
fsck
gawk
jobs
lvcreate
mount
mysql
options

www.it-ebooks.info

http://www.it-ebooks.info/

tar
useradd
userdel
zsh

r--
\R
\r
r char
-r file
R text
radiolist
--radiolist
rand()
RANDOM
--random-sort
--random-source=FILE
-raw
rc
rcs
read

? (question mark)
bash shell
cat
dash shell
delete
file descriptors
if-then
menus
-n
-p
pipe
-s
sed
STDIN
-t
user accounts
values
while
zsh

Read Only Mode
--readahead
README
READNULLCMD
readonly

www.it-ebooks.info

http://www.it-ebooks.info/

bash shell
dash shell
zsh

read/write file descriptors
-realm
real-time process monitoring
recipients
Record_Problem
records
--record-separator
RECORDS_EXIST
recursion
--recursive
Red Hat

run level
yum

Red Hat Package Management (RPM)
MySQL

Redirect to printer
Redo
Redraw Window
REG
REGEXP
--regionsize
regular expressions

* (asterisk)
case sensitivity
counting directory files
e-mail parsing
engine
gawk
groups
phone number validation
sed
wildcards

rehash
--re-interval
Reiser, Hans
ReiserFS
relative filepath
relay-domains
-reload
removable media
renice

www.it-ebooks.info

http://www.it-ebooks.info/

Repeat key
Replace
replace-string
REPLY
report_date
REPORT_FILE
repositories

aptitude
urpm
versions
yum
zypper

RES
-restrictions
-resubmit_posts
$result
return
Return key
rev
reverse
--reverse
ri
rich
Right margin
RLENGTH
-rlogin
rm
rmacs
rmam
rmdir
rmkx
rmso
rmul
ro
--role+
rolling windows
root

file owners
MySQL
problem-solver
test

/root
root drive
--rows n

www.it-ebooks.info

http://www.it-ebooks.info/

RPM. See Red Hat Package Management
rpm
rpmfusion.org
rpm.list
RS
rs2
rshift()
RSS
RSTART
run level

Debian
init process
Red Hat

rv
rw
rwx
r-x

S

S
sendmail

s
fdisk
format specifier

-S
cp
mount
mysql
psql
sort

-s
cp
dash shell
disk space monitoring
file comparison
fsck
jobs
lvcreate
Mailx
Mutt
mysql
options
psql
read

www.it-ebooks.info

http://www.it-ebooks.info/

soft links
sort
STDOUT
zsh

\s
-s file
-s sec
-s sesslist
-s shell
safe-upgrade
sb
/sbin
sc
--scale
schema
--schema name
scratch area
screen scraping
script. See also shell scripts

startup
Scroll Lock key
scroll region
scrollback buffer
Scrollback menu bar
sda
search, data
search
search and replace
search and substitute
Search command
SECONDS
Secure Keyboard
security

changing settings
sed

& (ampersand)
! (exclamation mark)
advanced commands
append
branch
change
changing flow
commands

groups

www.it-ebooks.info

http://www.it-ebooks.info/

multiple
negating

d
delete
disk space monitoring
double spacing lines
equal sign
files
hold space
HTML
insert
line addressing
list
-n
next
numbering lines
numeric line addressing
p
print
printing last lines
quick guide
r
read
regular expressions
reverse
shell scripts
STDIN
STDOUT
substitution
t
test
text pattern filters
transform
utilities
wrappers

SEGV
SELECT
select

menus
zsh

Select All
-selective
self-containment
sem

www.it-ebooks.info

http://www.it-ebooks.info/

a
\ (backslash)
d
delete
i
p
r
w
y

sendmail
sendmail.cf
sendmail.ct
sendmail.cw
--separate-output
--separate-widget
--separator
set

bash shell
dash shell
getopt
zsh

set group id (SGID)
set user id (SUID)
setopt
Settings command
Settings menu bar
SGI. See Silicon Graphics Incorporated
SGID. See set group id
sgr
sgr0
--shadow
shadow files
sharing

files
memory pages

shell. See also specific shells
terminal emulation

SHELL
shell scripts

advanced
background mode
bash shell
controls
dash shell

www.it-ebooks.info

http://www.it-ebooks.info/

data
input
output

databases
dialog
environment variables
exiting
functions
getopt
graphical desktops
input redirection
jobs
math
menus
messages
multiple commands
output redirection
pipes
problem-tracking databases
sed
snapshot report
statistics report
STDERR
suppressing command output
utilities
variables
zenith
zsh

SHELLOPTS
sh_file_expansion
shift

-- (dash-double)
bash shell
dash shell
zsh

SHLVL
sh_nullcmd
shopt
sh_option_letters
-short_url
SHOW
Show Alternate Screen
Show Menu Bar
SHOW TABLES

www.it-ebooks.info

http://www.it-ebooks.info/

Show Tek Window
-show_cursor
-show_dquotes
--show-menubar
showq
-show_rate
SHR
sh_word_split
si
--si
--sid sislist
SIGCONT
SIGHUP
SIGINT
SIGKILL
signals
SIGQUIT
SIGTERM
SIGTSTP
Silicon Graphics Incorporated (SGI)
Simple Mail Transfer Protocol (SNTP)
SimplyMEPIS
sin()
--single-line
--single-quoted
--single-step
SIZE
--size
Slackware
Slax
--sleep
smacs
smam
smb
smkx
smso
smtp
smtpd
smul
--snapshot
snapshots

LVM
report

Snippets

www.it-ebooks.info

http://www.it-ebooks.info/

SNTP. See Simple Mail Transfer Protocol
so
soft links
software

installation
program management

--sorry
Sort
sort

for
bash shell
rpm
test

--sort order
--sort=extension
--sort=none
--sort=size
--sort=time
--sort=version
sound juicer
source

mysql
zsh

-source
source code
sources.list
[[:space:]]
special characters, BRE
Spell Checker
Spellcheck Selection
Spelling
Spelling (from cursor)
split()
sprintf()
sqrt()
sshd
SSL_CERT_DIR
SSL_CERT_FILE
--stable
-stack-dump
-startfile_ok
startup script
--startup-id=
STAT

www.it-ebooks.info

http://www.it-ebooks.info/

stat
statistics report
status
STDERR

& (ampersand)
/dev/null
dialog
dialog widgets
echo
e-mail
nohup
null files
shell scripts
testerror

--stderr
STDIN

file descriptors
gawk
read
sed
testfile

-stdin
--stdin
STDINPUT
STDOUT

cURL
databases
e-mail
exec
file descriptors
gawk
ls
-n
nohup
-s
sed
snapshot reports
STDERR
substitution
temporary files

--stdout
sticky bit
STIME
STOP

www.it-ebooks.info

http://www.it-ebooks.info/

str1 != str2
str1 < str2
str1 = str2
str1 > str2
stream editors
strftime()
string

comparisons, test
functions, gawk

String : REGEXP
--stripes
striping
--stripsize
structured commands

gawk
zsh

stub functions
su-
sub()
substitution

escape characters
N
sed

substr()
substr STRING POS LENGTH
sudo
SUID. See set user id
Sun Function keys
suspend
SW
swap space
swapping out
SwapTotal
Switch to Tek Window
swpd
sy
Synaptic Package Manager
sysstat
system
system accounts
System V init process
systime()
sysv
SZ

www.it-ebooks.info

http://www.it-ebooks.info/

T

T
t

fdisk
sed

-T
fsck
mysql
psql
sort

-t
filesystems
fsck
mysql
psql
read
sort
tar
TCP module
zsh

\T
\t
t. --title=
-T title
t ttylist
-t ttylist
--tab
Tab Stops
tabbed windows
--tab-correct
<table>
tables

cron
databases

--table-attr
--tab-len
tabs, GNOME terminal emulation
Tabs menu bar
--tab-with-profile=
tac
Tag List
tags
-tagsoup
tail

www.it-ebooks.info

http://www.it-ebooks.info/

tailbox
tailboxbg
tar
tasks
tb
tbc
TCP module
tcsh
tee
Tektronix
-telnet
$temp
$tempfile
temporary directories
temporary files

$HOME
--temporary-direction=DIR
$tempt
TERM
-term
Termcap Function keys
terminal emulation

control codes
GNOME
graphics
keyboard
Konsole
Linux Console
shell
terminfo database

Terminal menu bar
terminfo database

control codes
test

bash shell
command line parameters
dash shell
file comparisons
if-then
numeric comparisons
root
sed
sort
string comparisons

www.it-ebooks.info

http://www.it-ebooks.info/

zsh
$test
test command
testerror
testfile
Text
text
text pattern filters
text virtual consoles
Text Wrapping
textbox
--textbox
--text-info
TIME
Time
TIME+
time functions
timebox
TIMEFORMAT
--timeout
times
Timestamp
--title
-tlog
TMOUT
/tmp
TMPDIR
-tna
+ TOKEN
tolower()
tomboy
Tools command
top
Torvalds, Linus
totem
touch
touch top
toupper()
-trace
-trace_mask
transform
trap
traps_async
-traversal

www.it-ebooks.info

http://www.it-ebooks.info/

--trim
-trim_input_fields
trivialrewrite
true
TrueType Fonts
TSTP
TTY
--tty ttylist
ttyctl
ttyS
--tuples-only
TYPE
type
--type type
--types
typeset
typeset_silent

U

u
fdisk
user permissions
vim

-U
mysql
psql
usermod

-u
cp
dash shell
find
mysql
sort
tar
zsh

\u
-u uid
U userlist
-U userlist
-u userlist
-U uuid
Ubuntu

/etc/init.d
ext4

www.it-ebooks.info

http://www.it-ebooks.info/

GNOME
local startup file locations
Maverick Mercat
MySQL

UCE. See unsolicited commercial e-mail
ufs
UID. See user ID
$UID
ulimit
umask
umount
umsdos
unalias
-underline_links
-underscore
Undo
unfunction
unhash
Unicode
Uniform Resource Identifier (URI)
Unindent
--unique
Unix-style parameters
unlimit
unmount
unset

bash shell
dash shell
zsh

unsetopt
unsolicited commercial e-mail (UCE)
until

break
continue
while

unzip
Update_Problem
[[:upper:]]
Uppercase
Upstart init process
uptime
URI. See Uniform Resource Identifier
urpm

Mandriva

www.it-ebooks.info

http://www.it-ebooks.info/

repositories
urpme package_name
urpmi --auto-update --update
urpmi --clean
urpmi package_name
urpmi.addmedia path_name
urpmq --list-media
us
USE
use
--use-factory
-use_mouse
USER
user
$USER
users

accounts
processes

adding
modifying
permissions
removing

user ID (UID)
bash shell

--User userlist
--user userlist
user variables
USER_ACCOUNT_RECORD
useradd
-useragent
user-defined environment variables
user-defined functions
user-defined variables
userdel
userid
usermod
--username
/usr
/usr/sbin
UTF-8 Fonts
UTF-8 Titles
utilities

GNU
sed

www.it-ebooks.info

http://www.it-ebooks.info/

shell scripts
u-x

V

V
v

fdisk
-V

dash shell
fsck
psql

-v
cp
dash shell
gawk
Mailx
mount
Mutt
mysql
options
psql
tar
TCP module

\V
\v
-v var=value
val++
++val
val--
--val
-validate
$value
values

commands
functions
options
read

/var
varchar
--variable
variables. See also environment variables

for
arrays
CLI

www.it-ebooks.info

http://www.it-ebooks.info/

dash shell
data fields
data output
functions
gawk
global
lists
local
shell scripts
user

var/mail
/var/spool/mail
vector graphics
verbose
-verbose
-version
--version
versions, repositories
vfat
VFS. See Virtual File System
VG. See volume groups
vgchange
vgcreate
vgdisplay
vgextend
vgreduce
vgremove
video card
View command

gedit
KWrite

View menu bar
GNOME terminal emulation
Konsole

-vikeys
vim

copy and paste
search and substitute

VIRT
virtual consoles
virtual directory
Virtual File System (VFS)
virtual memory
virtusertable

www.it-ebooks.info

http://www.it-ebooks.info/

--visit
visual mode
vmstat
volume groups (VG)
VSZ
VT commands
VT features
VT fonts menu
VT options menu
--vt sz CxL
vt#3
VT220 keyboard

W

W
w

fdisk
sed
sem
substitution

-W
chage
gawk
mount
psql

-w
file comparison
mysql

-w-, permission code
\W

mysql
\w

mysql
-w file
w filename
-W keyword
wa
wait

bash shell
dash shell
zsh

--warning
--warningcontinuecancel
warnings

www.it-ebooks.info

http://www.it-ebooks.info/

--warningyesno
--warningyesnocancel
wc
WCHAN
whence
WHERE
where
which

bash shell
Mailx
zsh

while
break
command line parameters
continue
echo
exec
gawk
getopts
menus
multiple commands
PID
read
until
user accounts
zsh

who
widget
widgets

dialog package
kdialog
zenity

width
-width
--width n
wildcards

aptitude
directories
regular expressions
rm

--window
windows. See also graphical windows

rolling
tabbed

www.it-ebooks.info

http://www.it-ebooks.info/

--window-with-profile=
-with_backspaces
Word Wrap Document
--workdir dir
--working-directory=
wq
wrappers
Writeback mode
WWW_HOME
-wx

X

X
format specifier

x
fdisk
format specifier
sed
vim

-X, psql
-x

cp
dash shell
file comparison
Mutt
mysql
options
psql
tar

--x, permission code
x < y
x <= y
x == y
x > y
X event commands
-x file
X Windows

emacs
virtual consoles

x >=y
Xandros
xen1
xfce
XFree86

www.it-ebooks.info

http://www.it-ebooks.info/

XFS
XFS filesystem
XML. See Extensible Markup Language
xon
xor()
X.org
xterm

command line parameters
keyboard settings
main menu
output capturing
VT options menu
X event commands

xtrace

Y

y
sem

-y
fsck
Mutt
options

--yes-label
yesno
--yesno
--yesnocancel
+%y%m%d
yum

Fedora
Red Hat
repositories

yum localinstall

Z

Z
z
-Z

lvcreate
Mutt

-z
ANSWER
Mutt
sort
tar

www.it-ebooks.info

http://www.it-ebooks.info/

test string comparison
\z
z shell (zsh)

built-in commands
command line parameters
functions
mathematical operations
modules
options
shell scripts
structured commands

-z str1
zcompile
zenity
--zero
--zero-terminated
zftp
zip
zipcloak
zipnote
zipsplit
zmodload

$HOME/.zshrc
zsh

zombie processes
--zoom=
zsh. See z shell
zsh
zsh/cap
zsh/clone
zsh/compctl
zsh/complete
zsh/complist
zsh/computil
zsh/datetime
zsh/deltochar
zsh/files
zsh/mapfile
zsh/mathfunc
zsh/net/socket
zsh/net/tcp
zsh/parameter
zsh/pcre
zsh/sched

www.it-ebooks.info

http://www.it-ebooks.info/

zsh/stat
zsh/system
zsh/termcap
zsh/terminfo
zsh/zftp
zsh/zle
zsh/zleparameter
zsh/zprof
zsh/zpty
zsh/zselect
zsh/zutil
ztcp
zypper

openSUSE
repositories

zypper addrepo path_name
zypper install package_name
zypper remove_package_name
zypper repos
zypper update
zypper verify

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

